KVM: Add memory slot versioning and use it to provide fast guest write interface
[linux-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS                                               \
64         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS                                               \
68         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
70                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
71                           | X86_CR4_OSXSAVE \
72                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94                                     struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105         int nr;
106         u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110         struct user_return_notifier urn;
111         bool registered;
112         struct kvm_shared_msr_values {
113                 u64 host;
114                 u64 curr;
115         } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122         { "pf_fixed", VCPU_STAT(pf_fixed) },
123         { "pf_guest", VCPU_STAT(pf_guest) },
124         { "tlb_flush", VCPU_STAT(tlb_flush) },
125         { "invlpg", VCPU_STAT(invlpg) },
126         { "exits", VCPU_STAT(exits) },
127         { "io_exits", VCPU_STAT(io_exits) },
128         { "mmio_exits", VCPU_STAT(mmio_exits) },
129         { "signal_exits", VCPU_STAT(signal_exits) },
130         { "irq_window", VCPU_STAT(irq_window_exits) },
131         { "nmi_window", VCPU_STAT(nmi_window_exits) },
132         { "halt_exits", VCPU_STAT(halt_exits) },
133         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134         { "hypercalls", VCPU_STAT(hypercalls) },
135         { "request_irq", VCPU_STAT(request_irq_exits) },
136         { "irq_exits", VCPU_STAT(irq_exits) },
137         { "host_state_reload", VCPU_STAT(host_state_reload) },
138         { "efer_reload", VCPU_STAT(efer_reload) },
139         { "fpu_reload", VCPU_STAT(fpu_reload) },
140         { "insn_emulation", VCPU_STAT(insn_emulation) },
141         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142         { "irq_injections", VCPU_STAT(irq_injections) },
143         { "nmi_injections", VCPU_STAT(nmi_injections) },
144         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148         { "mmu_flooded", VM_STAT(mmu_flooded) },
149         { "mmu_recycled", VM_STAT(mmu_recycled) },
150         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151         { "mmu_unsync", VM_STAT(mmu_unsync) },
152         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153         { "largepages", VM_STAT(lpages) },
154         { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161         int i;
162         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163                 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168         unsigned slot;
169         struct kvm_shared_msrs *locals
170                 = container_of(urn, struct kvm_shared_msrs, urn);
171         struct kvm_shared_msr_values *values;
172
173         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174                 values = &locals->values[slot];
175                 if (values->host != values->curr) {
176                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
177                         values->curr = values->host;
178                 }
179         }
180         locals->registered = false;
181         user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186         struct kvm_shared_msrs *smsr;
187         u64 value;
188
189         smsr = &__get_cpu_var(shared_msrs);
190         /* only read, and nobody should modify it at this time,
191          * so don't need lock */
192         if (slot >= shared_msrs_global.nr) {
193                 printk(KERN_ERR "kvm: invalid MSR slot!");
194                 return;
195         }
196         rdmsrl_safe(msr, &value);
197         smsr->values[slot].host = value;
198         smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203         if (slot >= shared_msrs_global.nr)
204                 shared_msrs_global.nr = slot + 1;
205         shared_msrs_global.msrs[slot] = msr;
206         /* we need ensured the shared_msr_global have been updated */
207         smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213         unsigned i;
214
215         for (i = 0; i < shared_msrs_global.nr; ++i)
216                 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223         if (((value ^ smsr->values[slot].curr) & mask) == 0)
224                 return;
225         smsr->values[slot].curr = value;
226         wrmsrl(shared_msrs_global.msrs[slot], value);
227         if (!smsr->registered) {
228                 smsr->urn.on_user_return = kvm_on_user_return;
229                 user_return_notifier_register(&smsr->urn);
230                 smsr->registered = true;
231         }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239         if (smsr->registered)
240                 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245         if (irqchip_in_kernel(vcpu->kvm))
246                 return vcpu->arch.apic_base;
247         else
248                 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254         /* TODO: reserve bits check */
255         if (irqchip_in_kernel(vcpu->kvm))
256                 kvm_lapic_set_base(vcpu, data);
257         else
258                 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN            0
263 #define EXCPT_CONTRIBUTORY      1
264 #define EXCPT_PF                2
265
266 static int exception_class(int vector)
267 {
268         switch (vector) {
269         case PF_VECTOR:
270                 return EXCPT_PF;
271         case DE_VECTOR:
272         case TS_VECTOR:
273         case NP_VECTOR:
274         case SS_VECTOR:
275         case GP_VECTOR:
276                 return EXCPT_CONTRIBUTORY;
277         default:
278                 break;
279         }
280         return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284                 unsigned nr, bool has_error, u32 error_code,
285                 bool reinject)
286 {
287         u32 prev_nr;
288         int class1, class2;
289
290         kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292         if (!vcpu->arch.exception.pending) {
293         queue:
294                 vcpu->arch.exception.pending = true;
295                 vcpu->arch.exception.has_error_code = has_error;
296                 vcpu->arch.exception.nr = nr;
297                 vcpu->arch.exception.error_code = error_code;
298                 vcpu->arch.exception.reinject = reinject;
299                 return;
300         }
301
302         /* to check exception */
303         prev_nr = vcpu->arch.exception.nr;
304         if (prev_nr == DF_VECTOR) {
305                 /* triple fault -> shutdown */
306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307                 return;
308         }
309         class1 = exception_class(prev_nr);
310         class2 = exception_class(nr);
311         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313                 /* generate double fault per SDM Table 5-5 */
314                 vcpu->arch.exception.pending = true;
315                 vcpu->arch.exception.has_error_code = true;
316                 vcpu->arch.exception.nr = DF_VECTOR;
317                 vcpu->arch.exception.error_code = 0;
318         } else
319                 /* replace previous exception with a new one in a hope
320                    that instruction re-execution will regenerate lost
321                    exception */
322                 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327         kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
338 {
339         unsigned error_code = vcpu->arch.fault.error_code;
340
341         ++vcpu->stat.pf_guest;
342         vcpu->arch.cr2 = vcpu->arch.fault.address;
343         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
347 {
348         if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
349                 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
350         else
351                 vcpu->arch.mmu.inject_page_fault(vcpu);
352
353         vcpu->arch.fault.nested = false;
354 }
355
356 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
357 {
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359         vcpu->arch.nmi_pending = 1;
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
362
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
364 {
365         kvm_multiple_exception(vcpu, nr, true, error_code, false);
366 }
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
368
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371         kvm_multiple_exception(vcpu, nr, true, error_code, true);
372 }
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
374
375 /*
376  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
377  * a #GP and return false.
378  */
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
380 {
381         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
382                 return true;
383         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
384         return false;
385 }
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
387
388 /*
389  * This function will be used to read from the physical memory of the currently
390  * running guest. The difference to kvm_read_guest_page is that this function
391  * can read from guest physical or from the guest's guest physical memory.
392  */
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394                             gfn_t ngfn, void *data, int offset, int len,
395                             u32 access)
396 {
397         gfn_t real_gfn;
398         gpa_t ngpa;
399
400         ngpa     = gfn_to_gpa(ngfn);
401         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402         if (real_gfn == UNMAPPED_GVA)
403                 return -EFAULT;
404
405         real_gfn = gpa_to_gfn(real_gfn);
406
407         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
408 }
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
410
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412                                void *data, int offset, int len, u32 access)
413 {
414         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415                                        data, offset, len, access);
416 }
417
418 /*
419  * Load the pae pdptrs.  Return true is they are all valid.
420  */
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
422 {
423         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
425         int i;
426         int ret;
427         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
428
429         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430                                       offset * sizeof(u64), sizeof(pdpte),
431                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
432         if (ret < 0) {
433                 ret = 0;
434                 goto out;
435         }
436         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437                 if (is_present_gpte(pdpte[i]) &&
438                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
439                         ret = 0;
440                         goto out;
441                 }
442         }
443         ret = 1;
444
445         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446         __set_bit(VCPU_EXREG_PDPTR,
447                   (unsigned long *)&vcpu->arch.regs_avail);
448         __set_bit(VCPU_EXREG_PDPTR,
449                   (unsigned long *)&vcpu->arch.regs_dirty);
450 out:
451
452         return ret;
453 }
454 EXPORT_SYMBOL_GPL(load_pdptrs);
455
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
457 {
458         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
459         bool changed = true;
460         int offset;
461         gfn_t gfn;
462         int r;
463
464         if (is_long_mode(vcpu) || !is_pae(vcpu))
465                 return false;
466
467         if (!test_bit(VCPU_EXREG_PDPTR,
468                       (unsigned long *)&vcpu->arch.regs_avail))
469                 return true;
470
471         gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472         offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
475         if (r < 0)
476                 goto out;
477         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
478 out:
479
480         return changed;
481 }
482
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
484 {
485         unsigned long old_cr0 = kvm_read_cr0(vcpu);
486         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487                                     X86_CR0_CD | X86_CR0_NW;
488
489         cr0 |= X86_CR0_ET;
490
491 #ifdef CONFIG_X86_64
492         if (cr0 & 0xffffffff00000000UL)
493                 return 1;
494 #endif
495
496         cr0 &= ~CR0_RESERVED_BITS;
497
498         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
499                 return 1;
500
501         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
502                 return 1;
503
504         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
505 #ifdef CONFIG_X86_64
506                 if ((vcpu->arch.efer & EFER_LME)) {
507                         int cs_db, cs_l;
508
509                         if (!is_pae(vcpu))
510                                 return 1;
511                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
512                         if (cs_l)
513                                 return 1;
514                 } else
515 #endif
516                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
517                                                  vcpu->arch.cr3))
518                         return 1;
519         }
520
521         kvm_x86_ops->set_cr0(vcpu, cr0);
522
523         if ((cr0 ^ old_cr0) & update_bits)
524                 kvm_mmu_reset_context(vcpu);
525         return 0;
526 }
527 EXPORT_SYMBOL_GPL(kvm_set_cr0);
528
529 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
530 {
531         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
532 }
533 EXPORT_SYMBOL_GPL(kvm_lmsw);
534
535 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
536 {
537         u64 xcr0;
538
539         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
540         if (index != XCR_XFEATURE_ENABLED_MASK)
541                 return 1;
542         xcr0 = xcr;
543         if (kvm_x86_ops->get_cpl(vcpu) != 0)
544                 return 1;
545         if (!(xcr0 & XSTATE_FP))
546                 return 1;
547         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
548                 return 1;
549         if (xcr0 & ~host_xcr0)
550                 return 1;
551         vcpu->arch.xcr0 = xcr0;
552         vcpu->guest_xcr0_loaded = 0;
553         return 0;
554 }
555
556 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
557 {
558         if (__kvm_set_xcr(vcpu, index, xcr)) {
559                 kvm_inject_gp(vcpu, 0);
560                 return 1;
561         }
562         return 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_set_xcr);
565
566 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
567 {
568         struct kvm_cpuid_entry2 *best;
569
570         best = kvm_find_cpuid_entry(vcpu, 1, 0);
571         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
572 }
573
574 static void update_cpuid(struct kvm_vcpu *vcpu)
575 {
576         struct kvm_cpuid_entry2 *best;
577
578         best = kvm_find_cpuid_entry(vcpu, 1, 0);
579         if (!best)
580                 return;
581
582         /* Update OSXSAVE bit */
583         if (cpu_has_xsave && best->function == 0x1) {
584                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
585                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
586                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
587         }
588 }
589
590 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
591 {
592         unsigned long old_cr4 = kvm_read_cr4(vcpu);
593         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
594
595         if (cr4 & CR4_RESERVED_BITS)
596                 return 1;
597
598         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
599                 return 1;
600
601         if (is_long_mode(vcpu)) {
602                 if (!(cr4 & X86_CR4_PAE))
603                         return 1;
604         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605                    && ((cr4 ^ old_cr4) & pdptr_bits)
606                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
607                 return 1;
608
609         if (cr4 & X86_CR4_VMXE)
610                 return 1;
611
612         kvm_x86_ops->set_cr4(vcpu, cr4);
613
614         if ((cr4 ^ old_cr4) & pdptr_bits)
615                 kvm_mmu_reset_context(vcpu);
616
617         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
618                 update_cpuid(vcpu);
619
620         return 0;
621 }
622 EXPORT_SYMBOL_GPL(kvm_set_cr4);
623
624 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
625 {
626         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
627                 kvm_mmu_sync_roots(vcpu);
628                 kvm_mmu_flush_tlb(vcpu);
629                 return 0;
630         }
631
632         if (is_long_mode(vcpu)) {
633                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
634                         return 1;
635         } else {
636                 if (is_pae(vcpu)) {
637                         if (cr3 & CR3_PAE_RESERVED_BITS)
638                                 return 1;
639                         if (is_paging(vcpu) &&
640                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
641                                 return 1;
642                 }
643                 /*
644                  * We don't check reserved bits in nonpae mode, because
645                  * this isn't enforced, and VMware depends on this.
646                  */
647         }
648
649         /*
650          * Does the new cr3 value map to physical memory? (Note, we
651          * catch an invalid cr3 even in real-mode, because it would
652          * cause trouble later on when we turn on paging anyway.)
653          *
654          * A real CPU would silently accept an invalid cr3 and would
655          * attempt to use it - with largely undefined (and often hard
656          * to debug) behavior on the guest side.
657          */
658         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
659                 return 1;
660         vcpu->arch.cr3 = cr3;
661         vcpu->arch.mmu.new_cr3(vcpu);
662         return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_set_cr3);
665
666 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
667 {
668         if (cr8 & CR8_RESERVED_BITS)
669                 return 1;
670         if (irqchip_in_kernel(vcpu->kvm))
671                 kvm_lapic_set_tpr(vcpu, cr8);
672         else
673                 vcpu->arch.cr8 = cr8;
674         return 0;
675 }
676
677 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
678 {
679         if (__kvm_set_cr8(vcpu, cr8))
680                 kvm_inject_gp(vcpu, 0);
681 }
682 EXPORT_SYMBOL_GPL(kvm_set_cr8);
683
684 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
685 {
686         if (irqchip_in_kernel(vcpu->kvm))
687                 return kvm_lapic_get_cr8(vcpu);
688         else
689                 return vcpu->arch.cr8;
690 }
691 EXPORT_SYMBOL_GPL(kvm_get_cr8);
692
693 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
694 {
695         switch (dr) {
696         case 0 ... 3:
697                 vcpu->arch.db[dr] = val;
698                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
699                         vcpu->arch.eff_db[dr] = val;
700                 break;
701         case 4:
702                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703                         return 1; /* #UD */
704                 /* fall through */
705         case 6:
706                 if (val & 0xffffffff00000000ULL)
707                         return -1; /* #GP */
708                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
709                 break;
710         case 5:
711                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
712                         return 1; /* #UD */
713                 /* fall through */
714         default: /* 7 */
715                 if (val & 0xffffffff00000000ULL)
716                         return -1; /* #GP */
717                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
718                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
719                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
720                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
721                 }
722                 break;
723         }
724
725         return 0;
726 }
727
728 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
729 {
730         int res;
731
732         res = __kvm_set_dr(vcpu, dr, val);
733         if (res > 0)
734                 kvm_queue_exception(vcpu, UD_VECTOR);
735         else if (res < 0)
736                 kvm_inject_gp(vcpu, 0);
737
738         return res;
739 }
740 EXPORT_SYMBOL_GPL(kvm_set_dr);
741
742 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
743 {
744         switch (dr) {
745         case 0 ... 3:
746                 *val = vcpu->arch.db[dr];
747                 break;
748         case 4:
749                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750                         return 1;
751                 /* fall through */
752         case 6:
753                 *val = vcpu->arch.dr6;
754                 break;
755         case 5:
756                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757                         return 1;
758                 /* fall through */
759         default: /* 7 */
760                 *val = vcpu->arch.dr7;
761                 break;
762         }
763
764         return 0;
765 }
766
767 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 {
769         if (_kvm_get_dr(vcpu, dr, val)) {
770                 kvm_queue_exception(vcpu, UD_VECTOR);
771                 return 1;
772         }
773         return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_get_dr);
776
777 /*
778  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
779  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
780  *
781  * This list is modified at module load time to reflect the
782  * capabilities of the host cpu. This capabilities test skips MSRs that are
783  * kvm-specific. Those are put in the beginning of the list.
784  */
785
786 #define KVM_SAVE_MSRS_BEGIN     7
787 static u32 msrs_to_save[] = {
788         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
789         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
790         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
791         HV_X64_MSR_APIC_ASSIST_PAGE,
792         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
793         MSR_STAR,
794 #ifdef CONFIG_X86_64
795         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
796 #endif
797         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
798 };
799
800 static unsigned num_msrs_to_save;
801
802 static u32 emulated_msrs[] = {
803         MSR_IA32_MISC_ENABLE,
804         MSR_IA32_MCG_STATUS,
805         MSR_IA32_MCG_CTL,
806 };
807
808 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
809 {
810         u64 old_efer = vcpu->arch.efer;
811
812         if (efer & efer_reserved_bits)
813                 return 1;
814
815         if (is_paging(vcpu)
816             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
817                 return 1;
818
819         if (efer & EFER_FFXSR) {
820                 struct kvm_cpuid_entry2 *feat;
821
822                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
823                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
824                         return 1;
825         }
826
827         if (efer & EFER_SVME) {
828                 struct kvm_cpuid_entry2 *feat;
829
830                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
831                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
832                         return 1;
833         }
834
835         efer &= ~EFER_LMA;
836         efer |= vcpu->arch.efer & EFER_LMA;
837
838         kvm_x86_ops->set_efer(vcpu, efer);
839
840         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
841
842         /* Update reserved bits */
843         if ((efer ^ old_efer) & EFER_NX)
844                 kvm_mmu_reset_context(vcpu);
845
846         return 0;
847 }
848
849 void kvm_enable_efer_bits(u64 mask)
850 {
851        efer_reserved_bits &= ~mask;
852 }
853 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
854
855
856 /*
857  * Writes msr value into into the appropriate "register".
858  * Returns 0 on success, non-0 otherwise.
859  * Assumes vcpu_load() was already called.
860  */
861 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
862 {
863         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
864 }
865
866 /*
867  * Adapt set_msr() to msr_io()'s calling convention
868  */
869 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
870 {
871         return kvm_set_msr(vcpu, index, *data);
872 }
873
874 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
875 {
876         int version;
877         int r;
878         struct pvclock_wall_clock wc;
879         struct timespec boot;
880
881         if (!wall_clock)
882                 return;
883
884         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
885         if (r)
886                 return;
887
888         if (version & 1)
889                 ++version;  /* first time write, random junk */
890
891         ++version;
892
893         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
894
895         /*
896          * The guest calculates current wall clock time by adding
897          * system time (updated by kvm_guest_time_update below) to the
898          * wall clock specified here.  guest system time equals host
899          * system time for us, thus we must fill in host boot time here.
900          */
901         getboottime(&boot);
902
903         wc.sec = boot.tv_sec;
904         wc.nsec = boot.tv_nsec;
905         wc.version = version;
906
907         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
908
909         version++;
910         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
911 }
912
913 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
914 {
915         uint32_t quotient, remainder;
916
917         /* Don't try to replace with do_div(), this one calculates
918          * "(dividend << 32) / divisor" */
919         __asm__ ( "divl %4"
920                   : "=a" (quotient), "=d" (remainder)
921                   : "0" (0), "1" (dividend), "r" (divisor) );
922         return quotient;
923 }
924
925 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
926                                s8 *pshift, u32 *pmultiplier)
927 {
928         uint64_t scaled64;
929         int32_t  shift = 0;
930         uint64_t tps64;
931         uint32_t tps32;
932
933         tps64 = base_khz * 1000LL;
934         scaled64 = scaled_khz * 1000LL;
935         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
936                 tps64 >>= 1;
937                 shift--;
938         }
939
940         tps32 = (uint32_t)tps64;
941         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
942                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
943                         scaled64 >>= 1;
944                 else
945                         tps32 <<= 1;
946                 shift++;
947         }
948
949         *pshift = shift;
950         *pmultiplier = div_frac(scaled64, tps32);
951
952         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
953                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
954 }
955
956 static inline u64 get_kernel_ns(void)
957 {
958         struct timespec ts;
959
960         WARN_ON(preemptible());
961         ktime_get_ts(&ts);
962         monotonic_to_bootbased(&ts);
963         return timespec_to_ns(&ts);
964 }
965
966 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
967 unsigned long max_tsc_khz;
968
969 static inline int kvm_tsc_changes_freq(void)
970 {
971         int cpu = get_cpu();
972         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
973                   cpufreq_quick_get(cpu) != 0;
974         put_cpu();
975         return ret;
976 }
977
978 static inline u64 nsec_to_cycles(u64 nsec)
979 {
980         u64 ret;
981
982         WARN_ON(preemptible());
983         if (kvm_tsc_changes_freq())
984                 printk_once(KERN_WARNING
985                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
986         ret = nsec * __get_cpu_var(cpu_tsc_khz);
987         do_div(ret, USEC_PER_SEC);
988         return ret;
989 }
990
991 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
992 {
993         /* Compute a scale to convert nanoseconds in TSC cycles */
994         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995                            &kvm->arch.virtual_tsc_shift,
996                            &kvm->arch.virtual_tsc_mult);
997         kvm->arch.virtual_tsc_khz = this_tsc_khz;
998 }
999
1000 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1001 {
1002         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1003                                       vcpu->kvm->arch.virtual_tsc_mult,
1004                                       vcpu->kvm->arch.virtual_tsc_shift);
1005         tsc += vcpu->arch.last_tsc_write;
1006         return tsc;
1007 }
1008
1009 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1010 {
1011         struct kvm *kvm = vcpu->kvm;
1012         u64 offset, ns, elapsed;
1013         unsigned long flags;
1014         s64 sdiff;
1015
1016         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1017         offset = data - native_read_tsc();
1018         ns = get_kernel_ns();
1019         elapsed = ns - kvm->arch.last_tsc_nsec;
1020         sdiff = data - kvm->arch.last_tsc_write;
1021         if (sdiff < 0)
1022                 sdiff = -sdiff;
1023
1024         /*
1025          * Special case: close write to TSC within 5 seconds of
1026          * another CPU is interpreted as an attempt to synchronize
1027          * The 5 seconds is to accomodate host load / swapping as
1028          * well as any reset of TSC during the boot process.
