KVM: split kvm_arch_set_memory_region into prepare and commit
[linux-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <trace/events/kvm.h>
42 #undef TRACE_INCLUDE_FILE
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 #include <asm/debugreg.h>
47 #include <asm/uaccess.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <asm/mtrr.h>
51 #include <asm/mce.h>
52
53 #define MAX_IO_MSRS 256
54 #define CR0_RESERVED_BITS                                               \
55         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
56                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
57                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
58 #define CR4_RESERVED_BITS                                               \
59         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
60                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
61                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
62                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
63
64 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
65
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68
69 /* EFER defaults:
70  * - enable syscall per default because its emulated by KVM
71  * - enable LME and LMA per default on 64 bit KVM
72  */
73 #ifdef CONFIG_X86_64
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
75 #else
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
77 #endif
78
79 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
80 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
81
82 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
83 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
84                                     struct kvm_cpuid_entry2 __user *entries);
85
86 struct kvm_x86_ops *kvm_x86_ops;
87 EXPORT_SYMBOL_GPL(kvm_x86_ops);
88
89 int ignore_msrs = 0;
90 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
91
92 #define KVM_NR_SHARED_MSRS 16
93
94 struct kvm_shared_msrs_global {
95         int nr;
96         u32 msrs[KVM_NR_SHARED_MSRS];
97 };
98
99 struct kvm_shared_msrs {
100         struct user_return_notifier urn;
101         bool registered;
102         struct kvm_shared_msr_values {
103                 u64 host;
104                 u64 curr;
105         } values[KVM_NR_SHARED_MSRS];
106 };
107
108 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
109 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
110
111 struct kvm_stats_debugfs_item debugfs_entries[] = {
112         { "pf_fixed", VCPU_STAT(pf_fixed) },
113         { "pf_guest", VCPU_STAT(pf_guest) },
114         { "tlb_flush", VCPU_STAT(tlb_flush) },
115         { "invlpg", VCPU_STAT(invlpg) },
116         { "exits", VCPU_STAT(exits) },
117         { "io_exits", VCPU_STAT(io_exits) },
118         { "mmio_exits", VCPU_STAT(mmio_exits) },
119         { "signal_exits", VCPU_STAT(signal_exits) },
120         { "irq_window", VCPU_STAT(irq_window_exits) },
121         { "nmi_window", VCPU_STAT(nmi_window_exits) },
122         { "halt_exits", VCPU_STAT(halt_exits) },
123         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
124         { "hypercalls", VCPU_STAT(hypercalls) },
125         { "request_irq", VCPU_STAT(request_irq_exits) },
126         { "irq_exits", VCPU_STAT(irq_exits) },
127         { "host_state_reload", VCPU_STAT(host_state_reload) },
128         { "efer_reload", VCPU_STAT(efer_reload) },
129         { "fpu_reload", VCPU_STAT(fpu_reload) },
130         { "insn_emulation", VCPU_STAT(insn_emulation) },
131         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
132         { "irq_injections", VCPU_STAT(irq_injections) },
133         { "nmi_injections", VCPU_STAT(nmi_injections) },
134         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
135         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
136         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
137         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
138         { "mmu_flooded", VM_STAT(mmu_flooded) },
139         { "mmu_recycled", VM_STAT(mmu_recycled) },
140         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
141         { "mmu_unsync", VM_STAT(mmu_unsync) },
142         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
143         { "largepages", VM_STAT(lpages) },
144         { NULL }
145 };
146
147 static void kvm_on_user_return(struct user_return_notifier *urn)
148 {
149         unsigned slot;
150         struct kvm_shared_msrs *locals
151                 = container_of(urn, struct kvm_shared_msrs, urn);
152         struct kvm_shared_msr_values *values;
153
154         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
155                 values = &locals->values[slot];
156                 if (values->host != values->curr) {
157                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
158                         values->curr = values->host;
159                 }
160         }
161         locals->registered = false;
162         user_return_notifier_unregister(urn);
163 }
164
165 static void shared_msr_update(unsigned slot, u32 msr)
166 {
167         struct kvm_shared_msrs *smsr;
168         u64 value;
169
170         smsr = &__get_cpu_var(shared_msrs);
171         /* only read, and nobody should modify it at this time,
172          * so don't need lock */
173         if (slot >= shared_msrs_global.nr) {
174                 printk(KERN_ERR "kvm: invalid MSR slot!");
175                 return;
176         }
177         rdmsrl_safe(msr, &value);
178         smsr->values[slot].host = value;
179         smsr->values[slot].curr = value;
180 }
181
182 void kvm_define_shared_msr(unsigned slot, u32 msr)
183 {
184         if (slot >= shared_msrs_global.nr)
185                 shared_msrs_global.nr = slot + 1;
186         shared_msrs_global.msrs[slot] = msr;
187         /* we need ensured the shared_msr_global have been updated */
188         smp_wmb();
189 }
190 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
191
192 static void kvm_shared_msr_cpu_online(void)
193 {
194         unsigned i;
195
196         for (i = 0; i < shared_msrs_global.nr; ++i)
197                 shared_msr_update(i, shared_msrs_global.msrs[i]);
198 }
199
200 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
201 {
202         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
203
204         if (((value ^ smsr->values[slot].curr) & mask) == 0)
205                 return;
206         smsr->values[slot].curr = value;
207         wrmsrl(shared_msrs_global.msrs[slot], value);
208         if (!smsr->registered) {
209                 smsr->urn.on_user_return = kvm_on_user_return;
210                 user_return_notifier_register(&smsr->urn);
211                 smsr->registered = true;
212         }
213 }
214 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
215
216 static void drop_user_return_notifiers(void *ignore)
217 {
218         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
219
220         if (smsr->registered)
221                 kvm_on_user_return(&smsr->urn);
222 }
223
224 unsigned long segment_base(u16 selector)
225 {
226         struct descriptor_table gdt;
227         struct desc_struct *d;
228         unsigned long table_base;
229         unsigned long v;
230
231         if (selector == 0)
232                 return 0;
233
234         kvm_get_gdt(&gdt);
235         table_base = gdt.base;
236
237         if (selector & 4) {           /* from ldt */
238                 u16 ldt_selector = kvm_read_ldt();
239
240                 table_base = segment_base(ldt_selector);
241         }
242         d = (struct desc_struct *)(table_base + (selector & ~7));
243         v = get_desc_base(d);
244 #ifdef CONFIG_X86_64
245         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
246                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
247 #endif
248         return v;
249 }
250 EXPORT_SYMBOL_GPL(segment_base);
251
252 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
253 {
254         if (irqchip_in_kernel(vcpu->kvm))
255                 return vcpu->arch.apic_base;
256         else
257                 return vcpu->arch.apic_base;
258 }
259 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
260
261 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
262 {
263         /* TODO: reserve bits check */
264         if (irqchip_in_kernel(vcpu->kvm))
265                 kvm_lapic_set_base(vcpu, data);
266         else
267                 vcpu->arch.apic_base = data;
268 }
269 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code)
294 {
295         u32 prev_nr;
296         int class1, class2;
297
298         if (!vcpu->arch.exception.pending) {
299         queue:
300                 vcpu->arch.exception.pending = true;
301                 vcpu->arch.exception.has_error_code = has_error;
302                 vcpu->arch.exception.nr = nr;
303                 vcpu->arch.exception.error_code = error_code;
304                 return;
305         }
306
307         /* to check exception */
308         prev_nr = vcpu->arch.exception.nr;
309         if (prev_nr == DF_VECTOR) {
310                 /* triple fault -> shutdown */
311                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
312                 return;
313         }
314         class1 = exception_class(prev_nr);
315         class2 = exception_class(nr);
316         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
317                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
318                 /* generate double fault per SDM Table 5-5 */
319                 vcpu->arch.exception.pending = true;
320                 vcpu->arch.exception.has_error_code = true;
321                 vcpu->arch.exception.nr = DF_VECTOR;
322                 vcpu->arch.exception.error_code = 0;
323         } else
324                 /* replace previous exception with a new one in a hope
325                    that instruction re-execution will regenerate lost
326                    exception */
327                 goto queue;
328 }
329
330 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 {
332         kvm_multiple_exception(vcpu, nr, false, 0);
333 }
334 EXPORT_SYMBOL_GPL(kvm_queue_exception);
335
336 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
337                            u32 error_code)
338 {
339         ++vcpu->stat.pf_guest;
340         vcpu->arch.cr2 = addr;
341         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
342 }
343
344 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
345 {
346         vcpu->arch.nmi_pending = 1;
347 }
348 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
349
350 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
351 {
352         kvm_multiple_exception(vcpu, nr, true, error_code);
353 }
354 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
355
356 /*
357  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
358  * a #GP and return false.
359  */
360 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
361 {
362         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
363                 return true;
364         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
365         return false;
366 }
367 EXPORT_SYMBOL_GPL(kvm_require_cpl);
368
369 /*
370  * Load the pae pdptrs.  Return true is they are all valid.
371  */
372 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
375         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
376         int i;
377         int ret;
378         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
379
380         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
381                                   offset * sizeof(u64), sizeof(pdpte));
382         if (ret < 0) {
383                 ret = 0;
384                 goto out;
385         }
386         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
387                 if (is_present_gpte(pdpte[i]) &&
388                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
389                         ret = 0;
390                         goto out;
391                 }
392         }
393         ret = 1;
394
395         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
396         __set_bit(VCPU_EXREG_PDPTR,
397                   (unsigned long *)&vcpu->arch.regs_avail);
398         __set_bit(VCPU_EXREG_PDPTR,
399                   (unsigned long *)&vcpu->arch.regs_dirty);
400 out:
401
402         return ret;
403 }
404 EXPORT_SYMBOL_GPL(load_pdptrs);
405
406 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
407 {
408         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
409         bool changed = true;
410         int r;
411
412         if (is_long_mode(vcpu) || !is_pae(vcpu))
413                 return false;
414
415         if (!test_bit(VCPU_EXREG_PDPTR,
416                       (unsigned long *)&vcpu->arch.regs_avail))
417                 return true;
418
419         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
420         if (r < 0)
421                 goto out;
422         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
423 out:
424
425         return changed;
426 }
427
428 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
429 {
430         if (cr0 & CR0_RESERVED_BITS) {
431                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
432                        cr0, vcpu->arch.cr0);
433                 kvm_inject_gp(vcpu, 0);
434                 return;
435         }
436
437         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
438                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
439                 kvm_inject_gp(vcpu, 0);
440                 return;
441         }
442
443         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
444                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
445                        "and a clear PE flag\n");
446                 kvm_inject_gp(vcpu, 0);
447                 return;
448         }
449
450         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
451 #ifdef CONFIG_X86_64
452                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
453                         int cs_db, cs_l;
454
455                         if (!is_pae(vcpu)) {
456                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
457                                        "in long mode while PAE is disabled\n");
458                                 kvm_inject_gp(vcpu, 0);
459                                 return;
460                         }
461                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
462                         if (cs_l) {
463                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464                                        "in long mode while CS.L == 1\n");
465                                 kvm_inject_gp(vcpu, 0);
466                                 return;
467
468                         }
469                 } else
470 #endif
471                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
472                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
473                                "reserved bits\n");
474                         kvm_inject_gp(vcpu, 0);
475                         return;
476                 }
477
478         }
479
480         kvm_x86_ops->set_cr0(vcpu, cr0);
481         vcpu->arch.cr0 = cr0;
482
483         kvm_mmu_reset_context(vcpu);
484         return;
485 }
486 EXPORT_SYMBOL_GPL(kvm_set_cr0);
487
488 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
489 {
490         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
491 }
492 EXPORT_SYMBOL_GPL(kvm_lmsw);
493
494 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
495 {
496         unsigned long old_cr4 = kvm_read_cr4(vcpu);
497         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
498
499         if (cr4 & CR4_RESERVED_BITS) {
500                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
501                 kvm_inject_gp(vcpu, 0);
502                 return;
503         }
504
505         if (is_long_mode(vcpu)) {
506                 if (!(cr4 & X86_CR4_PAE)) {
507                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
508                                "in long mode\n");
509                         kvm_inject_gp(vcpu, 0);
510                         return;
511                 }
512         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
513                    && ((cr4 ^ old_cr4) & pdptr_bits)
514                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
515                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
516                 kvm_inject_gp(vcpu, 0);
517                 return;
518         }
519
520         if (cr4 & X86_CR4_VMXE) {
521                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
522                 kvm_inject_gp(vcpu, 0);
523                 return;
524         }
525         kvm_x86_ops->set_cr4(vcpu, cr4);
526         vcpu->arch.cr4 = cr4;
527         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
528         kvm_mmu_reset_context(vcpu);
529 }
530 EXPORT_SYMBOL_GPL(kvm_set_cr4);
531
532 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
533 {
534         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
535                 kvm_mmu_sync_roots(vcpu);
536                 kvm_mmu_flush_tlb(vcpu);
537                 return;
538         }
539
540         if (is_long_mode(vcpu)) {
541                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
542                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
543                         kvm_inject_gp(vcpu, 0);
544                         return;
545                 }
546         } else {
547                 if (is_pae(vcpu)) {
548                         if (cr3 & CR3_PAE_RESERVED_BITS) {
549                                 printk(KERN_DEBUG
550                                        "set_cr3: #GP, reserved bits\n");
551                                 kvm_inject_gp(vcpu, 0);
552                                 return;
553                         }
554                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
555                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
556                                        "reserved bits\n");
557                                 kvm_inject_gp(vcpu, 0);
558                                 return;
559                         }
560                 }
561                 /*
562                  * We don't check reserved bits in nonpae mode, because
563                  * this isn't enforced, and VMware depends on this.
564                  */
565         }
566
567         /*
568          * Does the new cr3 value map to physical memory? (Note, we
569          * catch an invalid cr3 even in real-mode, because it would
570          * cause trouble later on when we turn on paging anyway.)
