bootmem: micro optimize freeing pages in bulk
[linux-2.6.git] / block / blk.h
1 #ifndef BLK_INTERNAL_H
2 #define BLK_INTERNAL_H
3
4 /* Amount of time in which a process may batch requests */
5 #define BLK_BATCH_TIME  (HZ/50UL)
6
7 /* Number of requests a "batching" process may submit */
8 #define BLK_BATCH_REQ   32
9
10 extern struct kmem_cache *blk_requestq_cachep;
11 extern struct kobj_type blk_queue_ktype;
12
13 void init_request_from_bio(struct request *req, struct bio *bio);
14 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
15                         struct bio *bio);
16 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
17                       struct bio *bio);
18 void blk_drain_queue(struct request_queue *q, bool drain_all);
19 void blk_dequeue_request(struct request *rq);
20 void __blk_queue_free_tags(struct request_queue *q);
21 bool __blk_end_bidi_request(struct request *rq, int error,
22                             unsigned int nr_bytes, unsigned int bidi_bytes);
23
24 void blk_rq_timed_out_timer(unsigned long data);
25 void blk_delete_timer(struct request *);
26 void blk_add_timer(struct request *);
27 void __generic_unplug_device(struct request_queue *);
28
29 /*
30  * Internal atomic flags for request handling
31  */
32 enum rq_atomic_flags {
33         REQ_ATOM_COMPLETE = 0,
34 };
35
36 /*
37  * EH timer and IO completion will both attempt to 'grab' the request, make
38  * sure that only one of them succeeds
39  */
40 static inline int blk_mark_rq_complete(struct request *rq)
41 {
42         return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
43 }
44
45 static inline void blk_clear_rq_complete(struct request *rq)
46 {
47         clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
48 }
49
50 /*
51  * Internal elevator interface
52  */
53 #define ELV_ON_HASH(rq)         (!hlist_unhashed(&(rq)->hash))
54
55 void blk_insert_flush(struct request *rq);
56 void blk_abort_flushes(struct request_queue *q);
57
58 static inline struct request *__elv_next_request(struct request_queue *q)
59 {
60         struct request *rq;
61
62         while (1) {
63                 if (!list_empty(&q->queue_head)) {
64                         rq = list_entry_rq(q->queue_head.next);
65                         return rq;
66                 }
67
68                 /*
69                  * Flush request is running and flush request isn't queueable
70                  * in the drive, we can hold the queue till flush request is
71                  * finished. Even we don't do this, driver can't dispatch next
72                  * requests and will requeue them. And this can improve
73                  * throughput too. For example, we have request flush1, write1,
74                  * flush 2. flush1 is dispatched, then queue is hold, write1
75                  * isn't inserted to queue. After flush1 is finished, flush2
76                  * will be dispatched. Since disk cache is already clean,
77                  * flush2 will be finished very soon, so looks like flush2 is
78                  * folded to flush1.
79                  * Since the queue is hold, a flag is set to indicate the queue
80                  * should be restarted later. Please see flush_end_io() for
81                  * details.
82                  */
83                 if (q->flush_pending_idx != q->flush_running_idx &&
84                                 !queue_flush_queueable(q)) {
85                         q->flush_queue_delayed = 1;
86                         return NULL;
87                 }
88                 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags) ||
89                     !q->elevator->ops->elevator_dispatch_fn(q, 0))
90                         return NULL;
91         }
92 }
93
94 static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
95 {
96         struct elevator_queue *e = q->elevator;
97
98         if (e->ops->elevator_activate_req_fn)
99                 e->ops->elevator_activate_req_fn(q, rq);
100 }
101
102 static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
103 {
104         struct elevator_queue *e = q->elevator;
105
106         if (e->ops->elevator_deactivate_req_fn)
107                 e->ops->elevator_deactivate_req_fn(q, rq);
108 }
109
110 #ifdef CONFIG_FAIL_IO_TIMEOUT
111 int blk_should_fake_timeout(struct request_queue *);
112 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
113 ssize_t part_timeout_store(struct device *, struct device_attribute *,
114                                 const char *, size_t);
115 #else
116 static inline int blk_should_fake_timeout(struct request_queue *q)
117 {
118         return 0;
119 }
120 #endif
121
122 struct io_context *current_io_context(gfp_t gfp_flags, int node);
123
124 int ll_back_merge_fn(struct request_queue *q, struct request *req,
125                      struct bio *bio);
126 int ll_front_merge_fn(struct request_queue *q, struct request *req, 
127                       struct bio *bio);
128 int attempt_back_merge(struct request_queue *q, struct request *rq);
129 int attempt_front_merge(struct request_queue *q, struct request *rq);
130 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
131                                 struct request *next);
132 void blk_recalc_rq_segments(struct request *rq);
133 void blk_rq_set_mixed_merge(struct request *rq);
134
135 void blk_queue_congestion_threshold(struct request_queue *q);
136
137 int blk_dev_init(void);
138
139 void elv_quiesce_start(struct request_queue *q);
140 void elv_quiesce_end(struct request_queue *q);
141
142
143 /*
144  * Return the threshold (number of used requests) at which the queue is
145  * considered to be congested.  It include a little hysteresis to keep the
146  * context switch rate down.
147  */
148 static inline int queue_congestion_on_threshold(struct request_queue *q)
149 {
150         return q->nr_congestion_on;
151 }
152
153 /*
154  * The threshold at which a queue is considered to be uncongested
155  */
156 static inline int queue_congestion_off_threshold(struct request_queue *q)
157 {
158         return q->nr_congestion_off;
159 }
160
161 static inline int blk_cpu_to_group(int cpu)
162 {
163         int group = NR_CPUS;
164 #ifdef CONFIG_SCHED_MC
165         const struct cpumask *mask = cpu_coregroup_mask(cpu);
166         group = cpumask_first(mask);
167 #elif defined(CONFIG_SCHED_SMT)
168         group = cpumask_first(topology_thread_cpumask(cpu));
169 #else
170         return cpu;
171 #endif
172         if (likely(group < NR_CPUS))
173                 return group;
174         return cpu;
175 }
176
177 /*
178  * Contribute to IO statistics IFF:
179  *
180  *      a) it's attached to a gendisk, and
181  *      b) the queue had IO stats enabled when this request was started, and
182  *      c) it's a file system request or a discard request
183  */
184 static inline int blk_do_io_stat(struct request *rq)
185 {
186         return rq->rq_disk &&
187                (rq->cmd_flags & REQ_IO_STAT) &&
188                (rq->cmd_type == REQ_TYPE_FS ||
189                 (rq->cmd_flags & REQ_DISCARD));
190 }
191
192 #ifdef CONFIG_BLK_DEV_THROTTLING
193 extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
194 extern void blk_throtl_drain(struct request_queue *q);
195 extern int blk_throtl_init(struct request_queue *q);
196 extern void blk_throtl_exit(struct request_queue *q);
197 extern void blk_throtl_release(struct request_queue *q);
198 #else /* CONFIG_BLK_DEV_THROTTLING */
199 static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
200 {
201         return false;
202 }
203 static inline void blk_throtl_drain(struct request_queue *q) { }
204 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
205 static inline void blk_throtl_exit(struct request_queue *q) { }
206 static inline void blk_throtl_release(struct request_queue *q) { }
207 #endif /* CONFIG_BLK_DEV_THROTTLING */
208
209 #endif /* BLK_INTERNAL_H */