1029          *
1030          * In that case, for a reliable TSC, we can match TSC offsets,
1031          * or make a best guest using elapsed value.
1032          */
1033         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1034             elapsed < 5ULL * NSEC_PER_SEC) {
1035                 if (!check_tsc_unstable()) {
1036                         offset = kvm->arch.last_tsc_offset;
1037                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1038                 } else {
1039                         u64 delta = nsec_to_cycles(elapsed);
1040                         offset += delta;
1041                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1042                 }
1043                 ns = kvm->arch.last_tsc_nsec;
1044         }
1045         kvm->arch.last_tsc_nsec = ns;
1046         kvm->arch.last_tsc_write = data;
1047         kvm->arch.last_tsc_offset = offset;
1048         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1049         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1050
1051         /* Reset of TSC must disable overshoot protection below */
1052         vcpu->arch.hv_clock.tsc_timestamp = 0;
1053         vcpu->arch.last_tsc_write = data;
1054         vcpu->arch.last_tsc_nsec = ns;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1057
1058 static int kvm_guest_time_update(struct kvm_vcpu *v)
1059 {
1060         unsigned long flags;
1061         struct kvm_vcpu_arch *vcpu = &v->arch;
1062         void *shared_kaddr;
1063         unsigned long this_tsc_khz;
1064         s64 kernel_ns, max_kernel_ns;
1065         u64 tsc_timestamp;
1066
1067         /* Keep irq disabled to prevent changes to the clock */
1068         local_irq_save(flags);
1069         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1070         kernel_ns = get_kernel_ns();
1071         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1072
1073         if (unlikely(this_tsc_khz == 0)) {
1074                 local_irq_restore(flags);
1075                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1076                 return 1;
1077         }
1078
1079         /*
1080          * We may have to catch up the TSC to match elapsed wall clock
1081          * time for two reasons, even if kvmclock is used.
1082          *   1) CPU could have been running below the maximum TSC rate
1083          *   2) Broken TSC compensation resets the base at each VCPU
1084          *      entry to avoid unknown leaps of TSC even when running
1085          *      again on the same CPU.  This may cause apparent elapsed
1086          *      time to disappear, and the guest to stand still or run
1087          *      very slowly.
1088          */
1089         if (vcpu->tsc_catchup) {
1090                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1091                 if (tsc > tsc_timestamp) {
1092                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1093                         tsc_timestamp = tsc;
1094                 }
1095         }
1096
1097         local_irq_restore(flags);
1098
1099         if (!vcpu->time_page)
1100                 return 0;
1101
1102         /*
1103          * Time as measured by the TSC may go backwards when resetting the base
1104          * tsc_timestamp.  The reason for this is that the TSC resolution is
1105          * higher than the resolution of the other clock scales.  Thus, many
1106          * possible measurments of the TSC correspond to one measurement of any
1107          * other clock, and so a spread of values is possible.  This is not a
1108          * problem for the computation of the nanosecond clock; with TSC rates
1109          * around 1GHZ, there can only be a few cycles which correspond to one
1110          * nanosecond value, and any path through this code will inevitably
1111          * take longer than that.  However, with the kernel_ns value itself,
1112          * the precision may be much lower, down to HZ granularity.  If the
1113          * first sampling of TSC against kernel_ns ends in the low part of the
1114          * range, and the second in the high end of the range, we can get:
1115          *
1116          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1117          *
1118          * As the sampling errors potentially range in the thousands of cycles,
1119          * it is possible such a time value has already been observed by the
1120          * guest.  To protect against this, we must compute the system time as
1121          * observed by the guest and ensure the new system time is greater.
1122          */
1123         max_kernel_ns = 0;
1124         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1125                 max_kernel_ns = vcpu->last_guest_tsc -
1126                                 vcpu->hv_clock.tsc_timestamp;
1127                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1128                                     vcpu->hv_clock.tsc_to_system_mul,
1129                                     vcpu->hv_clock.tsc_shift);
1130                 max_kernel_ns += vcpu->last_kernel_ns;
1131         }
1132
1133         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1134                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1135                                    &vcpu->hv_clock.tsc_shift,
1136                                    &vcpu->hv_clock.tsc_to_system_mul);
1137                 vcpu->hw_tsc_khz = this_tsc_khz;
1138         }
1139
1140         if (max_kernel_ns > kernel_ns)
1141                 kernel_ns = max_kernel_ns;
1142
1143         /* With all the info we got, fill in the values */
1144         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1145         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1146         vcpu->last_kernel_ns = kernel_ns;
1147         vcpu->last_guest_tsc = tsc_timestamp;
1148         vcpu->hv_clock.flags = 0;
1149
1150         /*
1151          * The interface expects us to write an even number signaling that the
1152          * update is finished. Since the guest won't see the intermediate
1153          * state, we just increase by 2 at the end.
1154          */
1155         vcpu->hv_clock.version += 2;
1156
1157         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1158
1159         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1160                sizeof(vcpu->hv_clock));
1161
1162         kunmap_atomic(shared_kaddr, KM_USER0);
1163
1164         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1165         return 0;
1166 }
1167
1168 static bool msr_mtrr_valid(unsigned msr)
1169 {
1170         switch (msr) {
1171         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1172         case MSR_MTRRfix64K_00000:
1173         case MSR_MTRRfix16K_80000:
1174         case MSR_MTRRfix16K_A0000:
1175         case MSR_MTRRfix4K_C0000:
1176         case MSR_MTRRfix4K_C8000:
1177         case MSR_MTRRfix4K_D0000:
1178         case MSR_MTRRfix4K_D8000:
1179         case MSR_MTRRfix4K_E0000:
1180         case MSR_MTRRfix4K_E8000:
1181         case MSR_MTRRfix4K_F0000:
1182         case MSR_MTRRfix4K_F8000:
1183         case MSR_MTRRdefType:
1184         case MSR_IA32_CR_PAT:
1185                 return true;
1186         case 0x2f8:
1187                 return true;
1188         }
1189         return false;
1190 }
1191
1192 static bool valid_pat_type(unsigned t)
1193 {
1194         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1195 }
1196
1197 static bool valid_mtrr_type(unsigned t)
1198 {
1199         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1200 }
1201
1202 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1203 {
1204         int i;
1205
1206         if (!msr_mtrr_valid(msr))
1207                 return false;
1208
1209         if (msr == MSR_IA32_CR_PAT) {
1210                 for (i = 0; i < 8; i++)
1211                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1212                                 return false;
1213                 return true;
1214         } else if (msr == MSR_MTRRdefType) {
1215                 if (data & ~0xcff)
1216                         return false;
1217                 return valid_mtrr_type(data & 0xff);
1218         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1219                 for (i = 0; i < 8 ; i++)
1220                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1221                                 return false;
1222                 return true;
1223         }
1224
1225         /* variable MTRRs */
1226         return valid_mtrr_type(data & 0xff);
1227 }
1228
1229 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1232
1233         if (!mtrr_valid(vcpu, msr, data))
1234                 return 1;
1235
1236         if (msr == MSR_MTRRdefType) {
1237                 vcpu->arch.mtrr_state.def_type = data;
1238                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1239         } else if (msr == MSR_MTRRfix64K_00000)
1240                 p[0] = data;
1241         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1242                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1243         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1244                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1245         else if (msr == MSR_IA32_CR_PAT)
1246                 vcpu->arch.pat = data;
1247         else {  /* Variable MTRRs */
1248                 int idx, is_mtrr_mask;
1249                 u64 *pt;
1250
1251                 idx = (msr - 0x200) / 2;
1252                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1253                 if (!is_mtrr_mask)
1254                         pt =
1255                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1256                 else
1257                         pt =
1258                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1259                 *pt = data;
1260         }
1261
1262         kvm_mmu_reset_context(vcpu);
1263         return 0;
1264 }
1265
1266 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1267 {
1268         u64 mcg_cap = vcpu->arch.mcg_cap;
1269         unsigned bank_num = mcg_cap & 0xff;
1270
1271         switch (msr) {
1272         case MSR_IA32_MCG_STATUS:
1273                 vcpu->arch.mcg_status = data;
1274                 break;
1275         case MSR_IA32_MCG_CTL:
1276                 if (!(mcg_cap & MCG_CTL_P))
1277                         return 1;
1278                 if (data != 0 && data != ~(u64)0)
1279                         return -1;
1280                 vcpu->arch.mcg_ctl = data;
1281                 break;
1282         default:
1283                 if (msr >= MSR_IA32_MC0_CTL &&
1284                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1285                         u32 offset = msr - MSR_IA32_MC0_CTL;
1286                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1287                          * some Linux kernels though clear bit 10 in bank 4 to
1288                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1289                          * this to avoid an uncatched #GP in the guest
1290                          */
1291                         if ((offset & 0x3) == 0 &&
1292                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1293                                 return -1;
1294                         vcpu->arch.mce_banks[offset] = data;
1295                         break;
1296                 }
1297                 return 1;
1298         }
1299         return 0;
1300 }
1301
1302 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1303 {
1304         struct kvm *kvm = vcpu->kvm;
1305         int lm = is_long_mode(vcpu);
1306         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1307                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1308         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1309                 : kvm->arch.xen_hvm_config.blob_size_32;
1310         u32 page_num = data & ~PAGE_MASK;
1311         u64 page_addr = data & PAGE_MASK;
1312         u8 *page;
1313         int r;
1314
1315         r = -E2BIG;
1316         if (page_num >= blob_size)
1317                 goto out;
1318         r = -ENOMEM;
1319         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1320         if (!page)
1321                 goto out;
1322         r = -EFAULT;
1323         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1324                 goto out_free;
1325         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1326                 goto out_free;
1327         r = 0;
1328 out_free:
1329         kfree(page);
1330 out:
1331         return r;
1332 }
1333
1334 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1335 {
1336         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1337 }
1338
1339 static bool kvm_hv_msr_partition_wide(u32 msr)
1340 {
1341         bool r = false;
1342         switch (msr) {
1343         case HV_X64_MSR_GUEST_OS_ID:
1344         case HV_X64_MSR_HYPERCALL:
1345                 r = true;
1346                 break;
1347         }
1348
1349         return r;
1350 }
1351
1352 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1353 {
1354         struct kvm *kvm = vcpu->kvm;
1355
1356         switch (msr) {
1357         case HV_X64_MSR_GUEST_OS_ID:
1358                 kvm->arch.hv_guest_os_id = data;
1359                 /* setting guest os id to zero disables hypercall page */
1360                 if (!kvm->arch.hv_guest_os_id)
1361                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1362                 break;
1363         case HV_X64_MSR_HYPERCALL: {
1364                 u64 gfn;
1365                 unsigned long addr;
1366                 u8 instructions[4];
1367
1368                 /* if guest os id is not set hypercall should remain disabled */
1369                 if (!kvm->arch.hv_guest_os_id)
1370                         break;
1371                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1372                         kvm->arch.hv_hypercall = data;
1373                         break;
1374                 }
1375                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1376                 addr = gfn_to_hva(kvm, gfn);
1377                 if (kvm_is_error_hva(addr))
1378                         return 1;
1379                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1380                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1381                 if (copy_to_user((void __user *)addr, instructions, 4))
1382                         return 1;
1383                 kvm->arch.hv_hypercall = data;
1384                 break;
1385         }
1386         default:
1387                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1388                           "data 0x%llx\n", msr, data);
1389                 return 1;
1390         }
1391         return 0;
1392 }
1393
1394 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1395 {
1396         switch (msr) {
1397         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1398                 unsigned long addr;
1399
1400                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1401                         vcpu->arch.hv_vapic = data;
1402                         break;
1403                 }
1404                 addr = gfn_to_hva(vcpu->kvm, data >>
1405                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1406                 if (kvm_is_error_hva(addr))
1407                         return 1;
1408                 if (clear_user((void __user *)addr, PAGE_SIZE))
1409                         return 1;
1410                 vcpu->arch.hv_vapic = data;
1411                 break;
1412         }
1413         case HV_X64_MSR_EOI:
1414                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1415         case HV_X64_MSR_ICR:
1416                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1417         case HV_X64_MSR_TPR:
1418                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1419         default:
1420                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1421                           "data 0x%llx\n", msr, data);
1422                 return 1;
1423         }
1424
1425         return 0;
1426 }
1427
1428 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1429 {
1430         switch (msr) {
1431         case MSR_EFER:
1432                 return set_efer(vcpu, data);
1433         case MSR_K7_HWCR:
1434                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1435                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1436                 if (data != 0) {
1437                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1438                                 data);
1439                         return 1;
1440                 }
1441                 break;
1442         case MSR_FAM10H_MMIO_CONF_BASE:
1443                 if (data != 0) {
1444                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1445                                 "0x%llx\n", data);
1446                         return 1;
1447                 }
1448                 break;
1449         case MSR_AMD64_NB_CFG:
1450                 break;
1451         case MSR_IA32_DEBUGCTLMSR:
1452                 if (!data) {
1453                         /* We support the non-activated case already */
1454                         break;
1455                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1456                         /* Values other than LBR and BTF are vendor-specific,
1457                            thus reserved and should throw a #GP */
1458                         return 1;
1459                 }
1460                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1461                         __func__, data);
1462                 break;
1463         case MSR_IA32_UCODE_REV:
1464         case MSR_IA32_UCODE_WRITE:
1465         case MSR_VM_HSAVE_PA:
1466         case MSR_AMD64_PATCH_LOADER:
1467                 break;
1468         case 0x200 ... 0x2ff:
1469                 return set_msr_mtrr(vcpu, msr, data);
1470         case MSR_IA32_APICBASE:
1471                 kvm_set_apic_base(vcpu, data);
1472                 break;
1473         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1474                 return kvm_x2apic_msr_write(vcpu, msr, data);
1475         case MSR_IA32_MISC_ENABLE:
1476                 vcpu->arch.ia32_misc_enable_msr = data;
1477                 break;
1478         case MSR_KVM_WALL_CLOCK_NEW:
1479         case MSR_KVM_WALL_CLOCK:
1480                 vcpu->kvm->arch.wall_clock = data;
1481                 kvm_write_wall_clock(vcpu->kvm, data);
1482                 break;
1483         case MSR_KVM_SYSTEM_TIME_NEW:
1484         case MSR_KVM_SYSTEM_TIME: {
1485                 if (vcpu->arch.time_page) {
1486                         kvm_release_page_dirty(vcpu->arch.time_page);
1487                         vcpu->arch.time_page = NULL;
1488                 }
1489
1490                 vcpu->arch.time = data;
1491                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1492
1493                 /* we verify if the enable bit is set... */
1494                 if (!(data & 1))
1495                         break;
1496
1497                 /* ...but clean it before doing the actual write */
1498                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1499
1500                 vcpu->arch.time_page =
1501                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1502
1503                 if (is_error_page(vcpu->arch.time_page)) {
1504                         kvm_release_page_clean(vcpu->arch.time_page);
1505                         vcpu->arch.time_page = NULL;
1506                 }
1507                 break;
1508         }
1509         case MSR_IA32_MCG_CTL:
1510         case MSR_IA32_MCG_STATUS:
1511         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1512                 return set_msr_mce(vcpu, msr, data);
1513
1514         /* Performance counters are not protected by a CPUID bit,
1515          * so we should check all of them in the generic path for the sake of
1516          * cross vendor migration.
1517          * Writing a zero into the event select MSRs disables them,
1518          * which we perfectly emulate ;-). Any other value should be at least
1519          * reported, some guests depend on them.
1520          */
1521         case MSR_P6_EVNTSEL0:
1522         case MSR_P6_EVNTSEL1:
1523         case MSR_K7_EVNTSEL0:
1524         case MSR_K7_EVNTSEL1:
1525         case MSR_K7_EVNTSEL2:
1526         case MSR_K7_EVNTSEL3:
1527                 if (data != 0)
1528                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1529                                 "0x%x data 0x%llx\n", msr, data);
1530                 break;
1531         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1532          * so we ignore writes to make it happy.
1533          */
1534         case MSR_P6_PERFCTR0:
1535         case MSR_P6_PERFCTR1:
1536         case MSR_K7_PERFCTR0:
1537         case MSR_K7_PERFCTR1:
1538         case MSR_K7_PERFCTR2:
1539         case MSR_K7_PERFCTR3:
1540                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1541                         "0x%x data 0x%llx\n", msr, data);
1542                 break;
1543         case MSR_K7_CLK_CTL:
1544                 /*
1545                  * Ignore all writes to this no longer documented MSR.
1546                  * Writes are only relevant for old K7 processors,
1547                  * all pre-dating SVM, but a recommended workaround from
1548                  * AMD for these chips. It is possible to speicify the
1549                  * affected processor models on the command line, hence
1550                  * the need to ignore the workaround.
1551                  */
1552                 break;
1553         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1554                 if (kvm_hv_msr_partition_wide(msr)) {
1555                         int r;
1556                         mutex_lock(&vcpu->kvm->lock);
1557                         r = set_msr_hyperv_pw(vcpu, msr, data);
1558                         mutex_unlock(&vcpu->kvm->lock);
1559                         return r;
1560                 } else
1561                         return set_msr_hyperv(vcpu, msr, data);
1562                 break;
1563         default:
1564                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1565                         return xen_hvm_config(vcpu, data);
1566                 if (!ignore_msrs) {
1567                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1568                                 msr, data);
1569                         return 1;
1570                 } else {
1571                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1572                                 msr, data);
1573                         break;
1574                 }
1575         }
1576         return 0;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1579
1580
1581 /*
1582  * Reads an msr value (of 'msr_index') into 'pdata'.
1583  * Returns 0 on success, non-0 otherwise.
1584  * Assumes vcpu_load() was already called.