571          *
572          * A real CPU would silently accept an invalid cr3 and would
573          * attempt to use it - with largely undefined (and often hard
574          * to debug) behavior on the guest side.
575          */
576         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
577                 kvm_inject_gp(vcpu, 0);
578         else {
579                 vcpu->arch.cr3 = cr3;
580                 vcpu->arch.mmu.new_cr3(vcpu);
581         }
582 }
583 EXPORT_SYMBOL_GPL(kvm_set_cr3);
584
585 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
586 {
587         if (cr8 & CR8_RESERVED_BITS) {
588                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
589                 kvm_inject_gp(vcpu, 0);
590                 return;
591         }
592         if (irqchip_in_kernel(vcpu->kvm))
593                 kvm_lapic_set_tpr(vcpu, cr8);
594         else
595                 vcpu->arch.cr8 = cr8;
596 }
597 EXPORT_SYMBOL_GPL(kvm_set_cr8);
598
599 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
600 {
601         if (irqchip_in_kernel(vcpu->kvm))
602                 return kvm_lapic_get_cr8(vcpu);
603         else
604                 return vcpu->arch.cr8;
605 }
606 EXPORT_SYMBOL_GPL(kvm_get_cr8);
607
608 static inline u32 bit(int bitno)
609 {
610         return 1 << (bitno & 31);
611 }
612
613 /*
614  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
615  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
616  *
617  * This list is modified at module load time to reflect the
618  * capabilities of the host cpu. This capabilities test skips MSRs that are
619  * kvm-specific. Those are put in the beginning of the list.
620  */
621
622 #define KVM_SAVE_MSRS_BEGIN     2
623 static u32 msrs_to_save[] = {
624         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
625         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
626         MSR_K6_STAR,
627 #ifdef CONFIG_X86_64
628         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
629 #endif
630         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
631 };
632
633 static unsigned num_msrs_to_save;
634
635 static u32 emulated_msrs[] = {
636         MSR_IA32_MISC_ENABLE,
637 };
638
639 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
640 {
641         if (efer & efer_reserved_bits) {
642                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
643                        efer);
644                 kvm_inject_gp(vcpu, 0);
645                 return;
646         }
647
648         if (is_paging(vcpu)
649             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
650                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
651                 kvm_inject_gp(vcpu, 0);
652                 return;
653         }
654
655         if (efer & EFER_FFXSR) {
656                 struct kvm_cpuid_entry2 *feat;
657
658                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
659                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
660                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
661                         kvm_inject_gp(vcpu, 0);
662                         return;
663                 }
664         }
665
666         if (efer & EFER_SVME) {
667                 struct kvm_cpuid_entry2 *feat;
668
669                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
670                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
671                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
672                         kvm_inject_gp(vcpu, 0);
673                         return;
674                 }
675         }
676
677         kvm_x86_ops->set_efer(vcpu, efer);
678
679         efer &= ~EFER_LMA;
680         efer |= vcpu->arch.shadow_efer & EFER_LMA;
681
682         vcpu->arch.shadow_efer = efer;
683
684         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
685         kvm_mmu_reset_context(vcpu);
686 }
687
688 void kvm_enable_efer_bits(u64 mask)
689 {
690        efer_reserved_bits &= ~mask;
691 }
692 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
693
694
695 /*
696  * Writes msr value into into the appropriate "register".
697  * Returns 0 on success, non-0 otherwise.
698  * Assumes vcpu_load() was already called.
699  */
700 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
701 {
702         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
703 }
704
705 /*
706  * Adapt set_msr() to msr_io()'s calling convention
707  */
708 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
709 {
710         return kvm_set_msr(vcpu, index, *data);
711 }
712
713 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
714 {
715         static int version;
716         struct pvclock_wall_clock wc;
717         struct timespec boot;
718
719         if (!wall_clock)
720                 return;
721
722         version++;
723
724         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
725
726         /*
727          * The guest calculates current wall clock time by adding
728          * system time (updated by kvm_write_guest_time below) to the
729          * wall clock specified here.  guest system time equals host
730          * system time for us, thus we must fill in host boot time here.
731          */
732         getboottime(&boot);
733
734         wc.sec = boot.tv_sec;
735         wc.nsec = boot.tv_nsec;
736         wc.version = version;
737
738         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
739
740         version++;
741         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
742 }
743
744 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
745 {
746         uint32_t quotient, remainder;
747
748         /* Don't try to replace with do_div(), this one calculates
749          * "(dividend << 32) / divisor" */
750         __asm__ ( "divl %4"
751                   : "=a" (quotient), "=d" (remainder)
752                   : "0" (0), "1" (dividend), "r" (divisor) );
753         return quotient;
754 }
755
756 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
757 {
758         uint64_t nsecs = 1000000000LL;
759         int32_t  shift = 0;
760         uint64_t tps64;
761         uint32_t tps32;
762
763         tps64 = tsc_khz * 1000LL;
764         while (tps64 > nsecs*2) {
765                 tps64 >>= 1;
766                 shift--;
767         }
768
769         tps32 = (uint32_t)tps64;
770         while (tps32 <= (uint32_t)nsecs) {
771                 tps32 <<= 1;
772                 shift++;
773         }
774
775         hv_clock->tsc_shift = shift;
776         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
777
778         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
779                  __func__, tsc_khz, hv_clock->tsc_shift,
780                  hv_clock->tsc_to_system_mul);
781 }
782
783 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
784
785 static void kvm_write_guest_time(struct kvm_vcpu *v)
786 {
787         struct timespec ts;
788         unsigned long flags;
789         struct kvm_vcpu_arch *vcpu = &v->arch;
790         void *shared_kaddr;
791         unsigned long this_tsc_khz;
792
793         if ((!vcpu->time_page))
794                 return;
795
796         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
797         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
798                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
799                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
800         }
801         put_cpu_var(cpu_tsc_khz);
802
803         /* Keep irq disabled to prevent changes to the clock */
804         local_irq_save(flags);
805         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
806         ktime_get_ts(&ts);
807         monotonic_to_bootbased(&ts);
808         local_irq_restore(flags);
809
810         /* With all the info we got, fill in the values */
811
812         vcpu->hv_clock.system_time = ts.tv_nsec +
813                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
814
815         /*
816          * The interface expects us to write an even number signaling that the
817          * update is finished. Since the guest won't see the intermediate
818          * state, we just increase by 2 at the end.
819          */
820         vcpu->hv_clock.version += 2;
821
822         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
823
824         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
825                sizeof(vcpu->hv_clock));
826
827         kunmap_atomic(shared_kaddr, KM_USER0);
828
829         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
830 }
831
832 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
833 {
834         struct kvm_vcpu_arch *vcpu = &v->arch;
835
836         if (!vcpu->time_page)
837                 return 0;
838         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
839         return 1;
840 }
841
842 static bool msr_mtrr_valid(unsigned msr)
843 {
844         switch (msr) {
845         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
846         case MSR_MTRRfix64K_00000:
847         case MSR_MTRRfix16K_80000:
848         case MSR_MTRRfix16K_A0000:
849         case MSR_MTRRfix4K_C0000:
850         case MSR_MTRRfix4K_C8000:
851         case MSR_MTRRfix4K_D0000:
852         case MSR_MTRRfix4K_D8000:
853         case MSR_MTRRfix4K_E0000:
854         case MSR_MTRRfix4K_E8000:
855         case MSR_MTRRfix4K_F0000:
856         case MSR_MTRRfix4K_F8000:
857         case MSR_MTRRdefType:
858         case MSR_IA32_CR_PAT:
859                 return true;
860         case 0x2f8:
861                 return true;
862         }
863         return false;
864 }
865
866 static bool valid_pat_type(unsigned t)
867 {
868         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
869 }
870
871 static bool valid_mtrr_type(unsigned t)
872 {
873         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
874 }
875
876 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
877 {
878         int i;
879
880         if (!msr_mtrr_valid(msr))
881                 return false;
882
883         if (msr == MSR_IA32_CR_PAT) {
884                 for (i = 0; i < 8; i++)
885                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
886                                 return false;
887                 return true;
888         } else if (msr == MSR_MTRRdefType) {
889                 if (data & ~0xcff)
890                         return false;
891                 return valid_mtrr_type(data & 0xff);
892         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
893                 for (i = 0; i < 8 ; i++)
894                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
895                                 return false;
896                 return true;
897         }
898
899         /* variable MTRRs */
900         return valid_mtrr_type(data & 0xff);
901 }
902
903 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
904 {
905         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
906
907         if (!mtrr_valid(vcpu, msr, data))
908                 return 1;
909
910         if (msr == MSR_MTRRdefType) {
911                 vcpu->arch.mtrr_state.def_type = data;
912                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
913         } else if (msr == MSR_MTRRfix64K_00000)
914                 p[0] = data;
915         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
916                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
917         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
918                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
919         else if (msr == MSR_IA32_CR_PAT)
920                 vcpu->arch.pat = data;
921         else {  /* Variable MTRRs */
922                 int idx, is_mtrr_mask;
923                 u64 *pt;
924
925                 idx = (msr - 0x200) / 2;
926                 is_mtrr_mask = msr - 0x200 - 2 * idx;
927                 if (!is_mtrr_mask)
928                         pt =
929                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
930                 else
931                         pt =
932                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
933                 *pt = data;
934         }
935
936         kvm_mmu_reset_context(vcpu);
937         return 0;
938 }
939
940 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
941 {
942         u64 mcg_cap = vcpu->arch.mcg_cap;
943         unsigned bank_num = mcg_cap & 0xff;
944
945         switch (msr) {
946         case MSR_IA32_MCG_STATUS:
947                 vcpu->arch.mcg_status = data;
948                 break;
949         case MSR_IA32_MCG_CTL:
950                 if (!(mcg_cap & MCG_CTL_P))
951                         return 1;
952                 if (data != 0 && data != ~(u64)0)
953                         return -1;
954                 vcpu->arch.mcg_ctl = data;
955                 break;
956         default:
957                 if (msr >= MSR_IA32_MC0_CTL &&
958                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
959                         u32 offset = msr - MSR_IA32_MC0_CTL;
960                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
961                         if ((offset & 0x3) == 0 &&
962                             data != 0 && data != ~(u64)0)
963                                 return -1;
964                         vcpu->arch.mce_banks[offset] = data;
965                         break;
966                 }
967                 return 1;
968         }
969         return 0;
970 }
971
972 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
973 {
974         struct kvm *kvm = vcpu->kvm;
975         int lm = is_long_mode(vcpu);
976         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
977                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
978         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
979                 : kvm->arch.xen_hvm_config.blob_size_32;
980         u32 page_num = data & ~PAGE_MASK;
981         u64 page_addr = data & PAGE_MASK;
982         u8 *page;
983         int r;
984
985         r = -E2BIG;
986         if (page_num >= blob_size)
987                 goto out;
988         r = -ENOMEM;
989         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
990         if (!page)
991                 goto out;
992         r = -EFAULT;
993         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
994                 goto out_free;
995         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
996                 goto out_free;
997         r = 0;
998 out_free:
999         kfree(page);
1000 out:
1001         return r;
1002 }
1003
1004 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1005 {
1006         switch (msr) {
1007         case MSR_EFER:
1008                 set_efer(vcpu, data);
1009                 break;
1010         case MSR_K7_HWCR:
1011                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1012                 if (data != 0) {
1013                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1014                                 data);
1015                         return 1;
1016                 }
1017                 break;
1018         case MSR_FAM10H_MMIO_CONF_BASE:
1019                 if (data != 0) {
1020                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1021                                 "0x%llx\n", data);
1022                         return 1;
1023                 }
1024                 break;
1025         case MSR_AMD64_NB_CFG:
1026                 break;
1027         case MSR_IA32_DEBUGCTLMSR:
1028                 if (!data) {
1029                         /* We support the non-activated case already */
1030                         break;
1031                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1032                         /* Values other than LBR and BTF are vendor-specific,
1033                            thus reserved and should throw a #GP */
1034                         return 1;
1035                 }
1036                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1037                         __func__, data);
1038                 break;
1039         case MSR_IA32_UCODE_REV:
1040         case MSR_IA32_UCODE_WRITE:
1041         case MSR_VM_HSAVE_PA:
1042         case MSR_AMD64_PATCH_LOADER:
1043                 break;
1044         case 0x200 ... 0x2ff:
1045                 return set_msr_mtrr(vcpu, msr, data);
1046         case MSR_IA32_APICBASE:
1047                 kvm_set_apic_base(vcpu, data);
1048                 break;
1049         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1050                 return kvm_x2apic_msr_write(vcpu, msr, data);
1051         case MSR_IA32_MISC_ENABLE:
1052                 vcpu->arch.ia32_misc_enable_msr = data;
1053                 break;
1054         case MSR_KVM_WALL_CLOCK:
1055                 vcpu->kvm->arch.wall_clock = data;
1056                 kvm_write_wall_clock(vcpu->kvm, data);
1057                 break;
1058         case MSR_KVM_SYSTEM_TIME: {
1059                 if (vcpu->arch.time_page) {
1060                         kvm_release_page_dirty(vcpu->arch.time_page);
1061                         vcpu->arch.time_page = NULL;
1062                 }
1063
1064                 vcpu->arch.time = data;
1065
1066                 /* we verify if the enable bit is set... */
1067                 if (!(data & 1))
1068                         break;
1069
1070                 /* ...but clean it before doing the actual write */
1071                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1072
1073                 vcpu->arch.time_page =
1074                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1075
1076                 if (is_error_page(vcpu->arch.time_page)) {
1077                         kvm_release_page_clean(vcpu->arch.time_page);
1078                         vcpu->arch.time_page = NULL;
1079                 }
1080
1081                 kvm_request_guest_time_update(vcpu);
1082                 break;
1083         }
1084         case MSR_IA32_MCG_CTL:
1085         case MSR_IA32_MCG_STATUS:
1086         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1087                 return set_msr_mce(vcpu, msr, data);
1088
1089         /* Performance counters are not protected by a CPUID bit,
1090          * so we should check all of them in the generic path for the sake of
1091          * cross vendor migration.