1585  */
1586 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1587 {
1588         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1589 }
1590
1591 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1592 {
1593         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1594
1595         if (!msr_mtrr_valid(msr))
1596                 return 1;
1597
1598         if (msr == MSR_MTRRdefType)
1599                 *pdata = vcpu->arch.mtrr_state.def_type +
1600                          (vcpu->arch.mtrr_state.enabled << 10);
1601         else if (msr == MSR_MTRRfix64K_00000)
1602                 *pdata = p[0];
1603         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1604                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1605         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1606                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1607         else if (msr == MSR_IA32_CR_PAT)
1608                 *pdata = vcpu->arch.pat;
1609         else {  /* Variable MTRRs */
1610                 int idx, is_mtrr_mask;
1611                 u64 *pt;
1612
1613                 idx = (msr - 0x200) / 2;
1614                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1615                 if (!is_mtrr_mask)
1616                         pt =
1617                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1618                 else
1619                         pt =
1620                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1621                 *pdata = *pt;
1622         }
1623
1624         return 0;
1625 }
1626
1627 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1628 {
1629         u64 data;
1630         u64 mcg_cap = vcpu->arch.mcg_cap;
1631         unsigned bank_num = mcg_cap & 0xff;
1632
1633         switch (msr) {
1634         case MSR_IA32_P5_MC_ADDR:
1635         case MSR_IA32_P5_MC_TYPE:
1636                 data = 0;
1637                 break;
1638         case MSR_IA32_MCG_CAP:
1639                 data = vcpu->arch.mcg_cap;
1640                 break;
1641         case MSR_IA32_MCG_CTL:
1642                 if (!(mcg_cap & MCG_CTL_P))
1643                         return 1;
1644                 data = vcpu->arch.mcg_ctl;
1645                 break;
1646         case MSR_IA32_MCG_STATUS:
1647                 data = vcpu->arch.mcg_status;
1648                 break;
1649         default:
1650                 if (msr >= MSR_IA32_MC0_CTL &&
1651                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1652                         u32 offset = msr - MSR_IA32_MC0_CTL;
1653                         data = vcpu->arch.mce_banks[offset];
1654                         break;
1655                 }
1656                 return 1;
1657         }
1658         *pdata = data;
1659         return 0;
1660 }
1661
1662 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1663 {
1664         u64 data = 0;
1665         struct kvm *kvm = vcpu->kvm;
1666
1667         switch (msr) {
1668         case HV_X64_MSR_GUEST_OS_ID:
1669                 data = kvm->arch.hv_guest_os_id;
1670                 break;
1671         case HV_X64_MSR_HYPERCALL:
1672                 data = kvm->arch.hv_hypercall;
1673                 break;
1674         default:
1675                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1676                 return 1;
1677         }
1678
1679         *pdata = data;
1680         return 0;
1681 }
1682
1683 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1684 {
1685         u64 data = 0;
1686
1687         switch (msr) {
1688         case HV_X64_MSR_VP_INDEX: {
1689                 int r;
1690                 struct kvm_vcpu *v;
1691                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1692                         if (v == vcpu)
1693                                 data = r;
1694                 break;
1695         }
1696         case HV_X64_MSR_EOI:
1697                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1698         case HV_X64_MSR_ICR:
1699                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1700         case HV_X64_MSR_TPR:
1701                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1702         default:
1703                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1704                 return 1;
1705         }
1706         *pdata = data;
1707         return 0;
1708 }
1709
1710 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1711 {
1712         u64 data;
1713
1714         switch (msr) {
1715         case MSR_IA32_PLATFORM_ID:
1716         case MSR_IA32_UCODE_REV:
1717         case MSR_IA32_EBL_CR_POWERON:
1718         case MSR_IA32_DEBUGCTLMSR:
1719         case MSR_IA32_LASTBRANCHFROMIP:
1720         case MSR_IA32_LASTBRANCHTOIP:
1721         case MSR_IA32_LASTINTFROMIP:
1722         case MSR_IA32_LASTINTTOIP:
1723         case MSR_K8_SYSCFG:
1724         case MSR_K7_HWCR:
1725         case MSR_VM_HSAVE_PA:
1726         case MSR_P6_PERFCTR0:
1727         case MSR_P6_PERFCTR1:
1728         case MSR_P6_EVNTSEL0:
1729         case MSR_P6_EVNTSEL1:
1730         case MSR_K7_EVNTSEL0:
1731         case MSR_K7_PERFCTR0:
1732         case MSR_K8_INT_PENDING_MSG:
1733         case MSR_AMD64_NB_CFG:
1734         case MSR_FAM10H_MMIO_CONF_BASE:
1735                 data = 0;
1736                 break;
1737         case MSR_MTRRcap:
1738                 data = 0x500 | KVM_NR_VAR_MTRR;
1739                 break;
1740         case 0x200 ... 0x2ff:
1741                 return get_msr_mtrr(vcpu, msr, pdata);
1742         case 0xcd: /* fsb frequency */
1743                 data = 3;
1744                 break;
1745                 /*
1746                  * MSR_EBC_FREQUENCY_ID
1747                  * Conservative value valid for even the basic CPU models.
1748                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1749                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1750                  * and 266MHz for model 3, or 4. Set Core Clock
1751                  * Frequency to System Bus Frequency Ratio to 1 (bits
1752                  * 31:24) even though these are only valid for CPU
1753                  * models > 2, however guests may end up dividing or
1754                  * multiplying by zero otherwise.
1755                  */
1756         case MSR_EBC_FREQUENCY_ID:
1757                 data = 1 << 24;
1758                 break;
1759         case MSR_IA32_APICBASE:
1760                 data = kvm_get_apic_base(vcpu);
1761                 break;
1762         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1763                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1764                 break;
1765         case MSR_IA32_MISC_ENABLE:
1766                 data = vcpu->arch.ia32_misc_enable_msr;
1767                 break;
1768         case MSR_IA32_PERF_STATUS:
1769                 /* TSC increment by tick */
1770                 data = 1000ULL;
1771                 /* CPU multiplier */
1772                 data |= (((uint64_t)4ULL) << 40);
1773                 break;
1774         case MSR_EFER:
1775                 data = vcpu->arch.efer;
1776                 break;
1777         case MSR_KVM_WALL_CLOCK:
1778         case MSR_KVM_WALL_CLOCK_NEW:
1779                 data = vcpu->kvm->arch.wall_clock;
1780                 break;
1781         case MSR_KVM_SYSTEM_TIME:
1782         case MSR_KVM_SYSTEM_TIME_NEW:
1783                 data = vcpu->arch.time;
1784                 break;
1785         case MSR_IA32_P5_MC_ADDR:
1786         case MSR_IA32_P5_MC_TYPE:
1787         case MSR_IA32_MCG_CAP:
1788         case MSR_IA32_MCG_CTL:
1789         case MSR_IA32_MCG_STATUS:
1790         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1791                 return get_msr_mce(vcpu, msr, pdata);
1792         case MSR_K7_CLK_CTL:
1793                 /*
1794                  * Provide expected ramp-up count for K7. All other
1795                  * are set to zero, indicating minimum divisors for
1796                  * every field.
1797                  *
1798                  * This prevents guest kernels on AMD host with CPU
1799                  * type 6, model 8 and higher from exploding due to
1800                  * the rdmsr failing.
1801                  */
1802                 data = 0x20000000;
1803                 break;
1804         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1805                 if (kvm_hv_msr_partition_wide(msr)) {
1806                         int r;
1807                         mutex_lock(&vcpu->kvm->lock);
1808                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1809                         mutex_unlock(&vcpu->kvm->lock);
1810                         return r;
1811                 } else
1812                         return get_msr_hyperv(vcpu, msr, pdata);
1813                 break;
1814         default:
1815                 if (!ignore_msrs) {
1816                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1817                         return 1;
1818                 } else {
1819                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1820                         data = 0;
1821                 }
1822                 break;
1823         }
1824         *pdata = data;
1825         return 0;
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1828
1829 /*
1830  * Read or write a bunch of msrs. All parameters are kernel addresses.
1831  *
1832  * @return number of msrs set successfully.
1833  */
1834 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1835                     struct kvm_msr_entry *entries,
1836                     int (*do_msr)(struct kvm_vcpu *vcpu,
1837                                   unsigned index, u64 *data))
1838 {
1839         int i, idx;
1840
1841         idx = srcu_read_lock(&vcpu->kvm->srcu);
1842         for (i = 0; i < msrs->nmsrs; ++i)
1843                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1844                         break;
1845         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1846
1847         return i;
1848 }
1849
1850 /*
1851  * Read or write a bunch of msrs. Parameters are user addresses.
1852  *
1853  * @return number of msrs set successfully.
1854  */
1855 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1856                   int (*do_msr)(struct kvm_vcpu *vcpu,
1857                                 unsigned index, u64 *data),
1858                   int writeback)
1859 {
1860         struct kvm_msrs msrs;
1861         struct kvm_msr_entry *entries;
1862         int r, n;
1863         unsigned size;
1864
1865         r = -EFAULT;
1866         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1867                 goto out;
1868
1869         r = -E2BIG;
1870         if (msrs.nmsrs >= MAX_IO_MSRS)
1871                 goto out;
1872
1873         r = -ENOMEM;
1874         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1875         entries = kmalloc(size, GFP_KERNEL);
1876         if (!entries)
1877                 goto out;
1878
1879         r = -EFAULT;
1880         if (copy_from_user(entries, user_msrs->entries, size))
1881                 goto out_free;
1882
1883         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1884         if (r < 0)
1885                 goto out_free;
1886
1887         r = -EFAULT;
1888         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1889                 goto out_free;
1890
1891         r = n;
1892
1893 out_free:
1894         kfree(entries);
1895 out:
1896         return r;
1897 }
1898
1899 int kvm_dev_ioctl_check_extension(long ext)
1900 {
1901         int r;
1902
1903         switch (ext) {
1904         case KVM_CAP_IRQCHIP:
1905         case KVM_CAP_HLT:
1906         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1907         case KVM_CAP_SET_TSS_ADDR:
1908         case KVM_CAP_EXT_CPUID:
1909         case KVM_CAP_CLOCKSOURCE:
1910         case KVM_CAP_PIT:
1911         case KVM_CAP_NOP_IO_DELAY:
1912         case KVM_CAP_MP_STATE:
1913         case KVM_CAP_SYNC_MMU:
1914         case KVM_CAP_REINJECT_CONTROL:
1915         case KVM_CAP_IRQ_INJECT_STATUS:
1916         case KVM_CAP_ASSIGN_DEV_IRQ:
1917         case KVM_CAP_IRQFD:
1918         case KVM_CAP_IOEVENTFD:
1919         case KVM_CAP_PIT2:
1920         case KVM_CAP_PIT_STATE2:
1921         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1922         case KVM_CAP_XEN_HVM:
1923         case KVM_CAP_ADJUST_CLOCK:
1924         case KVM_CAP_VCPU_EVENTS:
1925         case KVM_CAP_HYPERV:
1926         case KVM_CAP_HYPERV_VAPIC:
1927         case KVM_CAP_HYPERV_SPIN:
1928         case KVM_CAP_PCI_SEGMENT:
1929         case KVM_CAP_DEBUGREGS:
1930         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1931         case KVM_CAP_XSAVE:
1932                 r = 1;
1933                 break;
1934         case KVM_CAP_COALESCED_MMIO:
1935                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1936                 break;
1937         case KVM_CAP_VAPIC:
1938                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1939                 break;
1940         case KVM_CAP_NR_VCPUS:
1941                 r = KVM_MAX_VCPUS;
1942                 break;
1943         case KVM_CAP_NR_MEMSLOTS:
1944                 r = KVM_MEMORY_SLOTS;
1945                 break;
1946         case KVM_CAP_PV_MMU:    /* obsolete */
1947                 r = 0;
1948                 break;
1949         case KVM_CAP_IOMMU:
1950                 r = iommu_found();
1951                 break;
1952         case KVM_CAP_MCE:
1953                 r = KVM_MAX_MCE_BANKS;
1954                 break;
1955         case KVM_CAP_XCRS:
1956                 r = cpu_has_xsave;
1957                 break;
1958         default:
1959                 r = 0;
1960                 break;
1961         }
1962         return r;
1963
1964 }
1965
1966 long kvm_arch_dev_ioctl(struct file *filp,
1967                         unsigned int ioctl, unsigned long arg)
1968 {
1969         void __user *argp = (void __user *)arg;
1970         long r;
1971
1972         switch (ioctl) {
1973         case KVM_GET_MSR_INDEX_LIST: {
1974                 struct kvm_msr_list __user *user_msr_list = argp;
1975                 struct kvm_msr_list msr_list;
1976                 unsigned n;
1977
1978                 r = -EFAULT;
1979                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1980                         goto out;
1981                 n = msr_list.nmsrs;
1982                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1983                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1984                         goto out;
1985                 r = -E2BIG;
1986                 if (n < msr_list.nmsrs)
1987                         goto out;
1988                 r = -EFAULT;
1989                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1990                                  num_msrs_to_save * sizeof(u32)))
1991                         goto out;
1992                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1993                                  &emulated_msrs,
1994                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1995                         goto out;
1996                 r = 0;
1997                 break;
1998         }
1999         case KVM_GET_SUPPORTED_CPUID: {
2000                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2001                 struct kvm_cpuid2 cpuid;
2002
2003                 r = -EFAULT;
2004                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2005                         goto out;
2006                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2007                                                       cpuid_arg->entries);
2008                 if (r)
2009                         goto out;
2010
2011                 r = -EFAULT;
2012                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2013                         goto out;
2014                 r = 0;
2015                 break;
2016         }
2017         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2018                 u64 mce_cap;
2019
2020                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2021                 r = -EFAULT;
2022                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2023                         goto out;
2024                 r = 0;
2025                 break;
2026         }
2027         default:
2028                 r = -EINVAL;
2029         }
2030 out:
2031         return r;
2032 }
2033
2034 static void wbinvd_ipi(void *garbage)
2035 {
2036         wbinvd();
2037 }
2038
2039 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2040 {
2041         return vcpu->kvm->arch.iommu_domain &&
2042                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2043 }
2044
2045 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2046 {
2047         /* Address WBINVD may be executed by guest */
2048         if (need_emulate_wbinvd(vcpu)) {
2049                 if (kvm_x86_ops->has_wbinvd_exit())
2050                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2051                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2052                         smp_call_function_single(vcpu->cpu,
2053                                         wbinvd_ipi, NULL, 1);
2054         }
2055
2056         kvm_x86_ops->vcpu_load(vcpu, cpu);
2057         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2058                 /* Make sure TSC doesn't go backwards */
2059                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2060                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2061                 if (tsc_delta < 0)
2062                         mark_tsc_unstable("KVM discovered backwards TSC");
2063                 if (check_tsc_unstable()) {
2064                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2065                         vcpu->arch.tsc_catchup = 1;
2066                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2067                 }
2068                 if (vcpu->cpu != cpu)
2069                         kvm_migrate_timers(vcpu);
2070                 vcpu->cpu = cpu;
2071         }
2072 }
2073
2074 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2075 {
2076         kvm_x86_ops->vcpu_put(vcpu);
2077         kvm_put_guest_fpu(vcpu);
2078         vcpu->arch.last_host_tsc = native_read_tsc();
2079 }
2080
2081 static int is_efer_nx(void)
2082 {
2083         unsigned long long efer = 0;
2084
2085         rdmsrl_safe(MSR_EFER, &efer);
2086         return efer & EFER_NX;
2087 }
2088
2089 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2090 {
2091         int i;
2092         struct kvm_cpuid_entry2 *e, *entry;
2093
2094         entry = NULL;
2095         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2096                 e = &vcpu->arch.cpuid_entries[i];
2097                 if (e->function == 0x80000001) {
2098                         entry = e;
2099                         break;
2100                 }
2101         }
2102         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2103                 entry->edx &= ~(1 << 20);
2104                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2105         }
2106 }
2107
2108 /* when an old userspace process fills a new kernel module */
2109 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2110                                     struct kvm_cpuid *cpuid,
2111                                     struct kvm_cpuid_entry __user *entries)
2112 {
2113         int r, i;
2114         struct kvm_cpuid_entry *cpuid_entries;
2115
2116         r = -E2BIG;
2117         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2118                 goto out;
2119         r = -ENOMEM;
2120         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2121         if (!cpuid_entries)
2122                 goto out;
2123         r = -EFAULT;
2124         if (copy_from_user(cpuid_entries, entries,
2125                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2126                 goto out_free;
2127         for (i = 0; i < cpuid->nent; i++) {
2128                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2129                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2130                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2131                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2132                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2133                 vcpu->arch.cpuid_entries[i].index = 0;
2134                 vcpu->arch.cpuid_entries[i].flags = 0;
2135                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2136                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2137                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2138         }
2139         vcpu->arch.cpuid_nent = cpuid->nent;
2140         cpuid_fix_nx_cap(vcpu);
2141         r = 0;
2142         kvm_apic_set_version(vcpu);
2143         kvm_x86_ops->cpuid_update(vcpu);
2144         update_cpuid(vcpu);
2145
2146 out_free:
2147         vfree(cpuid_entries);
2148 out:
2149         return r;
2150 }
2151
2152 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2153                                      struct kvm_cpuid2 *cpuid,
2154                                      struct kvm_cpuid_entry2 __user *entries)
2155 {
2156         int r;
2157
2158         r = -E2BIG;
2159         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2160                 goto out;
2161         r = -EFAULT;
2162         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2163                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2164                 goto out;
2165         vcpu->arch.cpuid_nent = cpuid->nent;
2166         kvm_apic_set_version(vcpu);
2167         kvm_x86_ops->cpuid_update(vcpu);
2168         update_cpuid(vcpu);
2169         return 0;
2170
2171 out:
2172         return r;
2173 }
2174
2175 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2176                                      struct kvm_cpuid2 *cpuid,
2177                                      struct kvm_cpuid_entry2 __user *entries)
2178 {
2179         int r;
2180
2181         r = -E2BIG;
2182         if (cpuid->nent < vcpu->arch.cpuid_nent)
2183                 goto out;
2184         r = -EFAULT;
2185         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2186                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2187                 goto out;
2188         return 0;
2189
2190 out:
2191         cpuid->nent = vcpu->arch.cpuid_nent;
2192         return r;
2193 }
2194
2195 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2196                            u32 index)
2197 {
2198         entry->function = function;
2199         entry->index = index;
2200         cpuid_count(entry->function, entry->index,
2201                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2202         entry->flags = 0;
2203 }
2204
2205 #define F(x) bit(X86_FEATURE_##x)
2206
2207 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2208                          u32 index, int *nent, int maxnent)
2209 {
2210         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2211 #ifdef CONFIG_X86_64
2212         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2213                                 ? F(GBPAGES) : 0;
2214         unsigned f_lm = F(LM);
2215 #else
2216         unsigned f_gbpages = 0;
2217         unsigned f_lm = 0;
2218 #endif
2219         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2220
2221         /* cpuid 1.edx */
2222         const u32 kvm_supported_word0_x86_features =
2223                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2224                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2225                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2226                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2227                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2228                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2229                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2230                 0 /* HTT, TM, Reserved, PBE */;
2231         /* cpuid 0x80000001.edx */
2232         const u32 kvm_supported_word1_x86_features =
2233                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2234                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2235                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2236                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2237                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2238                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2239                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2240                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2241         /* cpuid 1.ecx */
2242         const u32 kvm_supported_word4_x86_features =
2243                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2244                 0 /* DS-CPL, VMX, SMX, EST */ |
2245                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2246                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2247                 0 /* Reserved, DCA */ | F(XMM4_1) |
2248                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2249                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2250                 F(F16C);
2251         /* cpuid 0x80000001.ecx */
2252         const u32 kvm_supported_word6_x86_features =
2253                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2254                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2255                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2256                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2257
2258         /* all calls to cpuid_count() should be made on the same cpu */
2259         get_cpu();
2260         do_cpuid_1_ent(entry, function, index);
2261         ++*nent;
2262
2263         switch (function) {
2264         case 0:
2265                 entry->eax = min(entry->eax, (u32)0xd);
2266                 break;
2267         case 1:
2268                 entry->edx &= kvm_supported_word0_x86_features;
2269                 entry->ecx &= kvm_supported_word4_x86_features;
2270                 /* we support x2apic emulation even if host does not support
2271                  * it since we emulate x2apic in software */
2272                 entry->ecx |= F(X2APIC);
2273                 break;
2274         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2275          * may return different values. This forces us to get_cpu() before
2276          * issuing the first command, and also to emulate this annoying behavior
2277          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2278         case 2: {
2279                 int t, times = entry->eax & 0xff;
2280
2281                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2282                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2283                 for (t = 1; t < times && *nent < maxnent; ++t) {
2284                         do_cpuid_1_ent(&entry[t], function, 0);
2285                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2286                         ++*nent;
2287                 }
2288                 break;
2289         }
2290         /* function 4 and 0xb have additional index. */
2291         case 4: {
2292                 int i, cache_type;
2293
2294                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2295                 /* read more entries until cache_type is zero */
2296                 for (i = 1; *nent < maxnent; ++i) {
2297                         cache_type = entry[i - 1].eax & 0x1f;
2298                         if (!cache_type)
2299                                 break;
2300                         do_cpuid_1_ent(&entry[i], function, i);
2301                         entry[i].flags |=
2302                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2303                         ++*nent;
2304                 }
2305                 break;
2306         }
2307         case 0xb: {
2308                 int i, level_type;
2309
2310                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2311                 /* read more entries until level_type is zero */
2312                 for (i = 1; *nent < maxnent; ++i) {
2313                         level_type = entry[i - 1].ecx & 0xff00;
2314                         if (!level_type)
2315                                 break;
2316                         do_cpuid_1_ent(&entry[i], function, i);
2317                         entry[i].flags |=
2318                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2319                         ++*nent;
2320                 }
2321                 break;
2322         }
2323         case 0xd: {
2324                 int i;
2325
2326                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2327                 for (i = 1; *nent < maxnent; ++i) {
2328                         if (entry[i - 1].eax == 0 && i != 2)
2329                                 break;
2330                         do_cpuid_1_ent(&entry[i], function, i);
2331                         entry[i].flags |=
2332                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2333                         ++*nent;
2334                 }
2335                 break;
2336         }
2337         case KVM_CPUID_SIGNATURE: {
2338                 char signature[12] = "KVMKVMKVM\0\0";
2339                 u32 *sigptr = (u32 *)signature;
2340                 entry->eax = 0;
2341                 entry->ebx = sigptr[0];
2342                 entry->ecx = sigptr[1];
2343                 entry->edx = sigptr[2];
2344                 break;
2345         }
2346         case KVM_CPUID_FEATURES:
2347                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2348                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2349                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2350                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2351                 entry->ebx = 0;