1092          * Writing a zero into the event select MSRs disables them,
1093          * which we perfectly emulate ;-). Any other value should be at least
1094          * reported, some guests depend on them.
1095          */
1096         case MSR_P6_EVNTSEL0:
1097         case MSR_P6_EVNTSEL1:
1098         case MSR_K7_EVNTSEL0:
1099         case MSR_K7_EVNTSEL1:
1100         case MSR_K7_EVNTSEL2:
1101         case MSR_K7_EVNTSEL3:
1102                 if (data != 0)
1103                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1104                                 "0x%x data 0x%llx\n", msr, data);
1105                 break;
1106         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1107          * so we ignore writes to make it happy.
1108          */
1109         case MSR_P6_PERFCTR0:
1110         case MSR_P6_PERFCTR1:
1111         case MSR_K7_PERFCTR0:
1112         case MSR_K7_PERFCTR1:
1113         case MSR_K7_PERFCTR2:
1114         case MSR_K7_PERFCTR3:
1115                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1116                         "0x%x data 0x%llx\n", msr, data);
1117                 break;
1118         default:
1119                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1120                         return xen_hvm_config(vcpu, data);
1121                 if (!ignore_msrs) {
1122                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1123                                 msr, data);
1124                         return 1;
1125                 } else {
1126                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1127                                 msr, data);
1128                         break;
1129                 }
1130         }
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1134
1135
1136 /*
1137  * Reads an msr value (of 'msr_index') into 'pdata'.
1138  * Returns 0 on success, non-0 otherwise.
1139  * Assumes vcpu_load() was already called.
1140  */
1141 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1142 {
1143         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1144 }
1145
1146 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1147 {
1148         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1149
1150         if (!msr_mtrr_valid(msr))
1151                 return 1;
1152
1153         if (msr == MSR_MTRRdefType)
1154                 *pdata = vcpu->arch.mtrr_state.def_type +
1155                          (vcpu->arch.mtrr_state.enabled << 10);
1156         else if (msr == MSR_MTRRfix64K_00000)
1157                 *pdata = p[0];
1158         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1159                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1160         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1161                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1162         else if (msr == MSR_IA32_CR_PAT)
1163                 *pdata = vcpu->arch.pat;
1164         else {  /* Variable MTRRs */
1165                 int idx, is_mtrr_mask;
1166                 u64 *pt;
1167
1168                 idx = (msr - 0x200) / 2;
1169                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1170                 if (!is_mtrr_mask)
1171                         pt =
1172                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1173                 else
1174                         pt =
1175                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1176                 *pdata = *pt;
1177         }
1178
1179         return 0;
1180 }
1181
1182 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1183 {
1184         u64 data;
1185         u64 mcg_cap = vcpu->arch.mcg_cap;
1186         unsigned bank_num = mcg_cap & 0xff;
1187
1188         switch (msr) {
1189         case MSR_IA32_P5_MC_ADDR:
1190         case MSR_IA32_P5_MC_TYPE:
1191                 data = 0;
1192                 break;
1193         case MSR_IA32_MCG_CAP:
1194                 data = vcpu->arch.mcg_cap;
1195                 break;
1196         case MSR_IA32_MCG_CTL:
1197                 if (!(mcg_cap & MCG_CTL_P))
1198                         return 1;
1199                 data = vcpu->arch.mcg_ctl;
1200                 break;
1201         case MSR_IA32_MCG_STATUS:
1202                 data = vcpu->arch.mcg_status;
1203                 break;
1204         default:
1205                 if (msr >= MSR_IA32_MC0_CTL &&
1206                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1207                         u32 offset = msr - MSR_IA32_MC0_CTL;
1208                         data = vcpu->arch.mce_banks[offset];
1209                         break;
1210                 }
1211                 return 1;
1212         }
1213         *pdata = data;
1214         return 0;
1215 }
1216
1217 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1218 {
1219         u64 data;
1220
1221         switch (msr) {
1222         case MSR_IA32_PLATFORM_ID:
1223         case MSR_IA32_UCODE_REV:
1224         case MSR_IA32_EBL_CR_POWERON:
1225         case MSR_IA32_DEBUGCTLMSR:
1226         case MSR_IA32_LASTBRANCHFROMIP:
1227         case MSR_IA32_LASTBRANCHTOIP:
1228         case MSR_IA32_LASTINTFROMIP:
1229         case MSR_IA32_LASTINTTOIP:
1230         case MSR_K8_SYSCFG:
1231         case MSR_K7_HWCR:
1232         case MSR_VM_HSAVE_PA:
1233         case MSR_P6_PERFCTR0:
1234         case MSR_P6_PERFCTR1:
1235         case MSR_P6_EVNTSEL0:
1236         case MSR_P6_EVNTSEL1:
1237         case MSR_K7_EVNTSEL0:
1238         case MSR_K7_PERFCTR0:
1239         case MSR_K8_INT_PENDING_MSG:
1240         case MSR_AMD64_NB_CFG:
1241         case MSR_FAM10H_MMIO_CONF_BASE:
1242                 data = 0;
1243                 break;
1244         case MSR_MTRRcap:
1245                 data = 0x500 | KVM_NR_VAR_MTRR;
1246                 break;
1247         case 0x200 ... 0x2ff:
1248                 return get_msr_mtrr(vcpu, msr, pdata);
1249         case 0xcd: /* fsb frequency */
1250                 data = 3;
1251                 break;
1252         case MSR_IA32_APICBASE:
1253                 data = kvm_get_apic_base(vcpu);
1254                 break;
1255         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1256                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1257                 break;
1258         case MSR_IA32_MISC_ENABLE:
1259                 data = vcpu->arch.ia32_misc_enable_msr;
1260                 break;
1261         case MSR_IA32_PERF_STATUS:
1262                 /* TSC increment by tick */
1263                 data = 1000ULL;
1264                 /* CPU multiplier */
1265                 data |= (((uint64_t)4ULL) << 40);
1266                 break;
1267         case MSR_EFER:
1268                 data = vcpu->arch.shadow_efer;
1269                 break;
1270         case MSR_KVM_WALL_CLOCK:
1271                 data = vcpu->kvm->arch.wall_clock;
1272                 break;
1273         case MSR_KVM_SYSTEM_TIME:
1274                 data = vcpu->arch.time;
1275                 break;
1276         case MSR_IA32_P5_MC_ADDR:
1277         case MSR_IA32_P5_MC_TYPE:
1278         case MSR_IA32_MCG_CAP:
1279         case MSR_IA32_MCG_CTL:
1280         case MSR_IA32_MCG_STATUS:
1281         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1282                 return get_msr_mce(vcpu, msr, pdata);
1283         default:
1284                 if (!ignore_msrs) {
1285                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1286                         return 1;
1287                 } else {
1288                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1289                         data = 0;
1290                 }
1291                 break;
1292         }
1293         *pdata = data;
1294         return 0;
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1297
1298 /*
1299  * Read or write a bunch of msrs. All parameters are kernel addresses.
1300  *
1301  * @return number of msrs set successfully.
1302  */
1303 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1304                     struct kvm_msr_entry *entries,
1305                     int (*do_msr)(struct kvm_vcpu *vcpu,
1306                                   unsigned index, u64 *data))
1307 {
1308         int i;
1309
1310         vcpu_load(vcpu);
1311
1312         down_read(&vcpu->kvm->slots_lock);
1313         for (i = 0; i < msrs->nmsrs; ++i)
1314                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1315                         break;
1316         up_read(&vcpu->kvm->slots_lock);
1317
1318         vcpu_put(vcpu);
1319
1320         return i;
1321 }
1322
1323 /*
1324  * Read or write a bunch of msrs. Parameters are user addresses.
1325  *
1326  * @return number of msrs set successfully.
1327  */
1328 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1329                   int (*do_msr)(struct kvm_vcpu *vcpu,
1330                                 unsigned index, u64 *data),
1331                   int writeback)
1332 {
1333         struct kvm_msrs msrs;
1334         struct kvm_msr_entry *entries;
1335         int r, n;
1336         unsigned size;
1337
1338         r = -EFAULT;
1339         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1340                 goto out;
1341
1342         r = -E2BIG;
1343         if (msrs.nmsrs >= MAX_IO_MSRS)
1344                 goto out;
1345
1346         r = -ENOMEM;
1347         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1348         entries = vmalloc(size);
1349         if (!entries)
1350                 goto out;
1351
1352         r = -EFAULT;
1353         if (copy_from_user(entries, user_msrs->entries, size))
1354                 goto out_free;
1355
1356         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1357         if (r < 0)
1358                 goto out_free;
1359
1360         r = -EFAULT;
1361         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1362                 goto out_free;
1363
1364         r = n;
1365
1366 out_free:
1367         vfree(entries);
1368 out:
1369         return r;
1370 }
1371
1372 int kvm_dev_ioctl_check_extension(long ext)
1373 {
1374         int r;
1375
1376         switch (ext) {
1377         case KVM_CAP_IRQCHIP:
1378         case KVM_CAP_HLT:
1379         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1380         case KVM_CAP_SET_TSS_ADDR:
1381         case KVM_CAP_EXT_CPUID:
1382         case KVM_CAP_CLOCKSOURCE:
1383         case KVM_CAP_PIT:
1384         case KVM_CAP_NOP_IO_DELAY:
1385         case KVM_CAP_MP_STATE:
1386         case KVM_CAP_SYNC_MMU:
1387         case KVM_CAP_REINJECT_CONTROL:
1388         case KVM_CAP_IRQ_INJECT_STATUS:
1389         case KVM_CAP_ASSIGN_DEV_IRQ:
1390         case KVM_CAP_IRQFD:
1391         case KVM_CAP_IOEVENTFD:
1392         case KVM_CAP_PIT2:
1393         case KVM_CAP_PIT_STATE2:
1394         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1395         case KVM_CAP_XEN_HVM:
1396         case KVM_CAP_ADJUST_CLOCK:
1397         case KVM_CAP_VCPU_EVENTS:
1398                 r = 1;
1399                 break;
1400         case KVM_CAP_COALESCED_MMIO:
1401                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1402                 break;
1403         case KVM_CAP_VAPIC:
1404                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1405                 break;
1406         case KVM_CAP_NR_VCPUS:
1407                 r = KVM_MAX_VCPUS;
1408                 break;
1409         case KVM_CAP_NR_MEMSLOTS:
1410                 r = KVM_MEMORY_SLOTS;
1411                 break;
1412         case KVM_CAP_PV_MMU:    /* obsolete */
1413                 r = 0;
1414                 break;
1415         case KVM_CAP_IOMMU:
1416                 r = iommu_found();
1417                 break;
1418         case KVM_CAP_MCE:
1419                 r = KVM_MAX_MCE_BANKS;
1420                 break;
1421         default:
1422                 r = 0;
1423                 break;
1424         }
1425         return r;
1426
1427 }
1428
1429 long kvm_arch_dev_ioctl(struct file *filp,
1430                         unsigned int ioctl, unsigned long arg)
1431 {
1432         void __user *argp = (void __user *)arg;
1433         long r;
1434
1435         switch (ioctl) {
1436         case KVM_GET_MSR_INDEX_LIST: {
1437                 struct kvm_msr_list __user *user_msr_list = argp;
1438                 struct kvm_msr_list msr_list;
1439                 unsigned n;
1440
1441                 r = -EFAULT;
1442                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1443                         goto out;
1444                 n = msr_list.nmsrs;
1445                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1446                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1447                         goto out;
1448                 r = -E2BIG;
1449                 if (n < msr_list.nmsrs)
1450                         goto out;
1451                 r = -EFAULT;
1452                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1453                                  num_msrs_to_save * sizeof(u32)))
1454                         goto out;
1455                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1456                                  &emulated_msrs,
1457                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1458                         goto out;
1459                 r = 0;
1460                 break;
1461         }
1462         case KVM_GET_SUPPORTED_CPUID: {
1463                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1464                 struct kvm_cpuid2 cpuid;
1465
1466                 r = -EFAULT;
1467                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1468                         goto out;
1469                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1470                                                       cpuid_arg->entries);
1471                 if (r)
1472                         goto out;
1473
1474                 r = -EFAULT;
1475                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1476                         goto out;
1477                 r = 0;
1478                 break;
1479         }
1480         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1481                 u64 mce_cap;
1482
1483                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1484                 r = -EFAULT;
1485                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1486                         goto out;
1487                 r = 0;
1488                 break;
1489         }
1490         default:
1491                 r = -EINVAL;
1492         }
1493 out:
1494         return r;
1495 }
1496
1497 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1498 {
1499         kvm_x86_ops->vcpu_load(vcpu, cpu);
1500         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1501                 unsigned long khz = cpufreq_quick_get(cpu);
1502                 if (!khz)
1503                         khz = tsc_khz;
1504                 per_cpu(cpu_tsc_khz, cpu) = khz;
1505         }
1506         kvm_request_guest_time_update(vcpu);
1507 }
1508
1509 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1510 {
1511         kvm_x86_ops->vcpu_put(vcpu);
1512         kvm_put_guest_fpu(vcpu);
1513 }
1514
1515 static int is_efer_nx(void)
1516 {
1517         unsigned long long efer = 0;
1518
1519         rdmsrl_safe(MSR_EFER, &efer);
1520         return efer & EFER_NX;
1521 }
1522
1523 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1524 {
1525         int i;
1526         struct kvm_cpuid_entry2 *e, *entry;
1527
1528         entry = NULL;
1529         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1530                 e = &vcpu->arch.cpuid_entries[i];
1531                 if (e->function == 0x80000001) {
1532                         entry = e;
1533                         break;
1534                 }
1535         }
1536         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1537                 entry->edx &= ~(1 << 20);
1538                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1539         }
1540 }
1541
1542 /* when an old userspace process fills a new kernel module */
1543 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1544                                     struct kvm_cpuid *cpuid,
1545                                     struct kvm_cpuid_entry __user *entries)
1546 {
1547         int r, i;
1548         struct kvm_cpuid_entry *cpuid_entries;
1549
1550         r = -E2BIG;
1551         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1552                 goto out;
1553         r = -ENOMEM;
1554         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1555         if (!cpuid_entries)
1556                 goto out;
1557         r = -EFAULT;
1558         if (copy_from_user(cpuid_entries, entries,
1559                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1560                 goto out_free;
1561         for (i = 0; i < cpuid->nent; i++) {
1562                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1563                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1564                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1565                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1566                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1567                 vcpu->arch.cpuid_entries[i].index = 0;