2352                 entry->ecx = 0;
2353                 entry->edx = 0;
2354                 break;
2355         case 0x80000000:
2356                 entry->eax = min(entry->eax, 0x8000001a);
2357                 break;
2358         case 0x80000001:
2359                 entry->edx &= kvm_supported_word1_x86_features;
2360                 entry->ecx &= kvm_supported_word6_x86_features;
2361                 break;
2362         }
2363
2364         kvm_x86_ops->set_supported_cpuid(function, entry);
2365
2366         put_cpu();
2367 }
2368
2369 #undef F
2370
2371 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2372                                      struct kvm_cpuid_entry2 __user *entries)
2373 {
2374         struct kvm_cpuid_entry2 *cpuid_entries;
2375         int limit, nent = 0, r = -E2BIG;
2376         u32 func;
2377
2378         if (cpuid->nent < 1)
2379                 goto out;
2380         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2381                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2382         r = -ENOMEM;
2383         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2384         if (!cpuid_entries)
2385                 goto out;
2386
2387         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2388         limit = cpuid_entries[0].eax;
2389         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2390                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2391                              &nent, cpuid->nent);
2392         r = -E2BIG;
2393         if (nent >= cpuid->nent)
2394                 goto out_free;
2395
2396         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2397         limit = cpuid_entries[nent - 1].eax;
2398         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2399                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2400                              &nent, cpuid->nent);
2401
2402
2403
2404         r = -E2BIG;
2405         if (nent >= cpuid->nent)
2406                 goto out_free;
2407
2408         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2409                      cpuid->nent);
2410
2411         r = -E2BIG;
2412         if (nent >= cpuid->nent)
2413                 goto out_free;
2414
2415         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2416                      cpuid->nent);
2417
2418         r = -E2BIG;
2419         if (nent >= cpuid->nent)
2420                 goto out_free;
2421
2422         r = -EFAULT;
2423         if (copy_to_user(entries, cpuid_entries,
2424                          nent * sizeof(struct kvm_cpuid_entry2)))
2425                 goto out_free;
2426         cpuid->nent = nent;
2427         r = 0;
2428
2429 out_free:
2430         vfree(cpuid_entries);
2431 out:
2432         return r;
2433 }
2434
2435 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2436                                     struct kvm_lapic_state *s)
2437 {
2438         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2439
2440         return 0;
2441 }
2442
2443 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2444                                     struct kvm_lapic_state *s)
2445 {
2446         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2447         kvm_apic_post_state_restore(vcpu);
2448         update_cr8_intercept(vcpu);
2449
2450         return 0;
2451 }
2452
2453 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2454                                     struct kvm_interrupt *irq)
2455 {
2456         if (irq->irq < 0 || irq->irq >= 256)
2457                 return -EINVAL;
2458         if (irqchip_in_kernel(vcpu->kvm))
2459                 return -ENXIO;
2460
2461         kvm_queue_interrupt(vcpu, irq->irq, false);
2462         kvm_make_request(KVM_REQ_EVENT, vcpu);
2463
2464         return 0;
2465 }
2466
2467 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2468 {
2469         kvm_inject_nmi(vcpu);
2470
2471         return 0;
2472 }
2473
2474 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2475                                            struct kvm_tpr_access_ctl *tac)
2476 {
2477         if (tac->flags)
2478                 return -EINVAL;
2479         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2480         return 0;
2481 }
2482
2483 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2484                                         u64 mcg_cap)
2485 {
2486         int r;
2487         unsigned bank_num = mcg_cap & 0xff, bank;
2488
2489         r = -EINVAL;
2490         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2491                 goto out;
2492         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2493                 goto out;
2494         r = 0;
2495         vcpu->arch.mcg_cap = mcg_cap;
2496         /* Init IA32_MCG_CTL to all 1s */
2497         if (mcg_cap & MCG_CTL_P)
2498                 vcpu->arch.mcg_ctl = ~(u64)0;
2499         /* Init IA32_MCi_CTL to all 1s */
2500         for (bank = 0; bank < bank_num; bank++)
2501                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2502 out:
2503         return r;
2504 }
2505
2506 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2507                                       struct kvm_x86_mce *mce)
2508 {
2509         u64 mcg_cap = vcpu->arch.mcg_cap;
2510         unsigned bank_num = mcg_cap & 0xff;
2511         u64 *banks = vcpu->arch.mce_banks;
2512
2513         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2514                 return -EINVAL;
2515         /*
2516          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2517          * reporting is disabled
2518          */
2519         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2520             vcpu->arch.mcg_ctl != ~(u64)0)
2521                 return 0;
2522         banks += 4 * mce->bank;
2523         /*
2524          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2525          * reporting is disabled for the bank
2526          */
2527         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2528                 return 0;
2529         if (mce->status & MCI_STATUS_UC) {
2530                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2531                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2532                         printk(KERN_DEBUG "kvm: set_mce: "
2533                                "injects mce exception while "
2534                                "previous one is in progress!\n");
2535                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2536                         return 0;
2537                 }
2538                 if (banks[1] & MCI_STATUS_VAL)
2539                         mce->status |= MCI_STATUS_OVER;
2540                 banks[2] = mce->addr;
2541                 banks[3] = mce->misc;
2542                 vcpu->arch.mcg_status = mce->mcg_status;
2543                 banks[1] = mce->status;
2544                 kvm_queue_exception(vcpu, MC_VECTOR);
2545         } else if (!(banks[1] & MCI_STATUS_VAL)
2546                    || !(banks[1] & MCI_STATUS_UC)) {
2547                 if (banks[1] & MCI_STATUS_VAL)
2548                         mce->status |= MCI_STATUS_OVER;
2549                 banks[2] = mce->addr;
2550                 banks[3] = mce->misc;
2551                 banks[1] = mce->status;
2552         } else
2553                 banks[1] |= MCI_STATUS_OVER;
2554         return 0;
2555 }
2556
2557 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2558                                                struct kvm_vcpu_events *events)
2559 {
2560         events->exception.injected =
2561                 vcpu->arch.exception.pending &&
2562                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2563         events->exception.nr = vcpu->arch.exception.nr;
2564         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2565         events->exception.pad = 0;
2566         events->exception.error_code = vcpu->arch.exception.error_code;
2567
2568         events->interrupt.injected =
2569                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2570         events->interrupt.nr = vcpu->arch.interrupt.nr;
2571         events->interrupt.soft = 0;
2572         events->interrupt.shadow =
2573                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2574                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2575
2576         events->nmi.injected = vcpu->arch.nmi_injected;
2577         events->nmi.pending = vcpu->arch.nmi_pending;
2578         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2579         events->nmi.pad = 0;
2580
2581         events->sipi_vector = vcpu->arch.sipi_vector;
2582
2583         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2584                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2585                          | KVM_VCPUEVENT_VALID_SHADOW);
2586         memset(&events->reserved, 0, sizeof(events->reserved));
2587 }
2588
2589 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2590                                               struct kvm_vcpu_events *events)
2591 {
2592         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2593                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2594                               | KVM_VCPUEVENT_VALID_SHADOW))
2595                 return -EINVAL;
2596
2597         vcpu->arch.exception.pending = events->exception.injected;
2598         vcpu->arch.exception.nr = events->exception.nr;
2599         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2600         vcpu->arch.exception.error_code = events->exception.error_code;
2601
2602         vcpu->arch.interrupt.pending = events->interrupt.injected;
2603         vcpu->arch.interrupt.nr = events->interrupt.nr;
2604         vcpu->arch.interrupt.soft = events->interrupt.soft;
2605         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2606                 kvm_pic_clear_isr_ack(vcpu->kvm);
2607         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2608                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2609                                                   events->interrupt.shadow);
2610
2611         vcpu->arch.nmi_injected = events->nmi.injected;
2612         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2613                 vcpu->arch.nmi_pending = events->nmi.pending;
2614         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2615
2616         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2617                 vcpu->arch.sipi_vector = events->sipi_vector;
2618
2619         kvm_make_request(KVM_REQ_EVENT, vcpu);
2620
2621         return 0;
2622 }
2623
2624 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2625                                              struct kvm_debugregs *dbgregs)
2626 {
2627         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2628         dbgregs->dr6 = vcpu->arch.dr6;
2629         dbgregs->dr7 = vcpu->arch.dr7;
2630         dbgregs->flags = 0;
2631         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2632 }
2633
2634 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2635                                             struct kvm_debugregs *dbgregs)
2636 {
2637         if (dbgregs->flags)
2638                 return -EINVAL;
2639
2640         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2641         vcpu->arch.dr6 = dbgregs->dr6;
2642         vcpu->arch.dr7 = dbgregs->dr7;
2643
2644         return 0;
2645 }
2646
2647 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2648                                          struct kvm_xsave *guest_xsave)
2649 {
2650         if (cpu_has_xsave)
2651                 memcpy(guest_xsave->region,
2652                         &vcpu->arch.guest_fpu.state->xsave,
2653                         xstate_size);
2654         else {
2655                 memcpy(guest_xsave->region,
2656                         &vcpu->arch.guest_fpu.state->fxsave,
2657                         sizeof(struct i387_fxsave_struct));
2658                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2659                         XSTATE_FPSSE;
2660         }
2661 }
2662
2663 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2664                                         struct kvm_xsave *guest_xsave)
2665 {
2666         u64 xstate_bv =
2667                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2668
2669         if (cpu_has_xsave)
2670                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2671                         guest_xsave->region, xstate_size);
2672         else {
2673                 if (xstate_bv & ~XSTATE_FPSSE)
2674                         return -EINVAL;
2675                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2676                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2677         }
2678         return 0;
2679 }
2680
2681 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2682                                         struct kvm_xcrs *guest_xcrs)
2683 {
2684         if (!cpu_has_xsave) {
2685                 guest_xcrs->nr_xcrs = 0;
2686                 return;
2687         }
2688
2689         guest_xcrs->nr_xcrs = 1;
2690         guest_xcrs->flags = 0;
2691         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2692         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2693 }
2694
2695 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2696                                        struct kvm_xcrs *guest_xcrs)
2697 {
2698         int i, r = 0;
2699
2700         if (!cpu_has_xsave)
2701                 return -EINVAL;
2702
2703         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2704                 return -EINVAL;
2705
2706         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2707                 /* Only support XCR0 currently */
2708                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2709                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2710                                 guest_xcrs->xcrs[0].value);
2711                         break;
2712                 }
2713         if (r)
2714                 r = -EINVAL;
2715         return r;
2716 }
2717
2718 long kvm_arch_vcpu_ioctl(struct file *filp,
2719                          unsigned int ioctl, unsigned long arg)
2720 {
2721         struct kvm_vcpu *vcpu = filp->private_data;
2722         void __user *argp = (void __user *)arg;
2723         int r;
2724         union {
2725                 struct kvm_lapic_state *lapic;
2726                 struct kvm_xsave *xsave;
2727                 struct kvm_xcrs *xcrs;
2728                 void *buffer;
2729         } u;
2730
2731         u.buffer = NULL;
2732         switch (ioctl) {
2733         case KVM_GET_LAPIC: {
2734                 r = -EINVAL;
2735                 if (!vcpu->arch.apic)
2736                         goto out;
2737                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2738
2739                 r = -ENOMEM;
2740                 if (!u.lapic)
2741                         goto out;
2742                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2743                 if (r)
2744                         goto out;
2745                 r = -EFAULT;
2746                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2747                         goto out;
2748                 r = 0;
2749                 break;
2750         }
2751         case KVM_SET_LAPIC: {
2752                 r = -EINVAL;
2753                 if (!vcpu->arch.apic)
2754                         goto out;
2755                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2756                 r = -ENOMEM;
2757                 if (!u.lapic)
2758                         goto out;
2759                 r = -EFAULT;
2760                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2761                         goto out;
2762                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2763                 if (r)
2764                         goto out;
2765                 r = 0;
2766                 break;
2767         }
2768         case KVM_INTERRUPT: {
2769                 struct kvm_interrupt irq;
2770
2771                 r = -EFAULT;
2772                 if (copy_from_user(&irq, argp, sizeof irq))
2773                         goto out;
2774                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2775                 if (r)
2776                         goto out;
2777                 r = 0;
2778                 break;
2779         }
2780         case KVM_NMI: {
2781                 r = kvm_vcpu_ioctl_nmi(vcpu);
2782                 if (r)
2783                         goto out;
2784                 r = 0;
2785                 break;
2786         }
2787         case KVM_SET_CPUID: {
2788                 struct kvm_cpuid __user *cpuid_arg = argp;
2789                 struct kvm_cpuid cpuid;
2790
2791                 r = -EFAULT;
2792                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2793                         goto out;
2794                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2795                 if (r)
2796                         goto out;
2797                 break;
2798         }
2799         case KVM_SET_CPUID2: {
2800                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2801                 struct kvm_cpuid2 cpuid;
2802
2803                 r = -EFAULT;
2804                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2805                         goto out;
2806                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2807                                               cpuid_arg->entries);
2808                 if (r)
2809                         goto out;
2810                 break;
2811         }
2812         case KVM_GET_CPUID2: {
2813                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2814                 struct kvm_cpuid2 cpuid;
2815
2816                 r = -EFAULT;
2817                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2818                         goto out;
2819                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2820                                               cpuid_arg->entries);
2821                 if (r)
2822                         goto out;
2823                 r = -EFAULT;
2824                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2825                         goto out;
2826                 r = 0;
2827                 break;
2828         }
2829         case KVM_GET_MSRS:
2830                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2831                 break;
2832         case KVM_SET_MSRS:
2833                 r = msr_io(vcpu, argp, do_set_msr, 0);
2834                 break;
2835         case KVM_TPR_ACCESS_REPORTING: {
2836                 struct kvm_tpr_access_ctl tac;
2837
2838                 r = -EFAULT;
2839                 if (copy_from_user(&tac, argp, sizeof tac))
2840                         goto out;
2841                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2842                 if (r)
2843                         goto out;
2844                 r = -EFAULT;
2845                 if (copy_to_user(argp, &tac, sizeof tac))
2846                         goto out;
2847                 r = 0;
2848                 break;
2849         };
2850         case KVM_SET_VAPIC_ADDR: {
2851                 struct kvm_vapic_addr va;
2852
2853                 r = -EINVAL;
2854                 if (!irqchip_in_kernel(vcpu->kvm))
2855                         goto out;
2856                 r = -EFAULT;
2857                 if (copy_from_user(&va, argp, sizeof va))
2858                         goto out;
2859                 r = 0;
2860                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2861                 break;
2862         }
2863         case KVM_X86_SETUP_MCE: {
2864                 u64 mcg_cap;
2865
2866                 r = -EFAULT;
2867                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2868                         goto out;
2869                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2870                 break;
2871         }
2872         case KVM_X86_SET_MCE: {
2873                 struct kvm_x86_mce mce;
2874
2875                 r = -EFAULT;
2876                 if (copy_from_user(&mce, argp, sizeof mce))
2877                         goto out;
2878                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2879                 break;
2880         }
2881         case KVM_GET_VCPU_EVENTS: {
2882                 struct kvm_vcpu_events events;
2883
2884                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2885
2886                 r = -EFAULT;
2887                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2888                         break;
2889                 r = 0;
2890                 break;
2891         }
2892         case KVM_SET_VCPU_EVENTS: {
2893                 struct kvm_vcpu_events events;
2894
2895                 r = -EFAULT;
2896                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2897                         break;
2898
2899                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2900                 break;
2901         }
2902         case KVM_GET_DEBUGREGS: {
2903                 struct kvm_debugregs dbgregs;
2904
2905                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2906
2907                 r = -EFAULT;
2908                 if (copy_to_user(argp, &dbgregs,
2909                                  sizeof(struct kvm_debugregs)))
2910                         break;
2911                 r = 0;
2912                 break;
2913         }
2914         case KVM_SET_DEBUGREGS: {
2915                 struct kvm_debugregs dbgregs;
2916
2917                 r = -EFAULT;
2918                 if (copy_from_user(&dbgregs, argp,
2919                                    sizeof(struct kvm_debugregs)))
2920                         break;
2921
2922                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2923                 break;
2924         }
2925         case KVM_GET_XSAVE: {
2926                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2927                 r = -ENOMEM;
2928                 if (!u.xsave)
2929                         break;
2930
2931                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2932
2933                 r = -EFAULT;
2934                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2935                         break;
2936                 r = 0;
2937                 break;
2938         }
2939         case KVM_SET_XSAVE: {
2940                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2941                 r = -ENOMEM;
2942                 if (!u.xsave)
2943                         break;
2944
2945                 r = -EFAULT;
2946                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2947                         break;
2948
2949                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2950                 break;
2951         }
2952         case KVM_GET_XCRS: {
2953                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2954                 r = -ENOMEM;
2955                 if (!u.xcrs)
2956                         break;
2957
2958                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2959
2960                 r = -EFAULT;
2961                 if (copy_to_user(argp, u.xcrs,
2962                                  sizeof(struct kvm_xcrs)))
2963                         break;
2964                 r = 0;
2965                 break;
2966         }
2967         case KVM_SET_XCRS: {
2968                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2969                 r = -ENOMEM;
2970                 if (!u.xcrs)
2971                         break;
2972
2973                 r = -EFAULT;
2974                 if (copy_from_user(u.xcrs, argp,
2975                                    sizeof(struct kvm_xcrs)))
2976                         break;
2977
2978                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2979                 break;
2980         }
2981         default:
2982                 r = -EINVAL;
2983         }
2984 out:
2985         kfree(u.buffer);
2986         return r;
2987 }
2988
2989 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2990 {
2991         int ret;
2992
2993         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2994                 return -1;
2995         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2996         return ret;
2997 }
2998
2999 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3000                                               u64 ident_addr)
3001 {
3002         kvm->arch.ept_identity_map_addr = ident_addr;
3003         return 0;
3004 }
3005
3006 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3007                                           u32 kvm_nr_mmu_pages)
3008 {
3009         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3010                 return -EINVAL;
3011
3012         mutex_lock(&kvm->slots_lock);
3013         spin_lock(&kvm->mmu_lock);
3014
3015         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3016         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3017
3018         spin_unlock(&kvm->mmu_lock);
3019         mutex_unlock(&kvm->slots_lock);
3020         return 0;
3021 }
3022
3023 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3024 {
3025         return kvm->arch.n_max_mmu_pages;
3026 }
3027
3028 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3029 {
3030         int r;
3031
3032         r = 0;
3033         switch (chip->chip_id) {
3034         case KVM_IRQCHIP_PIC_MASTER:
3035                 memcpy(&chip->chip.pic,
3036                         &pic_irqchip(kvm)->pics[0],
3037                         sizeof(struct kvm_pic_state));
3038                 break;
3039         case KVM_IRQCHIP_PIC_SLAVE:
3040                 memcpy(&chip->chip.pic,
3041                         &pic_irqchip(kvm)->pics[1],
3042                         sizeof(struct kvm_pic_state));
3043                 break;
3044         case KVM_IRQCHIP_IOAPIC:
3045                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3046                 break;
3047         default:
3048                 r = -EINVAL;
3049                 break;
3050         }
3051         return r;
3052 }
3053
3054 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3055 {
3056         int r;
3057
3058         r = 0;
3059         switch (chip->chip_id) {
3060         case KVM_IRQCHIP_PIC_MASTER:
3061                 spin_lock(&pic_irqchip(kvm)->lock);
3062                 memcpy(&pic_irqchip(kvm)->pics[0],
3063                         &chip->chip.pic,
3064                         sizeof(struct kvm_pic_state));
3065                 spin_unlock(&pic_irqchip(kvm)->lock);
3066                 break;
3067         case KVM_IRQCHIP_PIC_SLAVE:
3068                 spin_lock(&pic_irqchip(kvm)->lock);
3069                 memcpy(&pic_irqchip(kvm)->pics[1],
3070                         &chip->chip.pic,
3071                         sizeof(struct kvm_pic_state));
3072                 spin_unlock(&pic_irqchip(kvm)->lock);
3073                 break;
3074         case KVM_IRQCHIP_IOAPIC:
3075                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3076                 break;
3077         default:
3078                 r = -EINVAL;
3079                 break;
3080         }
3081         kvm_pic_update_irq(pic_irqchip(kvm));
3082         return r;
3083 }
3084
3085 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3086 {
3087         int r = 0;
3088
3089         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3090         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3091         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3092         return r;
3093 }
3094
3095 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3096 {
3097         int r = 0;
3098
3099         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3100         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3101         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3102         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3103         return r;
3104 }
3105
3106 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3107 {
3108         int r = 0;
3109
3110         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3111         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3112                 sizeof(ps->channels));
3113         ps->flags = kvm->arch.vpit->pit_state.flags;
3114         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3115         memset(&ps->reserved, 0, sizeof(ps->reserved));
3116         return r;
3117 }
3118
3119 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3120 {
3121         int r = 0, start = 0;
3122         u32 prev_legacy, cur_legacy;
3123         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3124         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3125         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3126         if (!prev_legacy && cur_legacy)
3127                 start = 1;
3128         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3129                sizeof(kvm->arch.vpit->pit_state.channels));
3130         kvm->arch.vpit->pit_state.flags = ps->flags;
3131         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3132         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3133         return r;
3134 }
3135
3136 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3137                                  struct kvm_reinject_control *control)
3138 {
3139         if (!kvm->arch.vpit)
3140                 return -ENXIO;
3141         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3142         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3143         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3144         return 0;
3145 }
3146
3147 /*
3148  * Get (and clear) the dirty memory log for a memory slot.