1568                 vcpu->arch.cpuid_entries[i].flags = 0;
1569                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1570                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1571                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1572         }
1573         vcpu->arch.cpuid_nent = cpuid->nent;
1574         cpuid_fix_nx_cap(vcpu);
1575         r = 0;
1576         kvm_apic_set_version(vcpu);
1577         kvm_x86_ops->cpuid_update(vcpu);
1578
1579 out_free:
1580         vfree(cpuid_entries);
1581 out:
1582         return r;
1583 }
1584
1585 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1586                                      struct kvm_cpuid2 *cpuid,
1587                                      struct kvm_cpuid_entry2 __user *entries)
1588 {
1589         int r;
1590
1591         r = -E2BIG;
1592         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1593                 goto out;
1594         r = -EFAULT;
1595         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1596                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1597                 goto out;
1598         vcpu->arch.cpuid_nent = cpuid->nent;
1599         kvm_apic_set_version(vcpu);
1600         kvm_x86_ops->cpuid_update(vcpu);
1601         return 0;
1602
1603 out:
1604         return r;
1605 }
1606
1607 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1608                                      struct kvm_cpuid2 *cpuid,
1609                                      struct kvm_cpuid_entry2 __user *entries)
1610 {
1611         int r;
1612
1613         r = -E2BIG;
1614         if (cpuid->nent < vcpu->arch.cpuid_nent)
1615                 goto out;
1616         r = -EFAULT;
1617         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1618                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1619                 goto out;
1620         return 0;
1621
1622 out:
1623         cpuid->nent = vcpu->arch.cpuid_nent;
1624         return r;
1625 }
1626
1627 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1628                            u32 index)
1629 {
1630         entry->function = function;
1631         entry->index = index;
1632         cpuid_count(entry->function, entry->index,
1633                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1634         entry->flags = 0;
1635 }
1636
1637 #define F(x) bit(X86_FEATURE_##x)
1638
1639 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1640                          u32 index, int *nent, int maxnent)
1641 {
1642         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1643         unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1644 #ifdef CONFIG_X86_64
1645         unsigned f_lm = F(LM);
1646 #else
1647         unsigned f_lm = 0;
1648 #endif
1649         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1650
1651         /* cpuid 1.edx */
1652         const u32 kvm_supported_word0_x86_features =
1653                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1654                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1655                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1656                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1657                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1658                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1659                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1660                 0 /* HTT, TM, Reserved, PBE */;
1661         /* cpuid 0x80000001.edx */
1662         const u32 kvm_supported_word1_x86_features =
1663                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1664                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1665                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1666                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1667                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1668                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1669                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1670                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1671         /* cpuid 1.ecx */
1672         const u32 kvm_supported_word4_x86_features =
1673                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1674                 0 /* DS-CPL, VMX, SMX, EST */ |
1675                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1676                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1677                 0 /* Reserved, DCA */ | F(XMM4_1) |
1678                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1679                 0 /* Reserved, XSAVE, OSXSAVE */;
1680         /* cpuid 0x80000001.ecx */
1681         const u32 kvm_supported_word6_x86_features =
1682                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1683                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1684                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1685                 0 /* SKINIT */ | 0 /* WDT */;
1686
1687         /* all calls to cpuid_count() should be made on the same cpu */
1688         get_cpu();
1689         do_cpuid_1_ent(entry, function, index);
1690         ++*nent;
1691
1692         switch (function) {
1693         case 0:
1694                 entry->eax = min(entry->eax, (u32)0xb);
1695                 break;
1696         case 1:
1697                 entry->edx &= kvm_supported_word0_x86_features;
1698                 entry->ecx &= kvm_supported_word4_x86_features;
1699                 /* we support x2apic emulation even if host does not support
1700                  * it since we emulate x2apic in software */
1701                 entry->ecx |= F(X2APIC);
1702                 break;
1703         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1704          * may return different values. This forces us to get_cpu() before
1705          * issuing the first command, and also to emulate this annoying behavior
1706          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1707         case 2: {
1708                 int t, times = entry->eax & 0xff;
1709
1710                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1711                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1712                 for (t = 1; t < times && *nent < maxnent; ++t) {
1713                         do_cpuid_1_ent(&entry[t], function, 0);
1714                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1715                         ++*nent;
1716                 }
1717                 break;
1718         }
1719         /* function 4 and 0xb have additional index. */
1720         case 4: {
1721                 int i, cache_type;
1722
1723                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1724                 /* read more entries until cache_type is zero */
1725                 for (i = 1; *nent < maxnent; ++i) {
1726                         cache_type = entry[i - 1].eax & 0x1f;
1727                         if (!cache_type)
1728                                 break;
1729                         do_cpuid_1_ent(&entry[i], function, i);
1730                         entry[i].flags |=
1731                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1732                         ++*nent;
1733                 }
1734                 break;
1735         }
1736         case 0xb: {
1737                 int i, level_type;
1738
1739                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1740                 /* read more entries until level_type is zero */
1741                 for (i = 1; *nent < maxnent; ++i) {
1742                         level_type = entry[i - 1].ecx & 0xff00;
1743                         if (!level_type)
1744                                 break;
1745                         do_cpuid_1_ent(&entry[i], function, i);
1746                         entry[i].flags |=
1747                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1748                         ++*nent;
1749                 }
1750                 break;
1751         }
1752         case 0x80000000:
1753                 entry->eax = min(entry->eax, 0x8000001a);
1754                 break;
1755         case 0x80000001:
1756                 entry->edx &= kvm_supported_word1_x86_features;
1757                 entry->ecx &= kvm_supported_word6_x86_features;
1758                 break;
1759         }
1760         put_cpu();
1761 }
1762
1763 #undef F
1764
1765 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1766                                      struct kvm_cpuid_entry2 __user *entries)
1767 {
1768         struct kvm_cpuid_entry2 *cpuid_entries;
1769         int limit, nent = 0, r = -E2BIG;
1770         u32 func;
1771
1772         if (cpuid->nent < 1)
1773                 goto out;
1774         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1775                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1776         r = -ENOMEM;
1777         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1778         if (!cpuid_entries)
1779                 goto out;
1780
1781         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1782         limit = cpuid_entries[0].eax;
1783         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1784                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1785                              &nent, cpuid->nent);
1786         r = -E2BIG;
1787         if (nent >= cpuid->nent)
1788                 goto out_free;
1789
1790         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1791         limit = cpuid_entries[nent - 1].eax;
1792         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1793                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1794                              &nent, cpuid->nent);
1795         r = -E2BIG;
1796         if (nent >= cpuid->nent)
1797                 goto out_free;
1798
1799         r = -EFAULT;
1800         if (copy_to_user(entries, cpuid_entries,
1801                          nent * sizeof(struct kvm_cpuid_entry2)))
1802                 goto out_free;
1803         cpuid->nent = nent;
1804         r = 0;
1805
1806 out_free:
1807         vfree(cpuid_entries);
1808 out:
1809         return r;
1810 }
1811
1812 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1813                                     struct kvm_lapic_state *s)
1814 {
1815         vcpu_load(vcpu);
1816         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1817         vcpu_put(vcpu);
1818
1819         return 0;
1820 }
1821
1822 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1823                                     struct kvm_lapic_state *s)
1824 {
1825         vcpu_load(vcpu);
1826         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1827         kvm_apic_post_state_restore(vcpu);
1828         update_cr8_intercept(vcpu);
1829         vcpu_put(vcpu);
1830
1831         return 0;
1832 }
1833
1834 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1835                                     struct kvm_interrupt *irq)
1836 {
1837         if (irq->irq < 0 || irq->irq >= 256)
1838                 return -EINVAL;
1839         if (irqchip_in_kernel(vcpu->kvm))
1840                 return -ENXIO;
1841         vcpu_load(vcpu);
1842
1843         kvm_queue_interrupt(vcpu, irq->irq, false);
1844
1845         vcpu_put(vcpu);
1846
1847         return 0;
1848 }
1849
1850 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1851 {
1852         vcpu_load(vcpu);
1853         kvm_inject_nmi(vcpu);
1854         vcpu_put(vcpu);
1855
1856         return 0;
1857 }
1858
1859 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1860                                            struct kvm_tpr_access_ctl *tac)
1861 {
1862         if (tac->flags)
1863                 return -EINVAL;
1864         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1865         return 0;
1866 }
1867
1868 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1869                                         u64 mcg_cap)
1870 {
1871         int r;
1872         unsigned bank_num = mcg_cap & 0xff, bank;
1873
1874         r = -EINVAL;
1875         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1876                 goto out;
1877         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1878                 goto out;
1879         r = 0;
1880         vcpu->arch.mcg_cap = mcg_cap;
1881         /* Init IA32_MCG_CTL to all 1s */
1882         if (mcg_cap & MCG_CTL_P)
1883                 vcpu->arch.mcg_ctl = ~(u64)0;
1884         /* Init IA32_MCi_CTL to all 1s */
1885         for (bank = 0; bank < bank_num; bank++)
1886                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1887 out:
1888         return r;
1889 }
1890
1891 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1892                                       struct kvm_x86_mce *mce)
1893 {
1894         u64 mcg_cap = vcpu->arch.mcg_cap;
1895         unsigned bank_num = mcg_cap & 0xff;
1896         u64 *banks = vcpu->arch.mce_banks;
1897
1898         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1899                 return -EINVAL;
1900         /*
1901          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1902          * reporting is disabled
1903          */
1904         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1905             vcpu->arch.mcg_ctl != ~(u64)0)
1906                 return 0;
1907         banks += 4 * mce->bank;
1908         /*
1909          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1910          * reporting is disabled for the bank
1911          */
1912         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1913                 return 0;
1914         if (mce->status & MCI_STATUS_UC) {
1915                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1916                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
1917                         printk(KERN_DEBUG "kvm: set_mce: "
1918                                "injects mce exception while "
1919                                "previous one is in progress!\n");
1920                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1921                         return 0;
1922                 }
1923                 if (banks[1] & MCI_STATUS_VAL)
1924                         mce->status |= MCI_STATUS_OVER;
1925                 banks[2] = mce->addr;
1926                 banks[3] = mce->misc;
1927                 vcpu->arch.mcg_status = mce->mcg_status;
1928                 banks[1] = mce->status;
1929                 kvm_queue_exception(vcpu, MC_VECTOR);
1930         } else if (!(banks[1] & MCI_STATUS_VAL)
1931                    || !(banks[1] & MCI_STATUS_UC)) {
1932                 if (banks[1] & MCI_STATUS_VAL)
1933                         mce->status |= MCI_STATUS_OVER;
1934                 banks[2] = mce->addr;
1935                 banks[3] = mce->misc;
1936                 banks[1] = mce->status;
1937         } else
1938                 banks[1] |= MCI_STATUS_OVER;
1939         return 0;
1940 }
1941
1942 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
1943                                                struct kvm_vcpu_events *events)
1944 {
1945         vcpu_load(vcpu);
1946
1947         events->exception.injected = vcpu->arch.exception.pending;
1948         events->exception.nr = vcpu->arch.exception.nr;
1949         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
1950         events->exception.error_code = vcpu->arch.exception.error_code;
1951
1952         events->interrupt.injected = vcpu->arch.interrupt.pending;
1953         events->interrupt.nr = vcpu->arch.interrupt.nr;
1954         events->interrupt.soft = vcpu->arch.interrupt.soft;
1955
1956         events->nmi.injected = vcpu->arch.nmi_injected;
1957         events->nmi.pending = vcpu->arch.nmi_pending;
1958         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
1959
1960         events->sipi_vector = vcpu->arch.sipi_vector;
1961
1962         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
1963                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
1964
1965         vcpu_put(vcpu);
1966 }
1967
1968 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
1969                                               struct kvm_vcpu_events *events)
1970 {
1971         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
1972                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
1973                 return -EINVAL;
1974
1975         vcpu_load(vcpu);
1976
1977         vcpu->arch.exception.pending = events->exception.injected;
1978         vcpu->arch.exception.nr = events->exception.nr;
1979         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
1980         vcpu->arch.exception.error_code = events->exception.error_code;
1981
1982         vcpu->arch.interrupt.pending = events->interrupt.injected;
1983         vcpu->arch.interrupt.nr = events->interrupt.nr;
1984         vcpu->arch.interrupt.soft = events->interrupt.soft;
1985         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
1986                 kvm_pic_clear_isr_ack(vcpu->kvm);
1987
1988         vcpu->arch.nmi_injected = events->nmi.injected;
1989         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
1990                 vcpu->arch.nmi_pending = events->nmi.pending;
1991         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
1992
1993         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
1994                 vcpu->arch.sipi_vector = events->sipi_vector;
1995
1996         vcpu_put(vcpu);
1997
1998         return 0;
1999 }
2000
2001 long kvm_arch_vcpu_ioctl(struct file *filp,
2002                          unsigned int ioctl, unsigned long arg)
2003 {
2004         struct kvm_vcpu *vcpu = filp->private_data;
2005         void __user *argp = (void __user *)arg;
2006         int r;
2007         struct kvm_lapic_state *lapic = NULL;
2008
2009         switch (ioctl) {
2010         case KVM_GET_LAPIC: {
2011                 r = -EINVAL;
2012                 if (!vcpu->arch.apic)
2013                         goto out;
2014                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2015
2016                 r = -ENOMEM;
2017                 if (!lapic)
2018                         goto out;
2019                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2020                 if (r)
2021                         goto out;
2022                 r = -EFAULT;
2023                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2024                         goto out;
2025                 r = 0;
2026                 break;
2027         }
2028         case KVM_SET_LAPIC: {
2029                 r = -EINVAL;
2030                 if (!vcpu->arch.apic)
2031                         goto out;
2032                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2033                 r = -ENOMEM;
2034                 if (!lapic)
2035                         goto out;
2036                 r = -EFAULT;
2037                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2038                         goto out;
2039                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2040                 if (r)
2041                         goto out;
2042                 r = 0;
2043                 break;
2044         }
2045         case KVM_INTERRUPT: {
2046                 struct kvm_interrupt irq;
2047
2048                 r = -EFAULT;
2049                 if (copy_from_user(&irq, argp, sizeof irq))
2050                         goto out;
2051                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2052                 if (r)
2053                         goto out;
2054                 r = 0;
2055                 break;
2056         }
2057         case KVM_NMI: {
2058                 r = kvm_vcpu_ioctl_nmi(vcpu);
2059                 if (r)
2060                         goto out;
2061                 r = 0;
2062                 break;
2063         }
2064         case KVM_SET_CPUID: {
2065                 struct kvm_cpuid __user *cpuid_arg = argp;
2066                 struct kvm_cpuid cpuid;
2067
2068                 r = -EFAULT;
2069                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2070                         goto out;
2071                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2072                 if (r)
2073                         goto out;
2074                 break;
2075         }
2076         case KVM_SET_CPUID2: {
2077                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2078                 struct kvm_cpuid2 cpuid;
2079
2080                 r = -EFAULT;
2081                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2082                         goto out;
2083                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2084                                               cpuid_arg->entries);
2085                 if (r)
2086                         goto out;
2087                 break;
2088         }
2089         case KVM_GET_CPUID2: {
2090                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2091                 struct kvm_cpuid2 cpuid;
2092
2093                 r = -EFAULT;
2094                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2095                         goto out;
2096                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2097                                               cpuid_arg->entries);
2098                 if (r)
2099                         goto out;
2100                 r = -EFAULT;
2101                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2102                         goto out;
2103                 r = 0;
2104                 break;
2105         }
2106         case KVM_GET_MSRS:
2107                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2108                 break;
2109         case KVM_SET_MSRS:
2110                 r = msr_io(vcpu, argp, do_set_msr, 0);
2111                 break;
2112         case KVM_TPR_ACCESS_REPORTING: {
2113                 struct kvm_tpr_access_ctl tac;
2114
2115                 r = -EFAULT;
2116                 if (copy_from_user(&tac, argp, sizeof tac))
2117                         goto out;
2118                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2119                 if (r)
2120                         goto out;
2121                 r = -EFAULT;
2122                 if (copy_to_user(argp, &tac, sizeof tac))
2123                         goto out;
2124                 r = 0;
2125                 break;
2126         };
2127         case KVM_SET_VAPIC_ADDR: {
2128                 struct kvm_vapic_addr va;
2129
2130                 r = -EINVAL;
2131                 if (!irqchip_in_kernel(vcpu->kvm))
2132                         goto out;
2133                 r = -EFAULT;
2134                 if (copy_from_user(&va, argp, sizeof va))
2135                         goto out;
2136                 r = 0;
2137                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2138                 break;
2139         }
2140         case KVM_X86_SETUP_MCE: {
2141                 u64 mcg_cap;
2142
2143                 r = -EFAULT;
2144                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2145                         goto out;
2146                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2147                 break;
2148         }
2149         case KVM_X86_SET_MCE: {
2150                 struct kvm_x86_mce mce;
2151
2152                 r = -EFAULT;
2153                 if (copy_from_user(&mce, argp, sizeof mce))
2154                         goto out;
2155                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2156                 break;
2157         }
2158         case KVM_GET_VCPU_EVENTS: {
2159                 struct kvm_vcpu_events events;
2160
2161                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2162
2163                 r = -EFAULT;
2164                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2165                         break;
2166                 r = 0;
2167                 break;
2168         }
2169         case KVM_SET_VCPU_EVENTS: {
2170                 struct kvm_vcpu_events events;
2171
2172                 r = -EFAULT;
2173                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2174                         break;
2175
2176                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2177                 break;
2178         }
2179         default:
2180                 r = -EINVAL;
2181         }
2182 out:
2183         kfree(lapic);
2184         return r;
2185 }
2186
2187 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2188 {
2189         int ret;
2190
2191         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2192                 return -1;
2193         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2194         return ret;
2195 }
2196
2197 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2198                                               u64 ident_addr)
2199 {
2200         kvm->arch.ept_identity_map_addr = ident_addr;
2201         return 0;
2202 }
2203
2204 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2205                                           u32 kvm_nr_mmu_pages)
2206 {
2207         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2208                 return -EINVAL;
2209
2210         down_write(&kvm->slots_lock);
2211         spin_lock(&kvm->mmu_lock);
2212
2213         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2214         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2215
2216         spin_unlock(&kvm->mmu_lock);
2217         up_write(&kvm->slots_lock);
2218         return 0;
2219 }
2220
2221 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2222 {
2223         return kvm->arch.n_alloc_mmu_pages;
2224 }
2225
2226 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2227 {
2228         int i;
2229         struct kvm_mem_alias *alias;
2230         struct kvm_mem_aliases *aliases = kvm->arch.aliases;
2231
2232         for (i = 0; i < aliases->naliases; ++i) {
2233                 alias = &aliases->aliases[i];
2234                 if (gfn >= alias->base_gfn
2235                     && gfn < alias->base_gfn + alias->npages)
2236                         return alias->target_gfn + gfn - alias->base_gfn;
2237         }
2238         return gfn;
2239 }
2240
2241 /*
2242  * Set a new alias region.  Aliases map a portion of physical memory into
2243  * another portion.  This is useful for memory windows, for example the PC
2244  * VGA region.
2245  */
2246 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2247                                          struct kvm_memory_alias *alias)
2248 {
2249         int r, n;
2250         struct kvm_mem_alias *p;
2251         struct kvm_mem_aliases *aliases;
2252
2253         r = -EINVAL;
2254         /* General sanity checks */
2255         if (alias->memory_size & (PAGE_SIZE - 1))
2256                 goto out;
2257         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2258                 goto out;
2259         if (alias->slot >= KVM_ALIAS_SLOTS)
2260                 goto out;
2261         if (alias->guest_phys_addr + alias->memory_size
2262             < alias->guest_phys_addr)
2263                 goto out;
2264         if (alias->target_phys_addr + alias->memory_size
2265             < alias->target_phys_addr)
2266                 goto out;
2267
2268         down_write(&kvm->slots_lock);
2269         spin_lock(&kvm->mmu_lock);
2270
2271         aliases = kvm->arch.aliases;
2272
2273         p = &aliases->aliases[alias->slot];
2274         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2275         p->npages = alias->memory_size >> PAGE_SHIFT;
2276         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2277
2278         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2279                 if (aliases->aliases[n - 1].npages)
2280                         break;
2281         aliases->naliases = n;
2282
2283         spin_unlock(&kvm->mmu_lock);
2284         kvm_mmu_zap_all(kvm);
2285
2286         up_write(&kvm->slots_lock);
2287
2288         return 0;
2289
2290 out:
2291         return r;
2292 }
2293
2294 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2295 {
2296         int r;
2297
2298         r = 0;
2299         switch (chip->chip_id) {
2300         case KVM_IRQCHIP_PIC_MASTER:
2301                 memcpy(&chip->chip.pic,
2302                         &pic_irqchip(kvm)->pics[0],
2303                         sizeof(struct kvm_pic_state));
2304                 break;
2305         case KVM_IRQCHIP_PIC_SLAVE:
2306                 memcpy(&chip->chip.pic,
2307                         &pic_irqchip(kvm)->pics[1],
2308                         sizeof(struct kvm_pic_state));
2309                 break;
2310         case KVM_IRQCHIP_IOAPIC:
2311                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2312                 break;
2313         default:
2314                 r = -EINVAL;
2315                 break;
2316         }
2317         return r;
2318 }
2319
2320 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2321 {
2322         int r;
2323
2324         r = 0;
2325         switch (chip->chip_id) {
2326         case KVM_IRQCHIP_PIC_MASTER:
2327                 spin_lock(&pic_irqchip(kvm)->lock);
2328                 memcpy(&pic_irqchip(kvm)->pics[0],
2329                         &chip->chip.pic,
2330                         sizeof(struct kvm_pic_state));
2331                 spin_unlock(&pic_irqchip(kvm)->lock);
2332                 break;
2333         case KVM_IRQCHIP_PIC_SLAVE:
2334                 spin_lock(&pic_irqchip(kvm)->lock);
2335                 memcpy(&pic_irqchip(kvm)->pics[1],
2336                         &chip->chip.pic,
2337                         sizeof(struct kvm_pic_state));
2338                 spin_unlock(&pic_irqchip(kvm)->lock);
2339                 break;
2340         case KVM_IRQCHIP_IOAPIC:
2341                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2342                 break;
2343         default:
2344                 r = -EINVAL;
2345                 break;
2346         }
2347         kvm_pic_update_irq(pic_irqchip(kvm));
2348         return r;
2349 }
2350
2351 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2352 {
2353         int r = 0;
2354
2355         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2356         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2357         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2358         return r;
2359 }
2360
2361 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2362 {
2363         int r = 0;
2364
2365         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2366         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2367         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2368         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2369         return r;
2370 }
2371
2372 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2373 {
2374         int r = 0;
2375
2376         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2377         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2378                 sizeof(ps->channels));
2379         ps->flags = kvm->arch.vpit->pit_state.flags;
2380         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2381         return r;
2382 }
2383
2384 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2385 {
2386         int r = 0, start = 0;
2387         u32 prev_legacy, cur_legacy;
2388         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2389         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2390         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2391         if (!prev_legacy && cur_legacy)
2392                 start = 1;
2393         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2394                sizeof(kvm->arch.vpit->pit_state.channels));
2395         kvm->arch.vpit->pit_state.flags = ps->flags;
2396         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2397         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2398         return r;
2399 }
2400
2401 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2402                                  struct kvm_reinject_control *control)
2403 {
2404         if (!kvm->arch.vpit)
2405                 return -ENXIO;
2406         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2407         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2408         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2409         return 0;
2410 }
2411
2412 /*
2413  * Get (and clear) the dirty memory log for a memory slot.
2414  */
2415 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2416                                       struct kvm_dirty_log *log)
2417 {
2418         int r;
2419         int n;
2420         struct kvm_memory_slot *memslot;
2421         int is_dirty = 0;
2422
2423         down_write(&kvm->slots_lock);
2424
2425         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2426         if (r)
2427                 goto out;
2428
2429         /* If nothing is dirty, don't bother messing with page tables. */
2430         if (is_dirty) {
2431                 spin_lock(&kvm->mmu_lock);
2432                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2433                 spin_unlock(&kvm->mmu_lock);
2434                 memslot = &kvm->memslots->memslots[log->slot];
2435                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2436                 memset(memslot->dirty_bitmap, 0, n);
2437         }
2438         r = 0;
2439 out:
2440         up_write(&kvm->slots_lock);
2441         return r;
2442 }
2443
2444 long kvm_arch_vm_ioctl(struct file *filp,
2445                        unsigned int ioctl, unsigned long arg)
2446 {
2447         struct kvm *kvm = filp->private_data;
2448         void __user *argp = (void __user *)arg;
2449         int r = -ENOTTY;
2450         /*
2451          * This union makes it completely explicit to gcc-3.x
2452          * that these two variables' stack usage should be
2453          * combined, not added together.