3149  */
3150 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3151                                       struct kvm_dirty_log *log)
3152 {
3153         int r, i;
3154         struct kvm_memory_slot *memslot;
3155         unsigned long n;
3156         unsigned long is_dirty = 0;
3157
3158         mutex_lock(&kvm->slots_lock);
3159
3160         r = -EINVAL;
3161         if (log->slot >= KVM_MEMORY_SLOTS)
3162                 goto out;
3163
3164         memslot = &kvm->memslots->memslots[log->slot];
3165         r = -ENOENT;
3166         if (!memslot->dirty_bitmap)
3167                 goto out;
3168
3169         n = kvm_dirty_bitmap_bytes(memslot);
3170
3171         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3172                 is_dirty = memslot->dirty_bitmap[i];
3173
3174         /* If nothing is dirty, don't bother messing with page tables. */
3175         if (is_dirty) {
3176                 struct kvm_memslots *slots, *old_slots;
3177                 unsigned long *dirty_bitmap;
3178
3179                 r = -ENOMEM;
3180                 dirty_bitmap = vmalloc(n);
3181                 if (!dirty_bitmap)
3182                         goto out;
3183                 memset(dirty_bitmap, 0, n);
3184
3185                 r = -ENOMEM;
3186                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3187                 if (!slots) {
3188                         vfree(dirty_bitmap);
3189                         goto out;
3190                 }
3191                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3192                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3193                 slots->generation++;
3194
3195                 old_slots = kvm->memslots;
3196                 rcu_assign_pointer(kvm->memslots, slots);
3197                 synchronize_srcu_expedited(&kvm->srcu);
3198                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3199                 kfree(old_slots);
3200
3201                 spin_lock(&kvm->mmu_lock);
3202                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3203                 spin_unlock(&kvm->mmu_lock);
3204
3205                 r = -EFAULT;
3206                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3207                         vfree(dirty_bitmap);
3208                         goto out;
3209                 }
3210                 vfree(dirty_bitmap);
3211         } else {
3212                 r = -EFAULT;
3213                 if (clear_user(log->dirty_bitmap, n))
3214                         goto out;
3215         }
3216
3217         r = 0;
3218 out:
3219         mutex_unlock(&kvm->slots_lock);
3220         return r;
3221 }
3222
3223 long kvm_arch_vm_ioctl(struct file *filp,
3224                        unsigned int ioctl, unsigned long arg)
3225 {
3226         struct kvm *kvm = filp->private_data;
3227         void __user *argp = (void __user *)arg;
3228         int r = -ENOTTY;
3229         /*
3230          * This union makes it completely explicit to gcc-3.x
3231          * that these two variables' stack usage should be
3232          * combined, not added together.
3233          */
3234         union {
3235                 struct kvm_pit_state ps;
3236                 struct kvm_pit_state2 ps2;
3237                 struct kvm_pit_config pit_config;
3238         } u;
3239
3240         switch (ioctl) {
3241         case KVM_SET_TSS_ADDR:
3242                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3243                 if (r < 0)
3244                         goto out;
3245                 break;
3246         case KVM_SET_IDENTITY_MAP_ADDR: {
3247                 u64 ident_addr;
3248
3249                 r = -EFAULT;
3250                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3251                         goto out;
3252                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3253                 if (r < 0)
3254                         goto out;
3255                 break;
3256         }
3257         case KVM_SET_NR_MMU_PAGES:
3258                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3259                 if (r)
3260                         goto out;
3261                 break;
3262         case KVM_GET_NR_MMU_PAGES:
3263                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3264                 break;
3265         case KVM_CREATE_IRQCHIP: {
3266                 struct kvm_pic *vpic;
3267
3268                 mutex_lock(&kvm->lock);
3269                 r = -EEXIST;
3270                 if (kvm->arch.vpic)
3271                         goto create_irqchip_unlock;
3272                 r = -ENOMEM;
3273                 vpic = kvm_create_pic(kvm);
3274                 if (vpic) {
3275                         r = kvm_ioapic_init(kvm);
3276                         if (r) {
3277                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3278                                                           &vpic->dev);
3279                                 kfree(vpic);
3280                                 goto create_irqchip_unlock;
3281                         }
3282                 } else
3283                         goto create_irqchip_unlock;
3284                 smp_wmb();
3285                 kvm->arch.vpic = vpic;
3286                 smp_wmb();
3287                 r = kvm_setup_default_irq_routing(kvm);
3288                 if (r) {
3289                         mutex_lock(&kvm->irq_lock);
3290                         kvm_ioapic_destroy(kvm);
3291                         kvm_destroy_pic(kvm);
3292                         mutex_unlock(&kvm->irq_lock);
3293                 }
3294         create_irqchip_unlock:
3295                 mutex_unlock(&kvm->lock);
3296                 break;
3297         }
3298         case KVM_CREATE_PIT:
3299                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3300                 goto create_pit;
3301         case KVM_CREATE_PIT2:
3302                 r = -EFAULT;
3303                 if (copy_from_user(&u.pit_config, argp,
3304                                    sizeof(struct kvm_pit_config)))
3305                         goto out;
3306         create_pit:
3307                 mutex_lock(&kvm->slots_lock);
3308                 r = -EEXIST;
3309                 if (kvm->arch.vpit)
3310                         goto create_pit_unlock;
3311                 r = -ENOMEM;
3312                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3313                 if (kvm->arch.vpit)
3314                         r = 0;
3315         create_pit_unlock:
3316                 mutex_unlock(&kvm->slots_lock);
3317                 break;
3318         case KVM_IRQ_LINE_STATUS:
3319         case KVM_IRQ_LINE: {
3320                 struct kvm_irq_level irq_event;
3321
3322                 r = -EFAULT;
3323                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3324                         goto out;
3325                 r = -ENXIO;
3326                 if (irqchip_in_kernel(kvm)) {
3327                         __s32 status;
3328                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3329                                         irq_event.irq, irq_event.level);
3330                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3331                                 r = -EFAULT;
3332                                 irq_event.status = status;
3333                                 if (copy_to_user(argp, &irq_event,
3334                                                         sizeof irq_event))
3335                                         goto out;
3336                         }
3337                         r = 0;
3338                 }
3339                 break;
3340         }
3341         case KVM_GET_IRQCHIP: {
3342                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3343                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3344
3345                 r = -ENOMEM;
3346                 if (!chip)
3347                         goto out;
3348                 r = -EFAULT;
3349                 if (copy_from_user(chip, argp, sizeof *chip))
3350                         goto get_irqchip_out;
3351                 r = -ENXIO;
3352                 if (!irqchip_in_kernel(kvm))
3353                         goto get_irqchip_out;
3354                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3355                 if (r)
3356                         goto get_irqchip_out;
3357                 r = -EFAULT;
3358                 if (copy_to_user(argp, chip, sizeof *chip))
3359                         goto get_irqchip_out;
3360                 r = 0;
3361         get_irqchip_out:
3362                 kfree(chip);
3363                 if (r)
3364                         goto out;
3365                 break;
3366         }
3367         case KVM_SET_IRQCHIP: {
3368                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3369                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3370
3371                 r = -ENOMEM;
3372                 if (!chip)
3373                         goto out;
3374                 r = -EFAULT;
3375                 if (copy_from_user(chip, argp, sizeof *chip))
3376                         goto set_irqchip_out;
3377                 r = -ENXIO;
3378                 if (!irqchip_in_kernel(kvm))
3379                         goto set_irqchip_out;
3380                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3381                 if (r)
3382                         goto set_irqchip_out;
3383                 r = 0;
3384         set_irqchip_out:
3385                 kfree(chip);
3386                 if (r)
3387                         goto out;
3388                 break;
3389         }
3390         case KVM_GET_PIT: {
3391                 r = -EFAULT;
3392                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3393                         goto out;
3394                 r = -ENXIO;
3395                 if (!kvm->arch.vpit)
3396                         goto out;
3397                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3398                 if (r)
3399                         goto out;
3400                 r = -EFAULT;
3401                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3402                         goto out;
3403                 r = 0;
3404                 break;
3405         }
3406         case KVM_SET_PIT: {
3407                 r = -EFAULT;
3408                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3409                         goto out;
3410                 r = -ENXIO;
3411                 if (!kvm->arch.vpit)
3412                         goto out;
3413                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3414                 if (r)
3415                         goto out;
3416                 r = 0;
3417                 break;
3418         }
3419         case KVM_GET_PIT2: {
3420                 r = -ENXIO;
3421                 if (!kvm->arch.vpit)
3422                         goto out;
3423                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3424                 if (r)
3425                         goto out;
3426                 r = -EFAULT;
3427                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3428                         goto out;
3429                 r = 0;
3430                 break;
3431         }
3432         case KVM_SET_PIT2: {
3433                 r = -EFAULT;
3434                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3435                         goto out;
3436                 r = -ENXIO;
3437                 if (!kvm->arch.vpit)
3438                         goto out;
3439                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3440                 if (r)
3441                         goto out;
3442                 r = 0;
3443                 break;
3444         }
3445         case KVM_REINJECT_CONTROL: {
3446                 struct kvm_reinject_control control;
3447                 r =  -EFAULT;
3448                 if (copy_from_user(&control, argp, sizeof(control)))
3449                         goto out;
3450                 r = kvm_vm_ioctl_reinject(kvm, &control);
3451                 if (r)
3452                         goto out;
3453                 r = 0;
3454                 break;
3455         }
3456         case KVM_XEN_HVM_CONFIG: {
3457                 r = -EFAULT;
3458                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3459                                    sizeof(struct kvm_xen_hvm_config)))
3460                         goto out;
3461                 r = -EINVAL;
3462                 if (kvm->arch.xen_hvm_config.flags)
3463                         goto out;
3464                 r = 0;
3465                 break;
3466         }
3467         case KVM_SET_CLOCK: {
3468                 struct kvm_clock_data user_ns;
3469                 u64 now_ns;
3470                 s64 delta;
3471
3472                 r = -EFAULT;
3473                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3474                         goto out;
3475
3476                 r = -EINVAL;
3477                 if (user_ns.flags)
3478                         goto out;
3479
3480                 r = 0;
3481                 local_irq_disable();
3482                 now_ns = get_kernel_ns();
3483                 delta = user_ns.clock - now_ns;
3484                 local_irq_enable();
3485                 kvm->arch.kvmclock_offset = delta;
3486                 break;
3487         }
3488         case KVM_GET_CLOCK: {
3489                 struct kvm_clock_data user_ns;
3490                 u64 now_ns;
3491
3492                 local_irq_disable();
3493                 now_ns = get_kernel_ns();
3494                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3495                 local_irq_enable();
3496                 user_ns.flags = 0;
3497                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3498
3499                 r = -EFAULT;
3500                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3501                         goto out;
3502                 r = 0;
3503                 break;
3504         }
3505
3506         default:
3507                 ;
3508         }
3509 out:
3510         return r;
3511 }
3512
3513 static void kvm_init_msr_list(void)
3514 {
3515         u32 dummy[2];
3516         unsigned i, j;
3517
3518         /* skip the first msrs in the list. KVM-specific */
3519         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3520                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3521                         continue;
3522                 if (j < i)
3523                         msrs_to_save[j] = msrs_to_save[i];
3524                 j++;
3525         }
3526         num_msrs_to_save = j;
3527 }
3528
3529 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3530                            const void *v)
3531 {
3532         if (vcpu->arch.apic &&
3533             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3534                 return 0;
3535
3536         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3537 }
3538
3539 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3540 {
3541         if (vcpu->arch.apic &&
3542             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3543                 return 0;
3544
3545         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3546 }
3547
3548 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3549                         struct kvm_segment *var, int seg)
3550 {
3551         kvm_x86_ops->set_segment(vcpu, var, seg);
3552 }
3553
3554 void kvm_get_segment(struct kvm_vcpu *vcpu,
3555                      struct kvm_segment *var, int seg)
3556 {
3557         kvm_x86_ops->get_segment(vcpu, var, seg);
3558 }
3559
3560 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3561 {
3562         return gpa;
3563 }
3564
3565 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3566 {
3567         gpa_t t_gpa;
3568         u32 error;
3569
3570         BUG_ON(!mmu_is_nested(vcpu));
3571
3572         /* NPT walks are always user-walks */
3573         access |= PFERR_USER_MASK;
3574         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3575         if (t_gpa == UNMAPPED_GVA)
3576                 vcpu->arch.fault.nested = true;
3577
3578         return t_gpa;
3579 }
3580
3581 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3582 {
3583         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3584         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3585 }
3586
3587  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3588 {
3589         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3590         access |= PFERR_FETCH_MASK;
3591         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3592 }
3593
3594 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3595 {
3596         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3597         access |= PFERR_WRITE_MASK;
3598         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3599 }
3600
3601 /* uses this to access any guest's mapped memory without checking CPL */
3602 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3603 {
3604         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3605 }
3606
3607 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3608                                       struct kvm_vcpu *vcpu, u32 access,
3609                                       u32 *error)
3610 {
3611         void *data = val;
3612         int r = X86EMUL_CONTINUE;
3613
3614         while (bytes) {
3615                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3616                                                             error);
3617                 unsigned offset = addr & (PAGE_SIZE-1);
3618                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3619                 int ret;
3620
3621                 if (gpa == UNMAPPED_GVA) {
3622                         r = X86EMUL_PROPAGATE_FAULT;
3623                         goto out;
3624                 }
3625                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3626                 if (ret < 0) {
3627                         r = X86EMUL_IO_NEEDED;
3628                         goto out;
3629                 }
3630
3631                 bytes -= toread;
3632                 data += toread;
3633                 addr += toread;
3634         }
3635 out:
3636         return r;
3637 }
3638
3639 /* used for instruction fetching */
3640 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3641                                 struct kvm_vcpu *vcpu, u32 *error)
3642 {
3643         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3644         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3645                                           access | PFERR_FETCH_MASK, error);
3646 }
3647
3648 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3649                                struct kvm_vcpu *vcpu, u32 *error)
3650 {
3651         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3652         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3653                                           error);
3654 }
3655
3656 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3657                                struct kvm_vcpu *vcpu, u32 *error)
3658 {
3659         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3660 }
3661
3662 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3663                                        unsigned int bytes,
3664                                        struct kvm_vcpu *vcpu,
3665                                        u32 *error)
3666 {
3667         void *data = val;
3668         int r = X86EMUL_CONTINUE;
3669
3670         while (bytes) {
3671                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3672                                                              PFERR_WRITE_MASK,
3673                                                              error);
3674                 unsigned offset = addr & (PAGE_SIZE-1);
3675                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3676                 int ret;
3677
3678                 if (gpa == UNMAPPED_GVA) {
3679                         r = X86EMUL_PROPAGATE_FAULT;
3680                         goto out;
3681                 }
3682                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3683                 if (ret < 0) {
3684                         r = X86EMUL_IO_NEEDED;
3685                         goto out;
3686                 }
3687
3688                 bytes -= towrite;
3689                 data += towrite;
3690                 addr += towrite;
3691         }
3692 out:
3693         return r;
3694 }
3695
3696 static int emulator_read_emulated(unsigned long addr,
3697                                   void *val,
3698                                   unsigned int bytes,
3699                                   unsigned int *error_code,
3700                                   struct kvm_vcpu *vcpu)
3701 {
3702         gpa_t                 gpa;
3703
3704         if (vcpu->mmio_read_completed) {
3705                 memcpy(val, vcpu->mmio_data, bytes);
3706                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3707                                vcpu->mmio_phys_addr, *(u64 *)val);
3708                 vcpu->mmio_read_completed = 0;
3709                 return X86EMUL_CONTINUE;
3710         }
3711
3712         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3713
3714         if (gpa == UNMAPPED_GVA)
3715                 return X86EMUL_PROPAGATE_FAULT;
3716
3717         /* For APIC access vmexit */
3718         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3719                 goto mmio;
3720
3721         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3722                                 == X86EMUL_CONTINUE)
3723                 return X86EMUL_CONTINUE;
3724
3725 mmio:
3726         /*
3727          * Is this MMIO handled locally?
3728          */
3729         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3730                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3731                 return X86EMUL_CONTINUE;
3732         }
3733
3734         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3735
3736         vcpu->mmio_needed = 1;
3737         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3738         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3739         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3740         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3741
3742         return X86EMUL_IO_NEEDED;
3743 }
3744
3745 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3746                           const void *val, int bytes)
3747 {
3748         int ret;
3749
3750         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3751         if (ret < 0)
3752                 return 0;
3753         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3754         return 1;
3755 }
3756
3757 static int emulator_write_emulated_onepage(unsigned long addr,
3758                                            const void *val,
3759                                            unsigned int bytes,
3760                                            unsigned int *error_code,
3761                                            struct kvm_vcpu *vcpu)
3762 {
3763         gpa_t                 gpa;
3764
3765         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3766
3767         if (gpa == UNMAPPED_GVA)
3768                 return X86EMUL_PROPAGATE_FAULT;
3769
3770         /* For APIC access vmexit */
3771         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3772                 goto mmio;
3773
3774         if (emulator_write_phys(vcpu, gpa, val, bytes))
3775                 return X86EMUL_CONTINUE;
3776
3777 mmio:
3778         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3779         /*
3780          * Is this MMIO handled locally?