2454          */
2455         union {
2456                 struct kvm_pit_state ps;
2457                 struct kvm_pit_state2 ps2;
2458                 struct kvm_memory_alias alias;
2459                 struct kvm_pit_config pit_config;
2460         } u;
2461
2462         switch (ioctl) {
2463         case KVM_SET_TSS_ADDR:
2464                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2465                 if (r < 0)
2466                         goto out;
2467                 break;
2468         case KVM_SET_IDENTITY_MAP_ADDR: {
2469                 u64 ident_addr;
2470
2471                 r = -EFAULT;
2472                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2473                         goto out;
2474                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2475                 if (r < 0)
2476                         goto out;
2477                 break;
2478         }
2479         case KVM_SET_MEMORY_REGION: {
2480                 struct kvm_memory_region kvm_mem;
2481                 struct kvm_userspace_memory_region kvm_userspace_mem;
2482
2483                 r = -EFAULT;
2484                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2485                         goto out;
2486                 kvm_userspace_mem.slot = kvm_mem.slot;
2487                 kvm_userspace_mem.flags = kvm_mem.flags;
2488                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2489                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2490                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2491                 if (r)
2492                         goto out;
2493                 break;
2494         }
2495         case KVM_SET_NR_MMU_PAGES:
2496                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2497                 if (r)
2498                         goto out;
2499                 break;
2500         case KVM_GET_NR_MMU_PAGES:
2501                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2502                 break;
2503         case KVM_SET_MEMORY_ALIAS:
2504                 r = -EFAULT;
2505                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2506                         goto out;
2507                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2508                 if (r)
2509                         goto out;
2510                 break;
2511         case KVM_CREATE_IRQCHIP: {
2512                 struct kvm_pic *vpic;
2513
2514                 mutex_lock(&kvm->lock);
2515                 r = -EEXIST;
2516                 if (kvm->arch.vpic)
2517                         goto create_irqchip_unlock;
2518                 r = -ENOMEM;
2519                 vpic = kvm_create_pic(kvm);
2520                 if (vpic) {
2521                         r = kvm_ioapic_init(kvm);
2522                         if (r) {
2523                                 kfree(vpic);
2524                                 goto create_irqchip_unlock;
2525                         }
2526                 } else
2527                         goto create_irqchip_unlock;
2528                 smp_wmb();
2529                 kvm->arch.vpic = vpic;
2530                 smp_wmb();
2531                 r = kvm_setup_default_irq_routing(kvm);
2532                 if (r) {
2533                         mutex_lock(&kvm->irq_lock);
2534                         kfree(kvm->arch.vpic);
2535                         kfree(kvm->arch.vioapic);
2536                         kvm->arch.vpic = NULL;
2537                         kvm->arch.vioapic = NULL;
2538                         mutex_unlock(&kvm->irq_lock);
2539                 }
2540         create_irqchip_unlock:
2541                 mutex_unlock(&kvm->lock);
2542                 break;
2543         }
2544         case KVM_CREATE_PIT:
2545                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2546                 goto create_pit;
2547         case KVM_CREATE_PIT2:
2548                 r = -EFAULT;
2549                 if (copy_from_user(&u.pit_config, argp,
2550                                    sizeof(struct kvm_pit_config)))
2551                         goto out;
2552         create_pit:
2553                 down_write(&kvm->slots_lock);
2554                 r = -EEXIST;
2555                 if (kvm->arch.vpit)
2556                         goto create_pit_unlock;
2557                 r = -ENOMEM;
2558                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2559                 if (kvm->arch.vpit)
2560                         r = 0;
2561         create_pit_unlock:
2562                 up_write(&kvm->slots_lock);
2563                 break;
2564         case KVM_IRQ_LINE_STATUS:
2565         case KVM_IRQ_LINE: {
2566                 struct kvm_irq_level irq_event;
2567
2568                 r = -EFAULT;
2569                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2570                         goto out;
2571                 if (irqchip_in_kernel(kvm)) {
2572                         __s32 status;
2573                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2574                                         irq_event.irq, irq_event.level);
2575                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2576                                 irq_event.status = status;
2577                                 if (copy_to_user(argp, &irq_event,
2578                                                         sizeof irq_event))
2579                                         goto out;
2580                         }
2581                         r = 0;
2582                 }
2583                 break;
2584         }
2585         case KVM_GET_IRQCHIP: {
2586                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2587                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2588
2589                 r = -ENOMEM;
2590                 if (!chip)
2591                         goto out;
2592                 r = -EFAULT;
2593                 if (copy_from_user(chip, argp, sizeof *chip))
2594                         goto get_irqchip_out;
2595                 r = -ENXIO;
2596                 if (!irqchip_in_kernel(kvm))
2597                         goto get_irqchip_out;
2598                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2599                 if (r)
2600                         goto get_irqchip_out;
2601                 r = -EFAULT;
2602                 if (copy_to_user(argp, chip, sizeof *chip))
2603                         goto get_irqchip_out;
2604                 r = 0;
2605         get_irqchip_out:
2606                 kfree(chip);
2607                 if (r)
2608                         goto out;
2609                 break;
2610         }
2611         case KVM_SET_IRQCHIP: {
2612                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2613                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2614
2615                 r = -ENOMEM;
2616                 if (!chip)
2617                         goto out;
2618                 r = -EFAULT;
2619                 if (copy_from_user(chip, argp, sizeof *chip))
2620                         goto set_irqchip_out;
2621                 r = -ENXIO;
2622                 if (!irqchip_in_kernel(kvm))
2623                         goto set_irqchip_out;
2624                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2625                 if (r)
2626                         goto set_irqchip_out;
2627                 r = 0;
2628         set_irqchip_out:
2629                 kfree(chip);
2630                 if (r)
2631                         goto out;
2632                 break;
2633         }
2634         case KVM_GET_PIT: {
2635                 r = -EFAULT;
2636                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2637                         goto out;
2638                 r = -ENXIO;
2639                 if (!kvm->arch.vpit)
2640                         goto out;
2641                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2642                 if (r)
2643                         goto out;
2644                 r = -EFAULT;
2645                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2646                         goto out;
2647                 r = 0;
2648                 break;
2649         }
2650         case KVM_SET_PIT: {
2651                 r = -EFAULT;
2652                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2653                         goto out;
2654                 r = -ENXIO;
2655                 if (!kvm->arch.vpit)
2656                         goto out;
2657                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2658                 if (r)
2659                         goto out;
2660                 r = 0;
2661                 break;
2662         }
2663         case KVM_GET_PIT2: {
2664                 r = -ENXIO;
2665                 if (!kvm->arch.vpit)
2666                         goto out;
2667                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2668                 if (r)
2669                         goto out;
2670                 r = -EFAULT;
2671                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2672                         goto out;
2673                 r = 0;
2674                 break;
2675         }
2676         case KVM_SET_PIT2: {
2677                 r = -EFAULT;
2678                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2679                         goto out;
2680                 r = -ENXIO;
2681                 if (!kvm->arch.vpit)
2682                         goto out;
2683                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2684                 if (r)
2685                         goto out;
2686                 r = 0;
2687                 break;
2688         }
2689         case KVM_REINJECT_CONTROL: {
2690                 struct kvm_reinject_control control;
2691                 r =  -EFAULT;
2692                 if (copy_from_user(&control, argp, sizeof(control)))
2693                         goto out;
2694                 r = kvm_vm_ioctl_reinject(kvm, &control);
2695                 if (r)
2696                         goto out;
2697                 r = 0;
2698                 break;
2699         }
2700         case KVM_XEN_HVM_CONFIG: {
2701                 r = -EFAULT;
2702                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2703                                    sizeof(struct kvm_xen_hvm_config)))
2704                         goto out;
2705                 r = -EINVAL;
2706                 if (kvm->arch.xen_hvm_config.flags)
2707                         goto out;
2708                 r = 0;
2709                 break;
2710         }
2711         case KVM_SET_CLOCK: {
2712                 struct timespec now;
2713                 struct kvm_clock_data user_ns;
2714                 u64 now_ns;
2715                 s64 delta;
2716
2717                 r = -EFAULT;
2718                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2719                         goto out;
2720
2721                 r = -EINVAL;
2722                 if (user_ns.flags)
2723                         goto out;
2724
2725                 r = 0;
2726                 ktime_get_ts(&now);
2727                 now_ns = timespec_to_ns(&now);
2728                 delta = user_ns.clock - now_ns;
2729                 kvm->arch.kvmclock_offset = delta;
2730                 break;
2731         }
2732         case KVM_GET_CLOCK: {
2733                 struct timespec now;
2734                 struct kvm_clock_data user_ns;
2735                 u64 now_ns;
2736
2737                 ktime_get_ts(&now);
2738                 now_ns = timespec_to_ns(&now);
2739                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2740                 user_ns.flags = 0;
2741
2742                 r = -EFAULT;
2743                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2744                         goto out;
2745                 r = 0;
2746                 break;
2747         }
2748
2749         default:
2750                 ;
2751         }
2752 out:
2753         return r;
2754 }
2755
2756 static void kvm_init_msr_list(void)
2757 {
2758         u32 dummy[2];
2759         unsigned i, j;
2760
2761         /* skip the first msrs in the list. KVM-specific */
2762         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2763                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2764                         continue;
2765                 if (j < i)
2766                         msrs_to_save[j] = msrs_to_save[i];
2767                 j++;
2768         }
2769         num_msrs_to_save = j;
2770 }
2771
2772 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2773                            const void *v)
2774 {
2775         if (vcpu->arch.apic &&
2776             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2777                 return 0;
2778
2779         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2780 }
2781
2782 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2783 {
2784         if (vcpu->arch.apic &&
2785             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2786                 return 0;
2787
2788         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2789 }
2790
2791 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2792                                struct kvm_vcpu *vcpu)
2793 {
2794         void *data = val;
2795         int r = X86EMUL_CONTINUE;
2796
2797         while (bytes) {
2798                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2799                 unsigned offset = addr & (PAGE_SIZE-1);
2800                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2801                 int ret;
2802
2803                 if (gpa == UNMAPPED_GVA) {
2804                         r = X86EMUL_PROPAGATE_FAULT;
2805                         goto out;
2806                 }
2807                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2808                 if (ret < 0) {
2809                         r = X86EMUL_UNHANDLEABLE;
2810                         goto out;
2811                 }
2812
2813                 bytes -= toread;
2814                 data += toread;
2815                 addr += toread;
2816         }
2817 out:
2818         return r;
2819 }
2820
2821 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2822                                 struct kvm_vcpu *vcpu)
2823 {
2824         void *data = val;
2825         int r = X86EMUL_CONTINUE;
2826
2827         while (bytes) {
2828                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2829                 unsigned offset = addr & (PAGE_SIZE-1);
2830                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2831                 int ret;
2832
2833                 if (gpa == UNMAPPED_GVA) {
2834                         r = X86EMUL_PROPAGATE_FAULT;
2835                         goto out;
2836                 }
2837                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2838                 if (ret < 0) {
2839                         r = X86EMUL_UNHANDLEABLE;
2840                         goto out;
2841                 }
2842
2843                 bytes -= towrite;
2844                 data += towrite;
2845                 addr += towrite;
2846         }
2847 out:
2848         return r;
2849 }
2850
2851
2852 static int emulator_read_emulated(unsigned long addr,
2853                                   void *val,
2854                                   unsigned int bytes,
2855                                   struct kvm_vcpu *vcpu)
2856 {
2857         gpa_t                 gpa;
2858
2859         if (vcpu->mmio_read_completed) {
2860                 memcpy(val, vcpu->mmio_data, bytes);
2861                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2862                                vcpu->mmio_phys_addr, *(u64 *)val);
2863                 vcpu->mmio_read_completed = 0;
2864                 return X86EMUL_CONTINUE;
2865         }
2866
2867         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2868
2869         /* For APIC access vmexit */
2870         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2871                 goto mmio;
2872
2873         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2874                                 == X86EMUL_CONTINUE)
2875                 return X86EMUL_CONTINUE;
2876         if (gpa == UNMAPPED_GVA)
2877                 return X86EMUL_PROPAGATE_FAULT;
2878
2879 mmio:
2880         /*
2881          * Is this MMIO handled locally?
2882          */
2883         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2884                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2885                 return X86EMUL_CONTINUE;
2886         }
2887
2888         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2889
2890         vcpu->mmio_needed = 1;
2891         vcpu->mmio_phys_addr = gpa;
2892         vcpu->mmio_size = bytes;
2893         vcpu->mmio_is_write = 0;
2894
2895         return X86EMUL_UNHANDLEABLE;
2896 }
2897
2898 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2899                           const void *val, int bytes)
2900 {
2901         int ret;
2902
2903         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2904         if (ret < 0)
2905                 return 0;
2906         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2907         return 1;
2908 }
2909
2910 static int emulator_write_emulated_onepage(unsigned long addr,
2911                                            const void *val,
2912                                            unsigned int bytes,
2913                                            struct kvm_vcpu *vcpu)
2914 {
2915         gpa_t                 gpa;
2916
2917         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2918
2919         if (gpa == UNMAPPED_GVA) {
2920                 kvm_inject_page_fault(vcpu, addr, 2);
2921                 return X86EMUL_PROPAGATE_FAULT;
2922         }
2923
2924         /* For APIC access vmexit */
2925         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2926                 goto mmio;
2927
2928         if (emulator_write_phys(vcpu, gpa, val, bytes))
2929                 return X86EMUL_CONTINUE;
2930
2931 mmio:
2932         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2933         /*
2934          * Is this MMIO handled locally?
2935          */
2936         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2937                 return X86EMUL_CONTINUE;
2938
2939         vcpu->mmio_needed = 1;
2940         vcpu->mmio_phys_addr = gpa;
2941         vcpu->mmio_size = bytes;
2942         vcpu->mmio_is_write = 1;
2943         memcpy(vcpu->mmio_data, val, bytes);
2944
2945         return X86EMUL_CONTINUE;
2946 }
2947
2948 int emulator_write_emulated(unsigned long addr,
2949                                    const void *val,
2950                                    unsigned int bytes,
2951                                    struct kvm_vcpu *vcpu)
2952 {
2953         /* Crossing a page boundary? */
2954         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2955                 int rc, now;
2956
2957                 now = -addr & ~PAGE_MASK;
2958                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2959                 if (rc != X86EMUL_CONTINUE)
2960                         return rc;
2961                 addr += now;
2962                 val += now;
2963                 bytes -= now;
2964         }
2965         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2966 }
2967 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2968
2969 static int emulator_cmpxchg_emulated(unsigned long addr,
2970                                      const void *old,
2971                                      const void *new,
2972                                      unsigned int bytes,
2973                                      struct kvm_vcpu *vcpu)
2974 {
2975         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2976 #ifndef CONFIG_X86_64
2977         /* guests cmpxchg8b have to be emulated atomically */
2978         if (bytes == 8) {
2979                 gpa_t gpa;
2980                 struct page *page;
2981                 char *kaddr;
2982                 u64 val;
2983
2984                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2985
2986                 if (gpa == UNMAPPED_GVA ||
2987                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2988                         goto emul_write;
2989
2990                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2991                         goto emul_write;
2992
2993                 val = *(u64 *)new;
2994
2995                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2996
2997                 kaddr = kmap_atomic(page, KM_USER0);
2998                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2999                 kunmap_atomic(kaddr, KM_USER0);
3000                 kvm_release_page_dirty(page);
3001         }
3002 emul_write:
3003 #endif
3004
3005         return emulator_write_emulated(addr, new, bytes, vcpu);
3006 }
3007
3008 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3009 {
3010         return kvm_x86_ops->get_segment_base(vcpu, seg);
3011 }
3012
3013 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3014 {
3015         kvm_mmu_invlpg(vcpu, address);
3016         return X86EMUL_CONTINUE;
3017 }
3018
3019 int emulate_clts(struct kvm_vcpu *vcpu)
3020 {
3021         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
3022         return X86EMUL_CONTINUE;
3023 }
3024
3025 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3026 {
3027         struct kvm_vcpu *vcpu = ctxt->vcpu;
3028
3029         switch (dr) {
3030         case 0 ... 3:
3031                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
3032                 return X86EMUL_CONTINUE;
3033         default:
3034                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
3035                 return X86EMUL_UNHANDLEABLE;
3036         }
3037 }
3038
3039 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3040 {
3041         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3042         int exception;
3043
3044         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
3045         if (exception) {
3046                 /* FIXME: better handling */
3047                 return X86EMUL_UNHANDLEABLE;
3048         }
3049         return X86EMUL_CONTINUE;
3050 }
3051
3052 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3053 {
3054         u8 opcodes[4];
3055         unsigned long rip = kvm_rip_read(vcpu);
3056         unsigned long rip_linear;
3057
3058         if (!printk_ratelimit())
3059                 return;
3060
3061         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3062
3063         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3064
3065         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3066                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3067 }
3068 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3069
3070 static struct x86_emulate_ops emulate_ops = {
3071         .read_std            = kvm_read_guest_virt,
3072         .read_emulated       = emulator_read_emulated,
3073         .write_emulated      = emulator_write_emulated,
3074         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3075 };
3076
3077 static void cache_all_regs(struct kvm_vcpu *vcpu)
3078 {
3079         kvm_register_read(vcpu, VCPU_REGS_RAX);
3080         kvm_register_read(vcpu, VCPU_REGS_RSP);
3081         kvm_register_read(vcpu, VCPU_REGS_RIP);
3082         vcpu->arch.regs_dirty = ~0;
3083 }
3084
3085 int emulate_instruction(struct kvm_vcpu *vcpu,
3086                         unsigned long cr2,
3087                         u16 error_code,
3088                         int emulation_type)
3089 {
3090         int r, shadow_mask;
3091         struct decode_cache *c;
3092         struct kvm_run *run = vcpu->run;
3093
3094         kvm_clear_exception_queue(vcpu);
3095         vcpu->arch.mmio_fault_cr2 = cr2;
3096         /*
3097          * TODO: fix emulate.c to use guest_read/write_register
3098          * instead of direct ->regs accesses, can save hundred cycles
3099          * on Intel for instructions that don't read/change RSP, for
3100          * for example.
3101          */
3102         cache_all_regs(vcpu);
3103
3104         vcpu->mmio_is_write = 0;
3105         vcpu->arch.pio.string = 0;
3106
3107         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3108                 int cs_db, cs_l;
3109                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3110
3111                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3112                 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3113                 vcpu->arch.emulate_ctxt.mode =
3114                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3115                         ? X86EMUL_MODE_REAL : cs_l
3116                         ? X86EMUL_MODE_PROT64 : cs_db
3117                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3118
3119                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3120
3121                 /* Only allow emulation of specific instructions on #UD
3122                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3123                 c = &vcpu->arch.emulate_ctxt.decode;
3124                 if (emulation_type & EMULTYPE_TRAP_UD) {
3125                         if (!c->twobyte)
3126                                 return EMULATE_FAIL;
3127                         switch (c->b) {
3128                         case 0x01: /* VMMCALL */
3129                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3130                                         return EMULATE_FAIL;
3131                                 break;
3132                         case 0x34: /* sysenter */
3133                         case 0x35: /* sysexit */
3134                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3135                                         return EMULATE_FAIL;
3136                                 break;
3137                         case 0x05: /* syscall */
3138                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3139                                         return EMULATE_FAIL;
3140                                 break;
3141                         default:
3142                                 return EMULATE_FAIL;
3143                         }
3144
3145                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3146                                 return EMULATE_FAIL;
3147                 }
3148
3149                 ++vcpu->stat.insn_emulation;
3150                 if (r)  {
3151                         ++vcpu->stat.insn_emulation_fail;
3152                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3153                                 return EMULATE_DONE;
3154                         return EMULATE_FAIL;
3155                 }
3156         }
3157
3158         if (emulation_type & EMULTYPE_SKIP) {
3159                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3160                 return EMULATE_DONE;
3161         }
3162
3163         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3164         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3165
3166         if (r == 0)
3167                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3168
3169         if (vcpu->arch.pio.string)
3170                 return EMULATE_DO_MMIO;
3171
3172         if ((r || vcpu->mmio_is_write) && run) {
3173                 run->exit_reason = KVM_EXIT_MMIO;
3174                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3175                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3176                 run->mmio.len = vcpu->mmio_size;
3177                 run->mmio.is_write = vcpu->mmio_is_write;
3178         }
3179
3180         if (r) {
3181                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3182                         return EMULATE_DONE;
3183                 if (!vcpu->mmio_needed) {
3184                         kvm_report_emulation_failure(vcpu, "mmio");
3185                         return EMULATE_FAIL;
3186                 }
3187                 return EMULATE_DO_MMIO;
3188         }
3189
3190         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3191
3192         if (vcpu->mmio_is_write) {
3193                 vcpu->mmio_needed = 0;
3194                 return EMULATE_DO_MMIO;
3195         }
3196
3197         return EMULATE_DONE;
3198 }
3199 EXPORT_SYMBOL_GPL(emulate_instruction);
3200
3201 static int pio_copy_data(struct kvm_vcpu *vcpu)
3202 {
3203         void *p = vcpu->arch.pio_data;
3204         gva_t q = vcpu->arch.pio.guest_gva;
3205         unsigned bytes;
3206         int ret;
3207
3208         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3209         if (vcpu->arch.pio.in)
3210                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3211         else
3212                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3213         return ret;
3214 }
3215
3216 int complete_pio(struct kvm_vcpu *vcpu)
3217 {
3218         struct kvm_pio_request *io = &vcpu->arch.pio;
3219         long delta;
3220         int r;
3221         unsigned long val;
3222
3223         if (!io->string) {
3224                 if (io->in) {
3225                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3226                         memcpy(&val, vcpu->arch.pio_data, io->size);
3227                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3228                 }
3229         } else {
3230                 if (io->in) {
3231                         r = pio_copy_data(vcpu);
3232                         if (r)
3233                                 return r;
3234                 }
3235
3236                 delta = 1;
3237                 if (io->rep) {
3238                         delta *= io->cur_count;
3239                         /*
3240                          * The size of the register should really depend on
3241                          * current address size.
3242                          */
3243                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3244                         val -= delta;
3245                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3246                 }
3247                 if (io->down)
3248                         delta = -delta;
3249                 delta *= io->size;
3250                 if (io->in) {
3251                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3252                         val += delta;
3253                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3254                 } else {
3255                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3256                         val += delta;
3257                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3258                 }
3259         }
3260
3261         io->count -= io->cur_count;
3262         io->cur_count = 0;
3263
3264         return 0;
3265 }
3266
3267 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3268 {
3269         /* TODO: String I/O for in kernel device */
3270         int r;
3271
3272         if (vcpu->arch.pio.in)
3273                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3274                                     vcpu->arch.pio.size, pd);
3275         else
3276                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3277                                      vcpu->arch.pio.size, pd);
3278         return r;
3279 }
3280
3281 static int pio_string_write(struct kvm_vcpu *vcpu)
3282 {
3283         struct kvm_pio_request *io = &vcpu->arch.pio;
3284         void *pd = vcpu->arch.pio_data;
3285         int i, r = 0;
3286
3287         for (i = 0; i < io->cur_count; i++) {
3288                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3289                                      io->port, io->size, pd)) {
3290                         r = -EOPNOTSUPP;
3291                         break;
3292                 }
3293                 pd += io->size;
3294         }
3295         return r;
3296 }
3297
3298 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3299 {
3300         unsigned long val;
3301
3302         vcpu->run->exit_reason = KVM_EXIT_IO;
3303         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3304         vcpu->run->io.size = vcpu->arch.pio.size = size;
3305         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3306         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3307         vcpu->run->io.port = vcpu->arch.pio.port = port;
3308         vcpu->arch.pio.in = in;
3309         vcpu->arch.pio.string = 0;
3310         vcpu->arch.pio.down = 0;
3311         vcpu->arch.pio.rep = 0;
3312
3313         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3314                       size, 1);
3315
3316         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3317         memcpy(vcpu->arch.pio_data, &val, 4);
3318
3319         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3320                 complete_pio(vcpu);
3321                 return 1;
3322         }
3323         return 0;
3324 }
3325 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3326
3327 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3328                   int size, unsigned long count, int down,
3329                   gva_t address, int rep, unsigned port)
3330 {
3331         unsigned now, in_page;
3332         int ret = 0;
3333
3334         vcpu->run->exit_reason = KVM_EXIT_IO;
3335         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3336         vcpu->run->io.size = vcpu->arch.pio.size = size;
3337         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3338         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3339         vcpu->run->io.port = vcpu->arch.pio.port = port;
3340         vcpu->arch.pio.in = in;
3341         vcpu->arch.pio.string = 1;
3342         vcpu->arch.pio.down = down;
3343         vcpu->arch.pio.rep = rep;
3344
3345         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3346                       size, count);
3347
3348         if (!count) {
3349                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3350                 return 1;
3351         }
3352
3353         if (!down)
3354                 in_page = PAGE_SIZE - offset_in_page(address);
3355         else
3356                 in_page = offset_in_page(address) + size;
3357         now = min(count, (unsigned long)in_page / size);
3358         if (!now)
3359                 now = 1;
3360         if (down) {
3361                 /*
3362                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3363                  */
3364                 pr_unimpl(vcpu, "guest string pio down\n");
3365                 kvm_inject_gp(vcpu, 0);
3366                 return 1;
3367         }
3368         vcpu->run->io.count = now;
3369         vcpu->arch.pio.cur_count = now;
3370
3371         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3372                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3373
3374         vcpu->arch.pio.guest_gva = address;
3375
3376         if (!vcpu->arch.pio.in) {
3377                 /* string PIO write */
3378                 ret = pio_copy_data(vcpu);
3379                 if (ret == X86EMUL_PROPAGATE_FAULT) {
3380                         kvm_inject_gp(vcpu, 0);
3381                         return 1;
3382                 }
3383                 if (ret == 0 && !pio_string_write(vcpu)) {
3384                         complete_pio(vcpu);
3385                         if (vcpu->arch.pio.count == 0)
3386                                 ret = 1;
3387                 }
3388         }
3389         /* no string PIO read support yet */
3390
3391         return ret;
3392 }
3393 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3394
3395 static void bounce_off(void *info)
3396 {
3397         /* nothing */
3398 }
3399
3400 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3401                                      void *data)
3402 {
3403         struct cpufreq_freqs *freq = data;
3404         struct kvm *kvm;
3405         struct kvm_vcpu *vcpu;
3406         int i, send_ipi = 0;
3407
3408         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3409                 return 0;
3410         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3411                 return 0;
3412         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3413
3414         spin_lock(&kvm_lock);
3415         list_for_each_entry(kvm, &vm_list, vm_list) {
3416                 kvm_for_each_vcpu(i, vcpu, kvm) {
3417                         if (vcpu->cpu != freq->cpu)
3418                                 continue;
3419                         if (!kvm_request_guest_time_update(vcpu))
3420                                 continue;
3421                         if (vcpu->cpu != smp_processor_id())
3422                                 send_ipi++;
3423                 }
3424         }
3425         spin_unlock(&kvm_lock);
3426
3427         if (freq->old < freq->new && send_ipi) {
3428                 /*
3429                  * We upscale the frequency.  Must make the guest
3430                  * doesn't see old kvmclock values while running with
3431                  * the new frequency, otherwise we risk the guest sees
3432                  * time go backwards.
3433                  *
3434                  * In case we update the frequency for another cpu
3435                  * (which might be in guest context) send an interrupt
3436                  * to kick the cpu out of guest context.  Next time
3437                  * guest context is entered kvmclock will be updated,
3438                  * so the guest will not see stale values.