3781          */
3782         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3783                 return X86EMUL_CONTINUE;
3784
3785         vcpu->mmio_needed = 1;
3786         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3787         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3788         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3789         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3790         memcpy(vcpu->run->mmio.data, val, bytes);
3791
3792         return X86EMUL_CONTINUE;
3793 }
3794
3795 int emulator_write_emulated(unsigned long addr,
3796                             const void *val,
3797                             unsigned int bytes,
3798                             unsigned int *error_code,
3799                             struct kvm_vcpu *vcpu)
3800 {
3801         /* Crossing a page boundary? */
3802         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3803                 int rc, now;
3804
3805                 now = -addr & ~PAGE_MASK;
3806                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3807                                                      vcpu);
3808                 if (rc != X86EMUL_CONTINUE)
3809                         return rc;
3810                 addr += now;
3811                 val += now;
3812                 bytes -= now;
3813         }
3814         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3815                                                vcpu);
3816 }
3817
3818 #define CMPXCHG_TYPE(t, ptr, old, new) \
3819         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3820
3821 #ifdef CONFIG_X86_64
3822 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3823 #else
3824 #  define CMPXCHG64(ptr, old, new) \
3825         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3826 #endif
3827
3828 static int emulator_cmpxchg_emulated(unsigned long addr,
3829                                      const void *old,
3830                                      const void *new,
3831                                      unsigned int bytes,
3832                                      unsigned int *error_code,
3833                                      struct kvm_vcpu *vcpu)
3834 {
3835         gpa_t gpa;
3836         struct page *page;
3837         char *kaddr;
3838         bool exchanged;
3839
3840         /* guests cmpxchg8b have to be emulated atomically */
3841         if (bytes > 8 || (bytes & (bytes - 1)))
3842                 goto emul_write;
3843
3844         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3845
3846         if (gpa == UNMAPPED_GVA ||
3847             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3848                 goto emul_write;
3849
3850         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3851                 goto emul_write;
3852
3853         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3854         if (is_error_page(page)) {
3855                 kvm_release_page_clean(page);
3856                 goto emul_write;
3857         }
3858
3859         kaddr = kmap_atomic(page, KM_USER0);
3860         kaddr += offset_in_page(gpa);
3861         switch (bytes) {
3862         case 1:
3863                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3864                 break;
3865         case 2:
3866                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3867                 break;
3868         case 4:
3869                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3870                 break;
3871         case 8:
3872                 exchanged = CMPXCHG64(kaddr, old, new);
3873                 break;
3874         default:
3875                 BUG();
3876         }
3877         kunmap_atomic(kaddr, KM_USER0);
3878         kvm_release_page_dirty(page);
3879
3880         if (!exchanged)
3881                 return X86EMUL_CMPXCHG_FAILED;
3882
3883         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3884
3885         return X86EMUL_CONTINUE;
3886
3887 emul_write:
3888         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3889
3890         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3891 }
3892
3893 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3894 {
3895         /* TODO: String I/O for in kernel device */
3896         int r;
3897
3898         if (vcpu->arch.pio.in)
3899                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3900                                     vcpu->arch.pio.size, pd);
3901         else
3902                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3903                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3904                                      pd);
3905         return r;
3906 }
3907
3908
3909 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3910                              unsigned int count, struct kvm_vcpu *vcpu)
3911 {
3912         if (vcpu->arch.pio.count)
3913                 goto data_avail;
3914
3915         trace_kvm_pio(0, port, size, 1);
3916
3917         vcpu->arch.pio.port = port;
3918         vcpu->arch.pio.in = 1;
3919         vcpu->arch.pio.count  = count;
3920         vcpu->arch.pio.size = size;
3921
3922         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3923         data_avail:
3924                 memcpy(val, vcpu->arch.pio_data, size * count);
3925                 vcpu->arch.pio.count = 0;
3926                 return 1;
3927         }
3928
3929         vcpu->run->exit_reason = KVM_EXIT_IO;
3930         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3931         vcpu->run->io.size = size;
3932         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3933         vcpu->run->io.count = count;
3934         vcpu->run->io.port = port;
3935
3936         return 0;
3937 }
3938
3939 static int emulator_pio_out_emulated(int size, unsigned short port,
3940                               const void *val, unsigned int count,
3941                               struct kvm_vcpu *vcpu)
3942 {
3943         trace_kvm_pio(1, port, size, 1);
3944
3945         vcpu->arch.pio.port = port;
3946         vcpu->arch.pio.in = 0;
3947         vcpu->arch.pio.count = count;
3948         vcpu->arch.pio.size = size;
3949
3950         memcpy(vcpu->arch.pio_data, val, size * count);
3951
3952         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3953                 vcpu->arch.pio.count = 0;
3954                 return 1;
3955         }
3956
3957         vcpu->run->exit_reason = KVM_EXIT_IO;
3958         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3959         vcpu->run->io.size = size;
3960         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3961         vcpu->run->io.count = count;
3962         vcpu->run->io.port = port;
3963
3964         return 0;
3965 }
3966
3967 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3968 {
3969         return kvm_x86_ops->get_segment_base(vcpu, seg);
3970 }
3971
3972 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3973 {
3974         kvm_mmu_invlpg(vcpu, address);
3975         return X86EMUL_CONTINUE;
3976 }
3977
3978 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3979 {
3980         if (!need_emulate_wbinvd(vcpu))
3981                 return X86EMUL_CONTINUE;
3982
3983         if (kvm_x86_ops->has_wbinvd_exit()) {
3984                 preempt_disable();
3985                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3986                                 wbinvd_ipi, NULL, 1);
3987                 preempt_enable();
3988                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3989         }
3990         wbinvd();
3991         return X86EMUL_CONTINUE;
3992 }
3993 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3994
3995 int emulate_clts(struct kvm_vcpu *vcpu)
3996 {
3997         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3998         kvm_x86_ops->fpu_activate(vcpu);
3999         return X86EMUL_CONTINUE;
4000 }
4001
4002 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4003 {
4004         return _kvm_get_dr(vcpu, dr, dest);
4005 }
4006
4007 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4008 {
4009
4010         return __kvm_set_dr(vcpu, dr, value);
4011 }
4012
4013 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4014 {
4015         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4016 }
4017
4018 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4019 {
4020         unsigned long value;
4021
4022         switch (cr) {
4023         case 0:
4024                 value = kvm_read_cr0(vcpu);
4025                 break;
4026         case 2:
4027                 value = vcpu->arch.cr2;
4028                 break;
4029         case 3:
4030                 value = vcpu->arch.cr3;
4031                 break;
4032         case 4:
4033                 value = kvm_read_cr4(vcpu);
4034                 break;
4035         case 8:
4036                 value = kvm_get_cr8(vcpu);
4037                 break;
4038         default:
4039                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4040                 return 0;
4041         }
4042
4043         return value;
4044 }
4045
4046 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4047 {
4048         int res = 0;
4049
4050         switch (cr) {
4051         case 0:
4052                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4053                 break;
4054         case 2:
4055                 vcpu->arch.cr2 = val;
4056                 break;
4057         case 3:
4058                 res = kvm_set_cr3(vcpu, val);
4059                 break;
4060         case 4:
4061                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4062                 break;
4063         case 8:
4064                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4065                 break;
4066         default:
4067                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4068                 res = -1;
4069         }
4070
4071         return res;
4072 }
4073
4074 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4075 {
4076         return kvm_x86_ops->get_cpl(vcpu);
4077 }
4078
4079 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4080 {
4081         kvm_x86_ops->get_gdt(vcpu, dt);
4082 }
4083
4084 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4085 {
4086         kvm_x86_ops->get_idt(vcpu, dt);
4087 }
4088
4089 static unsigned long emulator_get_cached_segment_base(int seg,
4090                                                       struct kvm_vcpu *vcpu)
4091 {
4092         return get_segment_base(vcpu, seg);
4093 }
4094
4095 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4096                                            struct kvm_vcpu *vcpu)
4097 {
4098         struct kvm_segment var;
4099
4100         kvm_get_segment(vcpu, &var, seg);
4101
4102         if (var.unusable)
4103                 return false;
4104
4105         if (var.g)
4106                 var.limit >>= 12;
4107         set_desc_limit(desc, var.limit);
4108         set_desc_base(desc, (unsigned long)var.base);
4109         desc->type = var.type;
4110         desc->s = var.s;
4111         desc->dpl = var.dpl;
4112         desc->p = var.present;
4113         desc->avl = var.avl;
4114         desc->l = var.l;
4115         desc->d = var.db;
4116         desc->g = var.g;
4117
4118         return true;
4119 }
4120
4121 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4122                                            struct kvm_vcpu *vcpu)
4123 {
4124         struct kvm_segment var;
4125
4126         /* needed to preserve selector */
4127         kvm_get_segment(vcpu, &var, seg);
4128
4129         var.base = get_desc_base(desc);
4130         var.limit = get_desc_limit(desc);
4131         if (desc->g)
4132                 var.limit = (var.limit << 12) | 0xfff;
4133         var.type = desc->type;
4134         var.present = desc->p;
4135         var.dpl = desc->dpl;
4136         var.db = desc->d;
4137         var.s = desc->s;
4138         var.l = desc->l;
4139         var.g = desc->g;
4140         var.avl = desc->avl;
4141         var.present = desc->p;
4142         var.unusable = !var.present;
4143         var.padding = 0;
4144
4145         kvm_set_segment(vcpu, &var, seg);
4146         return;
4147 }
4148
4149 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4150 {
4151         struct kvm_segment kvm_seg;
4152
4153         kvm_get_segment(vcpu, &kvm_seg, seg);
4154         return kvm_seg.selector;
4155 }
4156
4157 static void emulator_set_segment_selector(u16 sel, int seg,
4158                                           struct kvm_vcpu *vcpu)
4159 {
4160         struct kvm_segment kvm_seg;
4161
4162         kvm_get_segment(vcpu, &kvm_seg, seg);
4163         kvm_seg.selector = sel;
4164         kvm_set_segment(vcpu, &kvm_seg, seg);
4165 }
4166
4167 static struct x86_emulate_ops emulate_ops = {
4168         .read_std            = kvm_read_guest_virt_system,
4169         .write_std           = kvm_write_guest_virt_system,
4170         .fetch               = kvm_fetch_guest_virt,
4171         .read_emulated       = emulator_read_emulated,
4172         .write_emulated      = emulator_write_emulated,
4173         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4174         .pio_in_emulated     = emulator_pio_in_emulated,
4175         .pio_out_emulated    = emulator_pio_out_emulated,
4176         .get_cached_descriptor = emulator_get_cached_descriptor,
4177         .set_cached_descriptor = emulator_set_cached_descriptor,
4178         .get_segment_selector = emulator_get_segment_selector,
4179         .set_segment_selector = emulator_set_segment_selector,
4180         .get_cached_segment_base = emulator_get_cached_segment_base,
4181         .get_gdt             = emulator_get_gdt,
4182         .get_idt             = emulator_get_idt,
4183         .get_cr              = emulator_get_cr,
4184         .set_cr              = emulator_set_cr,
4185         .cpl                 = emulator_get_cpl,
4186         .get_dr              = emulator_get_dr,
4187         .set_dr              = emulator_set_dr,
4188         .set_msr             = kvm_set_msr,
4189         .get_msr             = kvm_get_msr,
4190 };
4191
4192 static void cache_all_regs(struct kvm_vcpu *vcpu)
4193 {
4194         kvm_register_read(vcpu, VCPU_REGS_RAX);
4195         kvm_register_read(vcpu, VCPU_REGS_RSP);
4196         kvm_register_read(vcpu, VCPU_REGS_RIP);
4197         vcpu->arch.regs_dirty = ~0;
4198 }
4199
4200 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4201 {
4202         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4203         /*
4204          * an sti; sti; sequence only disable interrupts for the first
4205          * instruction. So, if the last instruction, be it emulated or
4206          * not, left the system with the INT_STI flag enabled, it
4207          * means that the last instruction is an sti. We should not
4208          * leave the flag on in this case. The same goes for mov ss
4209          */
4210         if (!(int_shadow & mask))
4211                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4212 }
4213
4214 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4215 {
4216         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4217         if (ctxt->exception == PF_VECTOR)
4218                 kvm_propagate_fault(vcpu);
4219         else if (ctxt->error_code_valid)
4220                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4221         else
4222                 kvm_queue_exception(vcpu, ctxt->exception);
4223 }
4224
4225 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4226 {
4227         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4228         int cs_db, cs_l;
4229
4230         cache_all_regs(vcpu);
4231
4232         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4233
4234         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4235         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4236         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4237         vcpu->arch.emulate_ctxt.mode =
4238                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4239                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4240                 ? X86EMUL_MODE_VM86 : cs_l
4241                 ? X86EMUL_MODE_PROT64 : cs_db
4242                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4243         memset(c, 0, sizeof(struct decode_cache));
4244         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4245 }
4246
4247 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4248 {
4249         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4250         int ret;
4251
4252         init_emulate_ctxt(vcpu);
4253
4254         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4255         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4256         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4257         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4258
4259         if (ret != X86EMUL_CONTINUE)
4260                 return EMULATE_FAIL;
4261
4262         vcpu->arch.emulate_ctxt.eip = c->eip;
4263         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4264         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4265         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4266
4267         if (irq == NMI_VECTOR)
4268                 vcpu->arch.nmi_pending = false;
4269         else
4270                 vcpu->arch.interrupt.pending = false;
4271
4272         return EMULATE_DONE;
4273 }
4274 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4275
4276 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4277 {
4278         ++vcpu->stat.insn_emulation_fail;
4279         trace_kvm_emulate_insn_failed(vcpu);
4280         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4281         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4282         vcpu->run->internal.ndata = 0;
4283         kvm_queue_exception(vcpu, UD_VECTOR);
4284         return EMULATE_FAIL;
4285 }
4286
4287 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4288 {
4289         gpa_t gpa;
4290
4291         if (tdp_enabled)
4292                 return false;
4293
4294         /*
4295          * if emulation was due to access to shadowed page table
4296          * and it failed try to unshadow page and re-entetr the
4297          * guest to let CPU execute the instruction.
4298          */
4299         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4300                 return true;
4301
4302         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4303
4304         if (gpa == UNMAPPED_GVA)
4305                 return true; /* let cpu generate fault */
4306
4307         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4308                 return true;
4309
4310         return false;
4311 }
4312
4313 int emulate_instruction(struct kvm_vcpu *vcpu,
4314                         unsigned long cr2,
4315                         u16 error_code,
4316                         int emulation_type)
4317 {
4318         int r;
4319         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4320
4321         kvm_clear_exception_queue(vcpu);
4322         vcpu->arch.mmio_fault_cr2 = cr2;
4323         /*
4324          * TODO: fix emulate.c to use guest_read/write_register
4325          * instead of direct ->regs accesses, can save hundred cycles
4326          * on Intel for instructions that don't read/change RSP, for
4327          * for example.
4328          */
4329         cache_all_regs(vcpu);
4330
4331         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4332                 init_emulate_ctxt(vcpu);
4333                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4334                 vcpu->arch.emulate_ctxt.exception = -1;
4335                 vcpu->arch.emulate_ctxt.perm_ok = false;
4336
4337                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4338                 if (r == X86EMUL_PROPAGATE_FAULT)
4339                         goto done;
4340
4341                 trace_kvm_emulate_insn_start(vcpu);
4342
4343                 /* Only allow emulation of specific instructions on #UD
4344                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4345                 if (emulation_type & EMULTYPE_TRAP_UD) {
4346                         if (!c->twobyte)
4347                                 return EMULATE_FAIL;
4348                         switch (c->b) {
4349                         case 0x01: /* VMMCALL */
4350                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4351                                         return EMULATE_FAIL;
4352                                 break;
4353                         case 0x34: /* sysenter */
4354                         case 0x35: /* sysexit */
4355                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4356                                         return EMULATE_FAIL;
4357                                 break;
4358                         case 0x05: /* syscall */
4359                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4360                                         return EMULATE_FAIL;
4361                                 break;
4362                         default:
4363                                 return EMULATE_FAIL;
4364                         }
4365
4366                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4367                                 return EMULATE_FAIL;
4368                 }
4369
4370                 ++vcpu->stat.insn_emulation;
4371                 if (r)  {
4372                         if (reexecute_instruction(vcpu, cr2))
4373                                 return EMULATE_DONE;
4374                         if (emulation_type & EMULTYPE_SKIP)
4375                                 return EMULATE_FAIL;
4376                         return handle_emulation_failure(vcpu);
4377                 }
4378         }
4379
4380         if (emulation_type & EMULTYPE_SKIP) {
4381                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4382                 return EMULATE_DONE;
4383         }
4384
4385         /* this is needed for vmware backdor interface to work since it
4386            changes registers values  during IO operation */
4387         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4388
4389 restart:
4390         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4391
4392         if (r == EMULATION_FAILED) {
4393                 if (reexecute_instruction(vcpu, cr2))
4394                         return EMULATE_DONE;
4395
4396                 return handle_emulation_failure(vcpu);
4397         }
4398
4399 done:
4400         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4401                 inject_emulated_exception(vcpu);
4402                 r = EMULATE_DONE;
4403         } else if (vcpu->arch.pio.count) {
4404                 if (!vcpu->arch.pio.in)
4405                         vcpu->arch.pio.count = 0;
4406                 r = EMULATE_DO_MMIO;
4407         } else if (vcpu->mmio_needed) {
4408                 if (vcpu->mmio_is_write)
4409                         vcpu->mmio_needed = 0;
4410                 r = EMULATE_DO_MMIO;
4411         } else if (r == EMULATION_RESTART)
4412                 goto restart;
4413         else
4414                 r = EMULATE_DONE;
4415
4416         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4417         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4418         kvm_make_request(KVM_REQ_EVENT, vcpu);
4419         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4420         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4421
4422         return r;
4423 }
4424 EXPORT_SYMBOL_GPL(emulate_instruction);
4425
4426 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4427 {
4428         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4429         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4430         /* do not return to emulator after return from userspace */
4431         vcpu->arch.pio.count = 0;
4432         return ret;
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4435
4436 static void tsc_bad(void *info)
4437 {
4438         __get_cpu_var(cpu_tsc_khz) = 0;
4439 }
4440
4441 static void tsc_khz_changed(void *data)
4442 {
4443         struct cpufreq_freqs *freq = data;
4444         unsigned long khz = 0;
4445
4446         if (data)
4447                 khz = freq->new;
4448         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4449                 khz = cpufreq_quick_get(raw_smp_processor_id());
4450         if (!khz)
4451                 khz = tsc_khz;
4452         __get_cpu_var(cpu_tsc_khz) = khz;
4453 }
4454
4455 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4456                                      void *data)
4457 {
4458         struct cpufreq_freqs *freq = data;
4459         struct kvm *kvm;
4460         struct kvm_vcpu *vcpu;
4461         int i, send_ipi = 0;
4462
4463         /*
4464          * We allow guests to temporarily run on slowing clocks,
4465          * provided we notify them after, or to run on accelerating
4466          * clocks, provided we notify them before.  Thus time never
4467          * goes backwards.
4468          *
4469          * However, we have a problem.  We can't atomically update
4470          * the frequency of a given CPU from this function; it is
4471          * merely a notifier, which can be called from any CPU.
4472          * Changing the TSC frequency at arbitrary points in time
4473          * requires a recomputation of local variables related to
4474          * the TSC for each VCPU.  We must flag these local variables
4475          * to be updated and be sure the update takes place with the
4476          * new frequency before any guests proceed.
4477          *
4478          * Unfortunately, the combination of hotplug CPU and frequency
4479          * change creates an intractable locking scenario; the order
4480          * of when these callouts happen is undefined with respect to
4481          * CPU hotplug, and they can race with each other.  As such,
4482          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4483          * undefined; you can actually have a CPU frequency change take
4484          * place in between the computation of X and the setting of the
4485          * variable.  To protect against this problem, all updates of
4486          * the per_cpu tsc_khz variable are done in an interrupt
4487          * protected IPI, and all callers wishing to update the value
4488          * must wait for a synchronous IPI to complete (which is trivial
4489          * if the caller is on the CPU already).  This establishes the
4490          * necessary total order on variable updates.
4491          *
4492          * Note that because a guest time update may take place
4493          * anytime after the setting of the VCPU's request bit, the
4494          * correct TSC value must be set before the request.  However,
4495          * to ensure the update actually makes it to any guest which
4496          * starts running in hardware virtualization between the set
4497          * and the acquisition of the spinlock, we must also ping the
4498          * CPU after setting the request bit.
4499          *
4500          */
4501
4502         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4503                 return 0;
4504         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4505                 return 0;
4506
4507         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4508
4509         spin_lock(&kvm_lock);
4510         list_for_each_entry(kvm, &vm_list, vm_list) {
4511                 kvm_for_each_vcpu(i, vcpu, kvm) {
4512                         if (vcpu->cpu != freq->cpu)
4513                                 continue;
4514                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4515                         if (vcpu->cpu != smp_processor_id())
4516                                 send_ipi = 1;
4517                 }
4518         }
4519         spin_unlock(&kvm_lock);
4520
4521         if (freq->old < freq->new && send_ipi) {
4522                 /*
4523                  * We upscale the frequency.  Must make the guest
4524                  * doesn't see old kvmclock values while running with
4525                  * the new frequency, otherwise we risk the guest sees
4526                  * time go backwards.
4527                  *
4528                  * In case we update the frequency for another cpu
4529                  * (which might be in guest context) send an interrupt
4530                  * to kick the cpu out of guest context.  Next time
4531                  * guest context is entered kvmclock will be updated,
4532                  * so the guest will not see stale values.
4533                  */
4534                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4535         }
4536         return 0;
4537 }
4538
4539 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4540         .notifier_call  = kvmclock_cpufreq_notifier
4541 };
4542
4543 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4544                                         unsigned long action, void *hcpu)
4545 {
4546         unsigned int cpu = (unsigned long)hcpu;
4547
4548         switch (action) {
4549                 case CPU_ONLINE:
4550                 case CPU_DOWN_FAILED:
4551                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4552                         break;
4553                 case CPU_DOWN_PREPARE:
4554                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4555                         break;
4556         }
4557         return NOTIFY_OK;
4558 }
4559
4560 static struct notifier_block kvmclock_cpu_notifier_block = {
4561         .notifier_call  = kvmclock_cpu_notifier,
4562         .priority = -INT_MAX
4563 };
4564
4565 static void kvm_timer_init(void)
4566 {
4567         int cpu;
4568
4569         max_tsc_khz = tsc_khz;
4570         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4571         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4572 #ifdef CONFIG_CPU_FREQ
4573                 struct cpufreq_policy policy;
4574                 memset(&policy, 0, sizeof(policy));
4575                 cpu = get_cpu();
4576                 cpufreq_get_policy(&policy, cpu);
4577                 if (policy.cpuinfo.max_freq)
4578                         max_tsc_khz = policy.cpuinfo.max_freq;
4579                 put_cpu();
4580 #endif
4581                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4582                                           CPUFREQ_TRANSITION_NOTIFIER);
4583         }
4584         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4585         for_each_online_cpu(cpu)
4586                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4587 }
4588
4589 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4590
4591 static int kvm_is_in_guest(void)
4592 {
4593         return percpu_read(current_vcpu) != NULL;
4594 }
4595
4596 static int kvm_is_user_mode(void)
4597 {
4598         int user_mode = 3;
4599
4600         if (percpu_read(current_vcpu))
4601                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4602
4603         return user_mode != 0;
4604 }
4605
4606 static unsigned long kvm_get_guest_ip(void)
4607 {
4608         unsigned long ip = 0;
4609
4610         if (percpu_read(current_vcpu))
4611                 ip = kvm_rip_read(percpu_read(current_vcpu));
4612
4613         return ip;
4614 }
4615
4616 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4617         .is_in_guest            = kvm_is_in_guest,
4618         .is_user_mode           = kvm_is_user_mode,
4619         .get_guest_ip           = kvm_get_guest_ip,
4620 };
4621
4622 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4623 {
4624         percpu_write(current_vcpu, vcpu);
4625 }
4626 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4627
4628 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4629 {
4630         percpu_write(current_vcpu, NULL);
4631 }
4632 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4633
4634 int kvm_arch_init(void *opaque)
4635 {
4636         int r;
4637         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4638
4639         if (kvm_x86_ops) {
4640                 printk(KERN_ERR "kvm: already loaded the other module\n");
4641                 r = -EEXIST;
4642                 goto out;
4643         }
4644
4645         if (!ops->cpu_has_kvm_support()) {
4646                 printk(KERN_ERR "kvm: no hardware support\n");
4647                 r = -EOPNOTSUPP;
4648                 goto out;
4649         }
4650         if (ops->disabled_by_bios()) {
4651                 printk(KERN_ERR "kvm: disabled by bios\n");
4652                 r = -EOPNOTSUPP;
4653                 goto out;
4654         }
4655
4656         r = kvm_mmu_module_init();
4657         if (r)
4658                 goto out;
4659
4660         kvm_init_msr_list();
4661
4662         kvm_x86_ops = ops;
4663         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4664         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4665         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4666                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4667
4668         kvm_timer_init();
4669
4670         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4671
4672         if (cpu_has_xsave)
4673                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4674
4675         return 0;
4676
4677 out:
4678         return r;
4679 }
4680
4681 void kvm_arch_exit(void)
4682 {
4683         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4684
4685         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4686                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4687                                             CPUFREQ_TRANSITION_NOTIFIER);
4688         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4689         kvm_x86_ops = NULL;
4690         kvm_mmu_module_exit();
4691 }
4692
4693 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4694 {
4695         ++vcpu->stat.halt_exits;
4696         if (irqchip_in_kernel(vcpu->kvm)) {
4697                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4698                 return 1;
4699         } else {
4700                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4701                 return 0;
4702         }
4703 }
4704 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4705
4706 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4707                            unsigned long a1)
4708 {
4709         if (is_long_mode(vcpu))
4710                 return a0;
4711         else
4712                 return a0 | ((gpa_t)a1 << 32);
4713 }
4714
4715 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4716 {
4717         u64 param, ingpa, outgpa, ret;
4718         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4719         bool fast, longmode;
4720         int cs_db, cs_l;
4721
4722         /*
4723          * hypercall generates UD from non zero cpl and real mode
4724          * per HYPER-V spec
4725          */
4726         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4727                 kvm_queue_exception(vcpu, UD_VECTOR);
4728                 return 0;
4729         }
4730
4731         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4732         longmode = is_long_mode(vcpu) && cs_l == 1;
4733
4734         if (!longmode) {
4735                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4736                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4737                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4738                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4739                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4740                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4741         }
4742 #ifdef CONFIG_X86_64
4743         else {
4744                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4745                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4746                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4747         }
4748 #endif
4749
4750         code = param & 0xffff;
4751         fast = (param >> 16) & 0x1;
4752         rep_cnt = (param >> 32) & 0xfff;
4753         rep_idx = (param >> 48) & 0xfff;
4754
4755         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4756
4757         switch (code) {
4758         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4759                 kvm_vcpu_on_spin(vcpu);
4760                 break;
4761         default:
4762                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4763                 break;
4764         }
4765
4766         ret = res | (((u64)rep_done & 0xfff) << 32);
4767         if (longmode) {
4768                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4769         } else {
4770                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4771                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4772         }
4773
4774         return 1;
4775 }
4776
4777 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4778 {
4779         unsigned long nr, a0, a1, a2, a3, ret;
4780         int r = 1;
4781
4782         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4783                 return kvm_hv_hypercall(vcpu);
4784
4785         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4786         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4787         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4788         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4789         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4790
4791         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4792
4793         if (!is_long_mode(vcpu)) {
4794                 nr &= 0xFFFFFFFF;
4795                 a0 &= 0xFFFFFFFF;
4796                 a1 &= 0xFFFFFFFF;
4797                 a2 &= 0xFFFFFFFF;
4798                 a3 &= 0xFFFFFFFF;
4799         }
4800
4801         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4802                 ret = -KVM_EPERM;
4803                 goto out;
4804         }
4805
4806         switch (nr) {
4807         case KVM_HC_VAPIC_POLL_IRQ:
4808                 ret = 0;
4809                 break;
4810         case KVM_HC_MMU_OP:
4811                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4812                 break;
4813         default:
4814                 ret = -KVM_ENOSYS;
4815                 break;
4816         }
4817 out:
4818         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4819         ++vcpu->stat.hypercalls;
4820         return r;
4821 }
4822 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4823
4824 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4825 {
4826         char instruction[3];
4827         unsigned long rip = kvm_rip_read(vcpu);
4828
4829         /*
4830          * Blow out the MMU to ensure that no other VCPU has an active mapping
4831          * to ensure that the updated hypercall appears atomically across all
4832          * VCPUs.
4833          */
4834         kvm_mmu_zap_all(vcpu->kvm);
4835
4836         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4837
4838         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4839 }
4840
4841 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4842 {
4843         struct desc_ptr dt = { limit, base };
4844
4845         kvm_x86_ops->set_gdt(vcpu, &dt);
4846 }
4847
4848 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4849 {
4850         struct desc_ptr dt = { limit, base };
4851
4852         kvm_x86_ops->set_idt(vcpu, &dt);
4853 }
4854
4855 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4856 {
4857         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4858         int j, nent = vcpu->arch.cpuid_nent;
4859
4860         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4861         /* when no next entry is found, the current entry[i] is reselected */
4862         for (j = i + 1; ; j = (j + 1) % nent) {
4863                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4864                 if (ej->function == e->function) {
4865                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4866                         return j;
4867                 }
4868         }
4869         return 0; /* silence gcc, even though control never reaches here */
4870 }
4871
4872 /* find an entry with matching function, matching index (if needed), and that
4873  * should be read next (if it's stateful) */
4874 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4875         u32 function, u32 index)
4876 {
4877         if (e->function != function)
4878                 return 0;
4879         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4880                 return 0;
4881         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4882             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4883                 return 0;
4884         return 1;
4885 }
4886
4887 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4888                                               u32 function, u32 index)
4889 {
4890         int i;
4891         struct kvm_cpuid_entry2 *best = NULL;
4892
4893         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4894                 struct kvm_cpuid_entry2 *e;
4895
4896                 e = &vcpu->arch.cpuid_entries[i];
4897                 if (is_matching_cpuid_entry(e, function, index)) {
4898                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4899                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4900                         best = e;
4901                         break;
4902                 }
4903                 /*
4904                  * Both basic or both extended?
4905                  */
4906                 if (((e->function ^ function) & 0x80000000) == 0)
4907                         if (!best || e->function > best->function)
4908                                 best = e;
4909         }
4910         return best;
4911 }
4912 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4913
4914 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4915 {
4916         struct kvm_cpuid_entry2 *best;
4917
4918         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4919         if (!best || best->eax < 0x80000008)
4920                 goto not_found;
4921         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4922         if (best)
4923                 return best->eax & 0xff;
4924 not_found:
4925         return 36;
4926 }
4927
4928 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4929 {
4930         u32 function, index;
4931         struct kvm_cpuid_entry2 *best;
4932
4933         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4934         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4935         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4936         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4937         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4938         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4939         best = kvm_find_cpuid_entry(vcpu, function, index);
4940         if (best) {
4941                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4942                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4943                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4944                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4945         }
4946         kvm_x86_ops->skip_emulated_instruction(vcpu);
4947         trace_kvm_cpuid(function,
4948                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4949                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4950                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4951                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4952 }
4953 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4954
4955 /*
4956  * Check if userspace requested an interrupt window, and that the
4957  * interrupt window is open.
4958  *
4959  * No need to exit to userspace if we already have an interrupt queued.
4960  */
4961 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4962 {
4963         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4964                 vcpu->run->request_interrupt_window &&
4965                 kvm_arch_interrupt_allowed(vcpu));
4966 }
4967
4968 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4969 {
4970         struct kvm_run *kvm_run = vcpu->run;
4971
4972         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4973         kvm_run->cr8 = kvm_get_cr8(vcpu);
4974         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4975         if (irqchip_in_kernel(vcpu->kvm))
4976                 kvm_run->ready_for_interrupt_injection = 1;
4977         else
4978                 kvm_run->ready_for_interrupt_injection =
4979                         kvm_arch_interrupt_allowed(vcpu) &&
4980                         !kvm_cpu_has_interrupt(vcpu) &&
4981                         !kvm_event_needs_reinjection(vcpu);
4982 }
4983
4984 static void vapic_enter(struct kvm_vcpu *vcpu)
4985 {
4986         struct kvm_lapic *apic = vcpu->arch.apic;
4987         struct page *page;
4988
4989         if (!apic || !apic->vapic_addr)
4990                 return;
4991
4992         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4993
4994         vcpu->arch.apic->vapic_page = page;
4995 }
4996
4997 static void vapic_exit(struct kvm_vcpu *vcpu)
4998 {
4999         struct kvm_lapic *apic = vcpu->arch.apic;
5000         int idx;
5001
5002         if (!apic || !apic->vapic_addr)
5003                 return;
5004
5005         idx = srcu_read_lock(&vcpu->kvm->srcu);
5006         kvm_release_page_dirty(apic->vapic_page);
5007         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5008         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5009 }
5010
5011 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5012 {
5013         int max_irr, tpr;
5014
5015         if (!kvm_x86_ops->update_cr8_intercept)
5016                 return;
5017
5018         if (!vcpu->arch.apic)
5019                 return;
5020
5021         if (!vcpu->arch.apic->vapic_addr)
5022                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5023         else
5024                 max_irr = -1;
5025
5026         if (max_irr != -1)
5027                 max_irr >>= 4;
5028
5029         tpr = kvm_lapic_get_cr8(vcpu);
5030
5031         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5032 }
5033
5034 static void inject_pending_event(struct kvm_vcpu *vcpu)
5035 {
5036         /* try to reinject previous events if any */
5037         if (vcpu->arch.exception.pending) {
5038                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5039                                         vcpu->arch.exception.has_error_code,
5040                                         vcpu->arch.exception.error_code);
5041                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5042                                           vcpu->arch.exception.has_error_code,
5043                                           vcpu->arch.exception.error_code,
5044                                           vcpu->arch.exception.reinject);
5045                 return;
5046         }
5047
5048         if (vcpu->arch.nmi_injected) {
5049                 kvm_x86_ops->set_nmi(vcpu);
5050                 return;
5051         }
5052
5053         if (vcpu->arch.interrupt.pending) {
5054                 kvm_x86_ops->set_irq(vcpu);
5055                 return;
5056         }
5057
5058         /* try to inject new event if pending */
5059         if (vcpu->arch.nmi_pending) {
5060                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5061                         vcpu->arch.nmi_pending = false;
5062                         vcpu->arch.nmi_injected = true;
5063                         kvm_x86_ops->set_nmi(vcpu);
5064                 }
5065         } else if (kvm_cpu_has_interrupt(vcpu)) {
5066                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5067                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5068                                             false);
5069                         kvm_x86_ops->set_irq(vcpu);
5070                 }
5071         }
5072 }
5073
5074 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5075 {
5076         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5077                         !vcpu->guest_xcr0_loaded) {
5078                 /* kvm_set_xcr() also depends on this */
5079                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5080                 vcpu->guest_xcr0_loaded = 1;
5081         }
5082 }
5083
5084 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5085 {
5086         if (vcpu->guest_xcr0_loaded) {
5087                 if (vcpu->arch.xcr0 != host_xcr0)
5088                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5089                 vcpu->guest_xcr0_loaded = 0;
5090         }
5091 }
5092
5093 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5094 {
5095         int r;
5096         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5097                 vcpu->run->request_interrupt_window;
5098
5099         if (vcpu->requests) {
5100                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5101                         kvm_mmu_unload(vcpu);
5102                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5103                         __kvm_migrate_timers(vcpu);
5104                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5105                         r = kvm_guest_time_update(vcpu);
5106                         if (unlikely(r))
5107                                 goto out;
5108                 }
5109                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5110                         kvm_mmu_sync_roots(vcpu);
5111                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5112                         kvm_x86_ops->tlb_flush(vcpu);
5113                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5114                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5115                         r = 0;
5116                         goto out;
5117                 }
5118                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5119                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5120                         r = 0;
5121                         goto out;
5122                 }
5123                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5124                         vcpu->fpu_active = 0;
5125                         kvm_x86_ops->fpu_deactivate(vcpu);
5126                 }
5127                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5128                         /* Page is swapped out. Do synthetic halt */
5129                         vcpu->arch.apf.halted = true;
5130                         r = 1;
5131                         goto out;
5132                 }
5133         }
5134
5135         r = kvm_mmu_reload(vcpu);
5136         if (unlikely(r))
5137                 goto out;
5138
5139         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5140                 inject_pending_event(vcpu);
5141
5142                 /* enable NMI/IRQ window open exits if needed */
5143                 if (vcpu->arch.nmi_pending)
5144                         kvm_x86_ops->enable_nmi_window(vcpu);
5145                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5146                         kvm_x86_ops->enable_irq_window(vcpu);
5147
5148                 if (kvm_lapic_enabled(vcpu)) {
5149                         update_cr8_intercept(vcpu);
5150                         kvm_lapic_sync_to_vapic(vcpu);
5151                 }
5152         }
5153
5154         preempt_disable();
5155
5156         kvm_x86_ops->prepare_guest_switch(vcpu);
5157         if (vcpu->fpu_active)
5158                 kvm_load_guest_fpu(vcpu);
5159         kvm_load_guest_xcr0(vcpu);
5160
5161         atomic_set(&vcpu->guest_mode, 1);
5162         smp_wmb();
5163
5164         local_irq_disable();
5165
5166         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5167             || need_resched() || signal_pending(current)) {
5168                 atomic_set(&vcpu->guest_mode, 0);
5169                 smp_wmb();
5170                 local_irq_enable();
5171                 preempt_enable();
5172                 kvm_x86_ops->cancel_injection(vcpu);
5173                 r = 1;
5174                 goto out;
5175         }
5176
5177         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5178
5179         kvm_guest_enter();
5180
5181         if (unlikely(vcpu->arch.switch_db_regs)) {
5182                 set_debugreg(0, 7);
5183                 set_debugreg(vcpu->arch.eff_db[0], 0);
5184                 set_debugreg(vcpu->arch.eff_db[1], 1);
5185                 set_debugreg(vcpu->arch.eff_db[2], 2);
5186                 set_debugreg(vcpu->arch.eff_db[3], 3);
5187         }
5188
5189         trace_kvm_entry(vcpu->vcpu_id);
5190         kvm_x86_ops->run(vcpu);
5191
5192         /*
5193          * If the guest has used debug registers, at least dr7
5194          * will be disabled while returning to the host.
5195          * If we don't have active breakpoints in the host, we don't
5196          * care about the messed up debug address registers. But if
5197          * we have some of them active, restore the old state.
5198          */
5199         if (hw_breakpoint_active())
5200                 hw_breakpoint_restore();
5201
5202         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5203
5204         atomic_set(&vcpu->guest_mode, 0);
5205         smp_wmb();
5206         local_irq_enable();
5207
5208         ++vcpu->stat.exits;
5209
5210         /*
5211          * We must have an instruction between local_irq_enable() and
5212          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5213          * the interrupt shadow.  The stat.exits increment will do nicely.
5214          * But we need to prevent reordering, hence this barrier():
5215          */
5216         barrier();
5217
5218         kvm_guest_exit();
5219
5220         preempt_enable();
5221
5222         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5223
5224         /*
5225          * Profile KVM exit RIPs:
5226          */
5227         if (unlikely(prof_on == KVM_PROFILING)) {
5228                 unsigned long rip = kvm_rip_read(vcpu);
5229                 profile_hit(KVM_PROFILING, (void *)rip);
5230         }
5231
5232
5233         kvm_lapic_sync_from_vapic(vcpu);
5234
5235         r = kvm_x86_ops->handle_exit(vcpu);
5236 out:
5237         return r;
5238 }
5239
5240
5241 static int __vcpu_run(struct kvm_vcpu *vcpu)
5242 {
5243         int r;
5244         struct kvm *kvm = vcpu->kvm;
5245
5246         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5247                 pr_debug("vcpu %d received sipi with vector # %x\n",
5248                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5249                 kvm_lapic_reset(vcpu);
5250                 r = kvm_arch_vcpu_reset(vcpu);
5251                 if (r)
5252                         return r;
5253                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5254         }
5255
5256         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5257         vapic_enter(vcpu);
5258
5259         r = 1;
5260         while (r > 0) {
5261                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5262                     !vcpu->arch.apf.halted)
5263                         r = vcpu_enter_guest(vcpu);
5264                 else {
5265                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5266                         kvm_vcpu_block(vcpu);
5267                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5268                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5269                         {
5270                                 switch(vcpu->arch.mp_state) {
5271                                 case KVM_MP_STATE_HALTED:
5272                                         vcpu->arch.mp_state =
5273                                                 KVM_MP_STATE_RUNNABLE;
5274                                 case KVM_MP_STATE_RUNNABLE:
5275                                         vcpu->arch.apf.halted = false;
5276                                         break;
5277                                 case KVM_MP_STATE_SIPI_RECEIVED:
5278                                 default:
5279                                         r = -EINTR;
5280                                         break;
5281                                 }
5282                         }
5283                 }
5284
5285                 if (r <= 0)
5286                         break;
5287
5288                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5289                 if (kvm_cpu_has_pending_timer(vcpu))
5290                         kvm_inject_pending_timer_irqs(vcpu);
5291
5292                 if (dm_request_for_irq_injection(vcpu)) {
5293                         r = -EINTR;
5294                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5295                         ++vcpu->stat.request_irq_exits;
5296                 }
5297
5298                 kvm_check_async_pf_completion(vcpu);
5299
5300                 if (signal_pending(current)) {
5301                         r = -EINTR;
5302                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5303                         ++vcpu->stat.signal_exits;
5304                 }
5305                 if (need_resched()) {
5306                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5307                         kvm_resched(vcpu);
5308                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5309                 }
5310         }
5311
5312         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5313
5314         vapic_exit(vcpu);
5315
5316         return r;
5317 }
5318
5319 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5320 {
5321         int r;
5322         sigset_t sigsaved;
5323
5324         if (vcpu->sigset_active)
5325                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5326
5327         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5328                 kvm_vcpu_block(vcpu);
5329                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5330                 r = -EAGAIN;
5331                 goto out;
5332         }
5333
5334         /* re-sync apic's tpr */
5335         if (!irqchip_in_kernel(vcpu->kvm))
5336                 kvm_set_cr8(vcpu, kvm_run->cr8);
5337
5338         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5339                 if (vcpu->mmio_needed) {
5340                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5341                         vcpu->mmio_read_completed = 1;
5342                         vcpu->mmio_needed = 0;
5343                 }
5344                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5345                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5346                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5347                 if (r != EMULATE_DONE) {
5348                         r = 0;
5349                         goto out;
5350                 }
5351         }
5352         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5353                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5354                                      kvm_run->hypercall.ret);
5355
5356         r = __vcpu_run(vcpu);
5357
5358 out:
5359         post_kvm_run_save(vcpu);
5360         if (vcpu->sigset_active)
5361                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5362
5363         return r;
5364 }
5365
5366 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5367 {
5368         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5369         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5370         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5371         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5372         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5373         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5374         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5375         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5376 #ifdef CONFIG_X86_64
5377         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5378         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5379         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5380         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5381         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5382         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5383         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5384         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5385 #endif
5386
5387         regs->rip = kvm_rip_read(vcpu);
5388         regs->rflags = kvm_get_rflags(vcpu);
5389
5390         return 0;
5391 }
5392
5393 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5394 {
5395         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5396         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5397         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5398         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5399         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5400         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5401         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5402         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5403 #ifdef CONFIG_X86_64
5404         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5405         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5406         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5407         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5408         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5409         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5410         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5411         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5412 #endif
5413
5414         kvm_rip_write(vcpu, regs->rip);
5415         kvm_set_rflags(vcpu, regs->rflags);
5416
5417         vcpu->arch.exception.pending = false;
5418
5419         kvm_make_request(KVM_REQ_EVENT, vcpu);
5420
5421         return 0;
5422 }
5423
5424 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5425 {
5426         struct kvm_segment cs;
5427
5428         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5429         *db = cs.db;
5430         *l = cs.l;
5431 }
5432 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5433
5434 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5435                                   struct kvm_sregs *sregs)
5436 {
5437         struct desc_ptr dt;
5438
5439         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5440         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5441         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5442         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5443         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5444         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5445
5446         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5447         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5448
5449         kvm_x86_ops->get_idt(vcpu, &dt);
5450         sregs->idt.limit = dt.size;
5451         sregs->idt.base = dt.address;
5452         kvm_x86_ops->get_gdt(vcpu, &dt);
5453         sregs->gdt.limit = dt.size;
5454         sregs->gdt.base = dt.address;
5455
5456         sregs->cr0 = kvm_read_cr0(vcpu);
5457         sregs->cr2 = vcpu->arch.cr2;
5458         sregs->cr3 = vcpu->arch.cr3;
5459         sregs->cr4 = kvm_read_cr4(vcpu);
5460         sregs->cr8 = kvm_get_cr8(vcpu);
5461         sregs->efer = vcpu->arch.efer;
5462         sregs->apic_base = kvm_get_apic_base(vcpu);
5463
5464         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5465
5466         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5467                 set_bit(vcpu->arch.interrupt.nr,
5468                         (unsigned long *)sregs->interrupt_bitmap);
5469
5470         return 0;
5471 }
5472
5473 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5474                                     struct kvm_mp_state *mp_state)
5475 {
5476         mp_state->mp_state = vcpu->arch.mp_state;
5477         return 0;
5478 }
5479
5480 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5481                                     struct kvm_mp_state *mp_state)
5482 {
5483         vcpu->arch.mp_state = mp_state->mp_state;
5484         kvm_make_request(KVM_REQ_EVENT, vcpu);
5485         return 0;
5486 }
5487
5488 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5489                     bool has_error_code, u32 error_code)
5490 {
5491         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5492         int ret;
5493
5494         init_emulate_ctxt(vcpu);
5495
5496         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5497                                    tss_selector, reason, has_error_code,
5498                                    error_code);
5499
5500         if (ret)
5501                 return EMULATE_FAIL;
5502
5503         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5504         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5505         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5506         kvm_make_request(KVM_REQ_EVENT, vcpu);
5507         return EMULATE_DONE;
5508 }
5509 EXPORT_SYMBOL_GPL(kvm_task_switch);
5510
5511 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5512                                   struct kvm_sregs *sregs)
5513 {
5514         int mmu_reset_needed = 0;
5515         int pending_vec, max_bits;
5516         struct desc_ptr dt;
5517
5518         dt.size = sregs->idt.limit;
5519         dt.address = sregs->idt.base;
5520         kvm_x86_ops->set_idt(vcpu, &dt);
5521         dt.size = sregs->gdt.limit;
5522         dt.address = sregs->gdt.base;
5523         kvm_x86_ops->set_gdt(vcpu, &dt);
5524
5525         vcpu->arch.cr2 = sregs->cr2;
5526         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5527         vcpu->arch.cr3 = sregs->cr3;
5528
5529         kvm_set_cr8(vcpu, sregs->cr8);
5530
5531         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5532         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5533         kvm_set_apic_base(vcpu, sregs->apic_base);
5534
5535         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5536         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5537         vcpu->arch.cr0 = sregs->cr0;
5538
5539         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5540         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5541         if (sregs->cr4 & X86_CR4_OSXSAVE)
5542                 update_cpuid(vcpu);
5543         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5544                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5545                 mmu_reset_needed = 1;
5546         }
5547
5548         if (mmu_reset_needed)
5549                 kvm_mmu_reset_context(vcpu);
5550
5551         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5552         pending_vec = find_first_bit(
5553                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5554         if (pending_vec < max_bits) {
5555                 kvm_queue_interrupt(vcpu, pending_vec, false);
5556                 pr_debug("Set back pending irq %d\n", pending_vec);
5557                 if (irqchip_in_kernel(vcpu->kvm))
5558                         kvm_pic_clear_isr_ack(vcpu->kvm);
5559         }
5560
5561         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5562         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5563         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5564         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5565         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5566         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5567
5568         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5569         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5570
5571         update_cr8_intercept(vcpu);
5572
5573         /* Older userspace won't unhalt the vcpu on reset. */
5574         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5575             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5576             !is_protmode(vcpu))
5577                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5578
5579         kvm_make_request(KVM_REQ_EVENT, vcpu);
5580
5581         return 0;
5582 }
5583
5584 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5585                                         struct kvm_guest_debug *dbg)
5586 {
5587         unsigned long rflags;
5588         int i, r;
5589
5590         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5591                 r = -EBUSY;
5592                 if (vcpu->arch.exception.pending)
5593                         goto out;
5594                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5595                         kvm_queue_exception(vcpu, DB_VECTOR);
5596                 else
5597                         kvm_queue_exception(vcpu, BP_VECTOR);
5598         }
5599
5600         /*
5601          * Read rflags as long as potentially injected trace flags are still
5602          * filtered out.
5603          */
5604         rflags = kvm_get_rflags(vcpu);
5605
5606         vcpu->guest_debug = dbg->control;
5607         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5608                 vcpu->guest_debug = 0;
5609
5610         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5611                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5612                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5613                 vcpu->arch.switch_db_regs =
5614                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5615         } else {
5616                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5617                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5618                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5619         }
5620
5621         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5622                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5623                         get_segment_base(vcpu, VCPU_SREG_CS);
5624
5625         /*
5626          * Trigger an rflags update that will inject or remove the trace
5627          * flags.
5628          */
5629         kvm_set_rflags(vcpu, rflags);
5630
5631         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5632
5633         r = 0;
5634
5635 out:
5636
5637         return r;
5638 }
5639
5640 /*
5641  * Translate a guest virtual address to a guest physical address.
5642  */
5643 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5644                                     struct kvm_translation *tr)
5645 {
5646         unsigned long vaddr = tr->linear_address;
5647         gpa_t gpa;
5648         int idx;
5649
5650         idx = srcu_read_lock(&vcpu->kvm->srcu);
5651         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5652         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5653         tr->physical_address = gpa;
5654         tr->valid = gpa != UNMAPPED_GVA;
5655         tr->writeable = 1;
5656         tr->usermode = 0;
5657
5658         return 0;
5659 }
5660
5661 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5662 {
5663         struct i387_fxsave_struct *fxsave =
5664                         &vcpu->arch.guest_fpu.state->fxsave;
5665
5666         memcpy(fpu->fpr, fxsave->st_space, 128);
5667         fpu->fcw = fxsave->cwd;
5668         fpu->fsw = fxsave->swd;
5669         fpu->ftwx = fxsave->twd;
5670         fpu->last_opcode = fxsave->fop;
5671         fpu->last_ip = fxsave->rip;
5672         fpu->last_dp = fxsave->rdp;
5673         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5674
5675         return 0;
5676 }
5677
5678 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5679 {
5680         struct i387_fxsave_struct *fxsave =
5681                         &vcpu->arch.guest_fpu.state->fxsave;
5682
5683         memcpy(fxsave->st_space, fpu->fpr, 128);
5684         fxsave->cwd = fpu->fcw;
5685         fxsave->swd = fpu->fsw;
5686         fxsave->twd = fpu->ftwx;
5687         fxsave->fop = fpu->last_opcode;
5688         fxsave->rip = fpu->last_ip;
5689         fxsave->rdp = fpu->last_dp;
5690         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5691
5692         return 0;
5693 }
5694
5695 int fx_init(struct kvm_vcpu *vcpu)
5696 {
5697         int err;
5698
5699         err = fpu_alloc(&vcpu->arch.guest_fpu);
5700         if (err)
5701                 return err;
5702
5703         fpu_finit(&vcpu->arch.guest_fpu);
5704
5705         /*
5706          * Ensure guest xcr0 is valid for loading
5707          */
5708         vcpu->arch.xcr0 = XSTATE_FP;
5709
5710         vcpu->arch.cr0 |= X86_CR0_ET;
5711
5712         return 0;
5713 }
5714 EXPORT_SYMBOL_GPL(fx_init);
5715
5716 static void fx_free(struct kvm_vcpu *vcpu)
5717 {
5718         fpu_free(&vcpu->arch.guest_fpu);
5719 }
5720
5721 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5722 {
5723         if (vcpu->guest_fpu_loaded)
5724                 return;
5725
5726         /*
5727          * Restore all possible states in the guest,
5728          * and assume host would use all available bits.
5729          * Guest xcr0 would be loaded later.
5730          */
5731         kvm_put_guest_xcr0(vcpu);
5732         vcpu->guest_fpu_loaded = 1;
5733         unlazy_fpu(current);
5734         fpu_restore_checking(&vcpu->arch.guest_fpu);
5735         trace_kvm_fpu(1);
5736 }
5737
5738 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5739 {
5740         kvm_put_guest_xcr0(vcpu);
5741
5742         if (!vcpu->guest_fpu_loaded)
5743                 return;
5744
5745         vcpu->guest_fpu_loaded = 0;
5746         fpu_save_init(&vcpu->arch.guest_fpu);
5747         ++vcpu->stat.fpu_reload;
5748         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5749         trace_kvm_fpu(0);
5750 }
5751
5752 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5753 {
5754         if (vcpu->arch.time_page) {
5755                 kvm_release_page_dirty(vcpu->arch.time_page);
5756                 vcpu->arch.time_page = NULL;
5757         }
5758
5759         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5760         fx_free(vcpu);
5761         kvm_x86_ops->vcpu_free(vcpu);
5762 }
5763
5764 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5765                                                 unsigned int id)
5766 {
5767         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5768                 printk_once(KERN_WARNING
5769                 "kvm: SMP vm created on host with unstable TSC; "
5770                 "guest TSC will not be reliable\n");
5771         return kvm_x86_ops->vcpu_create(kvm, id);
5772 }
5773
5774 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5775 {
5776         int r;
5777
5778         vcpu->arch.mtrr_state.have_fixed = 1;
5779         vcpu_load(vcpu);
5780         r = kvm_arch_vcpu_reset(vcpu);
5781         if (r == 0)
5782                 r = kvm_mmu_setup(vcpu);
5783         vcpu_put(vcpu);
5784         if (r < 0)
5785                 goto free_vcpu;
5786
5787         return 0;
5788 free_vcpu:
5789         kvm_x86_ops->vcpu_free(vcpu);
5790         return r;
5791 }
5792
5793 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5794 {
5795         vcpu_load(vcpu);
5796         kvm_mmu_unload(vcpu);
5797         vcpu_put(vcpu);
5798
5799         fx_free(vcpu);
5800         kvm_x86_ops->vcpu_free(vcpu);
5801 }
5802
5803 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5804 {
5805         vcpu->arch.nmi_pending = false;
5806         vcpu->arch.nmi_injected = false;
5807
5808         vcpu->arch.switch_db_regs = 0;
5809         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5810         vcpu->arch.dr6 = DR6_FIXED_1;
5811         vcpu->arch.dr7 = DR7_FIXED_1;
5812
5813         kvm_make_request(KVM_REQ_EVENT, vcpu);
5814
5815         kvm_clear_async_pf_completion_queue(vcpu);
5816         kvm_async_pf_hash_reset(vcpu);
5817         vcpu->arch.apf.halted = false;
5818
5819         return kvm_x86_ops->vcpu_reset(vcpu);
5820 }
5821
5822 int kvm_arch_hardware_enable(void *garbage)
5823 {
5824         struct kvm *kvm;
5825         struct kvm_vcpu *vcpu;
5826         int i;
5827
5828         kvm_shared_msr_cpu_online();
5829         list_for_each_entry(kvm, &vm_list, vm_list)
5830                 kvm_for_each_vcpu(i, vcpu, kvm)
5831                         if (vcpu->cpu == smp_processor_id())
5832                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5833         return kvm_x86_ops->hardware_enable(garbage);
5834 }
5835
5836 void kvm_arch_hardware_disable(void *garbage)
5837 {
5838         kvm_x86_ops->hardware_disable(garbage);
5839         drop_user_return_notifiers(garbage);
5840 }
5841
5842 int kvm_arch_hardware_setup(void)
5843 {
5844         return kvm_x86_ops->hardware_setup();
5845 }
5846
5847 void kvm_arch_hardware_unsetup(void)
5848 {
5849         kvm_x86_ops->hardware_unsetup();
5850 }
5851
5852 void kvm_arch_check_processor_compat(void *rtn)
5853 {
5854         kvm_x86_ops->check_processor_compatibility(rtn);
5855 }
5856
5857 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5858 {
5859         struct page *page;
5860         struct kvm *kvm;
5861         int r;
5862
5863         BUG_ON(vcpu->kvm == NULL);
5864         kvm = vcpu->kvm;
5865
5866         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5867         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5868         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5869         vcpu->arch.mmu.translate_gpa = translate_gpa;
5870         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5871         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5872                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5873         else
5874                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5875
5876         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5877         if (!page) {
5878                 r = -ENOMEM;
5879                 goto fail;
5880         }
5881         vcpu->arch.pio_data = page_address(page);
5882
5883         if (!kvm->arch.virtual_tsc_khz)
5884                 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5885
5886         r = kvm_mmu_create(vcpu);
5887         if (r < 0)
5888                 goto fail_free_pio_data;
5889
5890         if (irqchip_in_kernel(kvm)) {
5891                 r = kvm_create_lapic(vcpu);
5892                 if (r < 0)
5893                         goto fail_mmu_destroy;
5894         }
5895
5896         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5897                                        GFP_KERNEL);
5898         if (!vcpu->arch.mce_banks) {
5899                 r = -ENOMEM;
5900                 goto fail_free_lapic;
5901         }
5902         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5903
5904         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5905                 goto fail_free_mce_banks;
5906
5907         kvm_async_pf_hash_reset(vcpu);
5908
5909         return 0;
5910 fail_free_mce_banks:
5911         kfree(vcpu->arch.mce_banks);
5912 fail_free_lapic:
5913         kvm_free_lapic(vcpu);
5914 fail_mmu_destroy:
5915         kvm_mmu_destroy(vcpu);
5916 fail_free_pio_data:
5917         free_page((unsigned long)vcpu->arch.pio_data);
5918 fail:
5919         return r;
5920 }
5921
5922 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5923 {
5924         int idx;
5925
5926         kfree(vcpu->arch.mce_banks);
5927         kvm_free_lapic(vcpu);
5928         idx = srcu_read_lock(&vcpu->kvm->srcu);
5929         kvm_mmu_destroy(vcpu);
5930         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5931         free_page((unsigned long)vcpu->arch.pio_data);
5932 }
5933
5934 struct  kvm *kvm_arch_create_vm(void)
5935 {
5936         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5937
5938         if (!kvm)
5939                 return ERR_PTR(-ENOMEM);
5940
5941         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5942         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5943
5944         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5945         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5946
5947         spin_lock_init(&kvm->arch.tsc_write_lock);
5948
5949         return kvm;
5950 }
5951
5952 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5953 {
5954         vcpu_load(vcpu);
5955         kvm_mmu_unload(vcpu);
5956         vcpu_put(vcpu);
5957 }
5958
5959 static void kvm_free_vcpus(struct kvm *kvm)
5960 {
5961         unsigned int i;
5962         struct kvm_vcpu *vcpu;
5963
5964         /*
5965          * Unpin any mmu pages first.
5966          */
5967         kvm_for_each_vcpu(i, vcpu, kvm) {
5968                 kvm_clear_async_pf_completion_queue(vcpu);
5969                 kvm_unload_vcpu_mmu(vcpu);
5970         }
5971         kvm_for_each_vcpu(i, vcpu, kvm)
5972                 kvm_arch_vcpu_free(vcpu);
5973
5974         mutex_lock(&kvm->lock);
5975         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5976                 kvm->vcpus[i] = NULL;
5977
5978         atomic_set(&kvm->online_vcpus, 0);
5979         mutex_unlock(&kvm->lock);
5980 }
5981
5982 void kvm_arch_sync_events(struct kvm *kvm)
5983 {
5984         kvm_free_all_assigned_devices(kvm);
5985         kvm_free_pit(kvm);
5986 }
5987
5988 void kvm_arch_destroy_vm(struct kvm *kvm)
5989 {
5990         kvm_iommu_unmap_guest(kvm);
5991         kfree(kvm->arch.vpic);
5992         kfree(kvm->arch.vioapic);
5993         kvm_free_vcpus(kvm);
5994         kvm_free_physmem(kvm);
5995         if (kvm->arch.apic_access_page)
5996                 put_page(kvm->arch.apic_access_page);
5997         if (kvm->arch.ept_identity_pagetable)
5998                 put_page(kvm->arch.ept_identity_pagetable);
5999         cleanup_srcu_struct(&kvm->srcu);
6000         kfree(kvm);
6001 }
6002
6003 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6004                                 struct kvm_memory_slot *memslot,
6005                                 struct kvm_memory_slot old,
6006                                 struct kvm_userspace_memory_region *mem,
6007                                 int user_alloc)
6008 {
6009         int npages = memslot->npages;
6010         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6011
6012         /* Prevent internal slot pages from being moved by fork()/COW. */
6013         if (memslot->id >= KVM_MEMORY_SLOTS)
6014                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6015
6016         /*To keep backward compatibility with older userspace,
6017          *x86 needs to hanlde !user_alloc case.
6018          */
6019         if (!user_alloc) {
6020                 if (npages && !old.rmap) {
6021                         unsigned long userspace_addr;
6022
6023                         down_write(&current->mm->mmap_sem);
6024                         userspace_addr = do_mmap(NULL, 0,
6025                                                  npages * PAGE_SIZE,
6026                                                  PROT_READ | PROT_WRITE,
6027                                                  map_flags,
6028                                                  0);
6029                         up_write(&current->mm->mmap_sem);
6030
6031                         if (IS_ERR((void *)userspace_addr))
6032                                 return PTR_ERR((void *)userspace_addr);
6033
6034                         memslot->userspace_addr = userspace_addr;
6035                 }
6036         }
6037
6038
6039         return 0;
6040 }
6041
6042 void kvm_arch_commit_memory_region(struct kvm *kvm,
6043                                 struct kvm_userspace_memory_region *mem,
6044                                 struct kvm_memory_slot old,
6045                                 int user_alloc)
6046 {
6047
6048         int npages = mem->memory_size >> PAGE_SHIFT;
6049
6050         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6051                 int ret;
6052
6053                 down_write(&current->mm->mmap_sem);
6054                 ret = do_munmap(current->mm, old.userspace_addr,
6055                                 old.npages * PAGE_SIZE);
6056                 up_write(&current->mm->mmap_sem);
6057                 if (ret < 0)
6058                         printk(KERN_WARNING
6059                                "kvm_vm_ioctl_set_memory_region: "
6060                                "failed to munmap memory\n");
6061         }
6062
6063         spin_lock(&kvm->mmu_lock);
6064         if (!kvm->arch.n_requested_mmu_pages) {
6065                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6066                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6067         }
6068
6069         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6070         spin_unlock(&kvm->mmu_lock);
6071 }
6072
6073 void kvm_arch_flush_shadow(struct kvm *kvm)
6074 {
6075         kvm_mmu_zap_all(kvm);
6076         kvm_reload_remote_mmus(kvm);
6077 }
6078
6079 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6080 {
6081         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6082                 !vcpu->arch.apf.halted)
6083                 || !list_empty_careful(&vcpu->async_pf.done)
6084                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6085                 || vcpu->arch.nmi_pending ||
6086                 (kvm_arch_interrupt_allowed(vcpu) &&
6087                  kvm_cpu_has_interrupt(vcpu));
6088 }
6089
6090 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6091 {
6092         int me;
6093         int cpu = vcpu->cpu;
6094
6095         if (waitqueue_active(&vcpu->wq)) {
6096                 wake_up_interruptible(&vcpu->wq);
6097                 ++vcpu->stat.halt_wakeup;
6098         }
6099
6100         me = get_cpu();
6101         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6102                 if (atomic_xchg(&vcpu->guest_mode, 0))
6103                         smp_send_reschedule(cpu);
6104         put_cpu();
6105 }
6106
6107 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6108 {
6109         return kvm_x86_ops->interrupt_allowed(vcpu);
6110 }
6111
6112 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6113 {
6114         unsigned long current_rip = kvm_rip_read(vcpu) +
6115                 get_segment_base(vcpu, VCPU_SREG_CS);
6116
6117         return current_rip == linear_rip;
6118 }
6119 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6120
6121 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6122 {
6123         unsigned long rflags;
6124
6125         rflags = kvm_x86_ops->get_rflags(vcpu);
6126         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6127                 rflags &= ~X86_EFLAGS_TF;
6128         return rflags;
6129 }
6130 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6131
6132 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6133 {
6134         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6135             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6136                 rflags |= X86_EFLAGS_TF;
6137         kvm_x86_ops->set_rflags(vcpu, rflags);
6138         kvm_make_request(KVM_REQ_EVENT, vcpu);
6139 }
6140 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6141
6142 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6143 {
6144         int r;
6145
6146         if (!vcpu->arch.mmu.direct_map || is_error_page(work->page))
6147                 return;
6148
6149         r = kvm_mmu_reload(vcpu);
6150         if (unlikely(r))
6151                 return;
6152
6153         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6154 }
6155
6156 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6157 {
6158         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6159 }
6160
6161 static inline u32 kvm_async_pf_next_probe(u32 key)
6162 {
6163         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6164 }
6165
6166 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6167 {
6168         u32 key = kvm_async_pf_hash_fn(gfn);
6169
6170         while (vcpu->arch.apf.gfns[key] != ~0)
6171                 key = kvm_async_pf_next_probe(key);
6172
6173         vcpu->arch.apf.gfns[key] = gfn;
6174 }
6175
6176 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6177 {
6178         int i;
6179         u32 key = kvm_async_pf_hash_fn(gfn);
6180
6181         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6182                      (vcpu->arch.apf.gfns[key] != gfn ||
6183                       vcpu->arch.apf.gfns[key] == ~0); i++)
6184                 key = kvm_async_pf_next_probe(key);
6185
6186         return key;
6187 }
6188
6189 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6190 {
6191         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6192 }
6193
6194 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6195 {
6196         u32 i, j, k;
6197
6198         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6199         while (true) {
6200                 vcpu->arch.apf.gfns[i] = ~0;
6201                 do {
6202                         j = kvm_async_pf_next_probe(j);
6203                         if (vcpu->arch.apf.gfns[j] == ~0)
6204                                 return;
6205                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6206                         /*
6207                          * k lies cyclically in ]i,j]
6208                          * |    i.k.j |
6209                          * |....j i.k.| or  |.k..j i...|
6210                          */
6211                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6212                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6213                 i = j;
6214         }
6215 }
6216
6217 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6218                                      struct kvm_async_pf *work)
6219 {
6220         trace_kvm_async_pf_not_present(work->gva);
6221
6222         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6223         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6224 }
6225
6226 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6227                                  struct kvm_async_pf *work)
6228 {
6229         trace_kvm_async_pf_ready(work->gva);
6230         kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6231 }
6232
6233 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6234 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6235 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6236 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6237 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6238 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6239 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6240 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);