3439                  */
3440                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3441         }
3442         return 0;
3443 }
3444
3445 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3446         .notifier_call  = kvmclock_cpufreq_notifier
3447 };
3448
3449 static void kvm_timer_init(void)
3450 {
3451         int cpu;
3452
3453         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3454                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3455                                           CPUFREQ_TRANSITION_NOTIFIER);
3456                 for_each_online_cpu(cpu) {
3457                         unsigned long khz = cpufreq_get(cpu);
3458                         if (!khz)
3459                                 khz = tsc_khz;
3460                         per_cpu(cpu_tsc_khz, cpu) = khz;
3461                 }
3462         } else {
3463                 for_each_possible_cpu(cpu)
3464                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3465         }
3466 }
3467
3468 int kvm_arch_init(void *opaque)
3469 {
3470         int r;
3471         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3472
3473         if (kvm_x86_ops) {
3474                 printk(KERN_ERR "kvm: already loaded the other module\n");
3475                 r = -EEXIST;
3476                 goto out;
3477         }
3478
3479         if (!ops->cpu_has_kvm_support()) {
3480                 printk(KERN_ERR "kvm: no hardware support\n");
3481                 r = -EOPNOTSUPP;
3482                 goto out;
3483         }
3484         if (ops->disabled_by_bios()) {
3485                 printk(KERN_ERR "kvm: disabled by bios\n");
3486                 r = -EOPNOTSUPP;
3487                 goto out;
3488         }
3489
3490         r = kvm_mmu_module_init();
3491         if (r)
3492                 goto out;
3493
3494         kvm_init_msr_list();
3495
3496         kvm_x86_ops = ops;
3497         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3498         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3499         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3500                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3501
3502         kvm_timer_init();
3503
3504         return 0;
3505
3506 out:
3507         return r;
3508 }
3509
3510 void kvm_arch_exit(void)
3511 {
3512         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3513                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3514                                             CPUFREQ_TRANSITION_NOTIFIER);
3515         kvm_x86_ops = NULL;
3516         kvm_mmu_module_exit();
3517 }
3518
3519 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3520 {
3521         ++vcpu->stat.halt_exits;
3522         if (irqchip_in_kernel(vcpu->kvm)) {
3523                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3524                 return 1;
3525         } else {
3526                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3527                 return 0;
3528         }
3529 }
3530 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3531
3532 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3533                            unsigned long a1)
3534 {
3535         if (is_long_mode(vcpu))
3536                 return a0;
3537         else
3538                 return a0 | ((gpa_t)a1 << 32);
3539 }
3540
3541 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3542 {
3543         unsigned long nr, a0, a1, a2, a3, ret;
3544         int r = 1;
3545
3546         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3547         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3548         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3549         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3550         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3551
3552         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3553
3554         if (!is_long_mode(vcpu)) {
3555                 nr &= 0xFFFFFFFF;
3556                 a0 &= 0xFFFFFFFF;
3557                 a1 &= 0xFFFFFFFF;
3558                 a2 &= 0xFFFFFFFF;
3559                 a3 &= 0xFFFFFFFF;
3560         }
3561
3562         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3563                 ret = -KVM_EPERM;
3564                 goto out;
3565         }
3566
3567         switch (nr) {
3568         case KVM_HC_VAPIC_POLL_IRQ:
3569                 ret = 0;
3570                 break;
3571         case KVM_HC_MMU_OP:
3572                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3573                 break;
3574         default:
3575                 ret = -KVM_ENOSYS;
3576                 break;
3577         }
3578 out:
3579         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3580         ++vcpu->stat.hypercalls;
3581         return r;
3582 }
3583 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3584
3585 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3586 {
3587         char instruction[3];
3588         int ret = 0;
3589         unsigned long rip = kvm_rip_read(vcpu);
3590
3591
3592         /*
3593          * Blow out the MMU to ensure that no other VCPU has an active mapping
3594          * to ensure that the updated hypercall appears atomically across all
3595          * VCPUs.
3596          */
3597         kvm_mmu_zap_all(vcpu->kvm);
3598
3599         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3600         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3601             != X86EMUL_CONTINUE)
3602                 ret = -EFAULT;
3603
3604         return ret;
3605 }
3606
3607 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3608 {
3609         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3610 }
3611
3612 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3613 {
3614         struct descriptor_table dt = { limit, base };
3615
3616         kvm_x86_ops->set_gdt(vcpu, &dt);
3617 }
3618
3619 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3620 {
3621         struct descriptor_table dt = { limit, base };
3622
3623         kvm_x86_ops->set_idt(vcpu, &dt);
3624 }
3625
3626 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3627                    unsigned long *rflags)
3628 {
3629         kvm_lmsw(vcpu, msw);
3630         *rflags = kvm_get_rflags(vcpu);
3631 }
3632
3633 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3634 {
3635         unsigned long value;
3636
3637         switch (cr) {
3638         case 0:
3639                 value = vcpu->arch.cr0;
3640                 break;
3641         case 2:
3642                 value = vcpu->arch.cr2;
3643                 break;
3644         case 3:
3645                 value = vcpu->arch.cr3;
3646                 break;
3647         case 4:
3648                 value = kvm_read_cr4(vcpu);
3649                 break;
3650         case 8:
3651                 value = kvm_get_cr8(vcpu);
3652                 break;
3653         default:
3654                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3655                 return 0;
3656         }
3657
3658         return value;
3659 }
3660
3661 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3662                      unsigned long *rflags)
3663 {
3664         switch (cr) {
3665         case 0:
3666                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3667                 *rflags = kvm_get_rflags(vcpu);
3668                 break;
3669         case 2:
3670                 vcpu->arch.cr2 = val;
3671                 break;
3672         case 3:
3673                 kvm_set_cr3(vcpu, val);
3674                 break;
3675         case 4:
3676                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3677                 break;
3678         case 8:
3679                 kvm_set_cr8(vcpu, val & 0xfUL);
3680                 break;
3681         default:
3682                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3683         }
3684 }
3685
3686 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3687 {
3688         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3689         int j, nent = vcpu->arch.cpuid_nent;
3690
3691         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3692         /* when no next entry is found, the current entry[i] is reselected */
3693         for (j = i + 1; ; j = (j + 1) % nent) {
3694                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3695                 if (ej->function == e->function) {
3696                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3697                         return j;
3698                 }
3699         }
3700         return 0; /* silence gcc, even though control never reaches here */
3701 }
3702
3703 /* find an entry with matching function, matching index (if needed), and that
3704  * should be read next (if it's stateful) */
3705 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3706         u32 function, u32 index)
3707 {
3708         if (e->function != function)
3709                 return 0;
3710         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3711                 return 0;
3712         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3713             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3714                 return 0;
3715         return 1;
3716 }
3717
3718 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3719                                               u32 function, u32 index)
3720 {
3721         int i;
3722         struct kvm_cpuid_entry2 *best = NULL;
3723
3724         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3725                 struct kvm_cpuid_entry2 *e;
3726
3727                 e = &vcpu->arch.cpuid_entries[i];
3728                 if (is_matching_cpuid_entry(e, function, index)) {
3729                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3730                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3731                         best = e;
3732                         break;
3733                 }
3734                 /*
3735                  * Both basic or both extended?
3736                  */
3737                 if (((e->function ^ function) & 0x80000000) == 0)
3738                         if (!best || e->function > best->function)
3739                                 best = e;
3740         }
3741         return best;
3742 }
3743 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
3744
3745 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3746 {
3747         struct kvm_cpuid_entry2 *best;
3748
3749         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3750         if (best)
3751                 return best->eax & 0xff;
3752         return 36;
3753 }
3754
3755 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3756 {
3757         u32 function, index;
3758         struct kvm_cpuid_entry2 *best;
3759
3760         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3761         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3762         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3763         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3764         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3765         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3766         best = kvm_find_cpuid_entry(vcpu, function, index);
3767         if (best) {
3768                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3769                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3770                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3771                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3772         }
3773         kvm_x86_ops->skip_emulated_instruction(vcpu);
3774         trace_kvm_cpuid(function,
3775                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3776                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3777                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3778                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3779 }
3780 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3781
3782 /*
3783  * Check if userspace requested an interrupt window, and that the
3784  * interrupt window is open.
3785  *
3786  * No need to exit to userspace if we already have an interrupt queued.
3787  */
3788 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3789 {
3790         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3791                 vcpu->run->request_interrupt_window &&
3792                 kvm_arch_interrupt_allowed(vcpu));
3793 }
3794
3795 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3796 {
3797         struct kvm_run *kvm_run = vcpu->run;
3798
3799         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3800         kvm_run->cr8 = kvm_get_cr8(vcpu);
3801         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3802         if (irqchip_in_kernel(vcpu->kvm))
3803                 kvm_run->ready_for_interrupt_injection = 1;
3804         else
3805                 kvm_run->ready_for_interrupt_injection =
3806                         kvm_arch_interrupt_allowed(vcpu) &&
3807                         !kvm_cpu_has_interrupt(vcpu) &&
3808                         !kvm_event_needs_reinjection(vcpu);
3809 }
3810
3811 static void vapic_enter(struct kvm_vcpu *vcpu)
3812 {
3813         struct kvm_lapic *apic = vcpu->arch.apic;
3814         struct page *page;
3815
3816         if (!apic || !apic->vapic_addr)
3817                 return;
3818
3819         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3820
3821         vcpu->arch.apic->vapic_page = page;
3822 }
3823
3824 static void vapic_exit(struct kvm_vcpu *vcpu)
3825 {
3826         struct kvm_lapic *apic = vcpu->arch.apic;
3827
3828         if (!apic || !apic->vapic_addr)
3829                 return;
3830
3831         down_read(&vcpu->kvm->slots_lock);
3832         kvm_release_page_dirty(apic->vapic_page);
3833         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3834         up_read(&vcpu->kvm->slots_lock);
3835 }
3836
3837 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3838 {
3839         int max_irr, tpr;
3840
3841         if (!kvm_x86_ops->update_cr8_intercept)
3842                 return;
3843
3844         if (!vcpu->arch.apic)
3845                 return;
3846
3847         if (!vcpu->arch.apic->vapic_addr)
3848                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3849         else
3850                 max_irr = -1;
3851
3852         if (max_irr != -1)
3853                 max_irr >>= 4;
3854
3855         tpr = kvm_lapic_get_cr8(vcpu);
3856
3857         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3858 }
3859
3860 static void inject_pending_event(struct kvm_vcpu *vcpu)
3861 {
3862         /* try to reinject previous events if any */
3863         if (vcpu->arch.exception.pending) {
3864                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3865                                           vcpu->arch.exception.has_error_code,
3866                                           vcpu->arch.exception.error_code);
3867                 return;
3868         }
3869
3870         if (vcpu->arch.nmi_injected) {
3871                 kvm_x86_ops->set_nmi(vcpu);
3872                 return;
3873         }
3874
3875         if (vcpu->arch.interrupt.pending) {
3876                 kvm_x86_ops->set_irq(vcpu);
3877                 return;
3878         }
3879
3880         /* try to inject new event if pending */
3881         if (vcpu->arch.nmi_pending) {
3882                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3883                         vcpu->arch.nmi_pending = false;
3884                         vcpu->arch.nmi_injected = true;
3885                         kvm_x86_ops->set_nmi(vcpu);
3886                 }
3887         } else if (kvm_cpu_has_interrupt(vcpu)) {
3888                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3889                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3890                                             false);
3891                         kvm_x86_ops->set_irq(vcpu);
3892                 }
3893         }
3894 }
3895
3896 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3897 {
3898         int r;
3899         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3900                 vcpu->run->request_interrupt_window;
3901
3902         if (vcpu->requests)
3903                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3904                         kvm_mmu_unload(vcpu);
3905
3906         r = kvm_mmu_reload(vcpu);
3907         if (unlikely(r))
3908                 goto out;
3909
3910         if (vcpu->requests) {
3911                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3912                         __kvm_migrate_timers(vcpu);
3913                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3914                         kvm_write_guest_time(vcpu);
3915                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3916                         kvm_mmu_sync_roots(vcpu);
3917                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3918                         kvm_x86_ops->tlb_flush(vcpu);
3919                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3920                                        &vcpu->requests)) {
3921                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3922                         r = 0;
3923                         goto out;
3924                 }
3925                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3926                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3927                         r = 0;
3928                         goto out;
3929                 }
3930         }
3931
3932         preempt_disable();
3933
3934         kvm_x86_ops->prepare_guest_switch(vcpu);
3935         kvm_load_guest_fpu(vcpu);
3936
3937         local_irq_disable();
3938
3939         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3940         smp_mb__after_clear_bit();
3941
3942         if (vcpu->requests || need_resched() || signal_pending(current)) {
3943                 set_bit(KVM_REQ_KICK, &vcpu->requests);
3944                 local_irq_enable();
3945                 preempt_enable();
3946                 r = 1;
3947                 goto out;
3948         }
3949
3950         inject_pending_event(vcpu);
3951
3952         /* enable NMI/IRQ window open exits if needed */
3953         if (vcpu->arch.nmi_pending)
3954                 kvm_x86_ops->enable_nmi_window(vcpu);
3955         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3956                 kvm_x86_ops->enable_irq_window(vcpu);
3957
3958         if (kvm_lapic_enabled(vcpu)) {
3959                 update_cr8_intercept(vcpu);
3960                 kvm_lapic_sync_to_vapic(vcpu);
3961         }
3962
3963         up_read(&vcpu->kvm->slots_lock);
3964
3965         kvm_guest_enter();
3966
3967         if (unlikely(vcpu->arch.switch_db_regs)) {
3968                 set_debugreg(0, 7);
3969                 set_debugreg(vcpu->arch.eff_db[0], 0);
3970                 set_debugreg(vcpu->arch.eff_db[1], 1);
3971                 set_debugreg(vcpu->arch.eff_db[2], 2);
3972                 set_debugreg(vcpu->arch.eff_db[3], 3);
3973         }
3974
3975         trace_kvm_entry(vcpu->vcpu_id);
3976         kvm_x86_ops->run(vcpu);
3977
3978         /*
3979          * If the guest has used debug registers, at least dr7
3980          * will be disabled while returning to the host.
3981          * If we don't have active breakpoints in the host, we don't
3982          * care about the messed up debug address registers. But if
3983          * we have some of them active, restore the old state.
3984          */
3985         if (hw_breakpoint_active())
3986                 hw_breakpoint_restore();
3987
3988         set_bit(KVM_REQ_KICK, &vcpu->requests);
3989         local_irq_enable();
3990
3991         ++vcpu->stat.exits;
3992
3993         /*
3994          * We must have an instruction between local_irq_enable() and
3995          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3996          * the interrupt shadow.  The stat.exits increment will do nicely.
3997          * But we need to prevent reordering, hence this barrier():
3998          */
3999         barrier();
4000
4001         kvm_guest_exit();
4002
4003         preempt_enable();
4004
4005         down_read(&vcpu->kvm->slots_lock);
4006
4007         /*
4008          * Profile KVM exit RIPs:
4009          */
4010         if (unlikely(prof_on == KVM_PROFILING)) {
4011                 unsigned long rip = kvm_rip_read(vcpu);
4012                 profile_hit(KVM_PROFILING, (void *)rip);
4013         }
4014
4015
4016         kvm_lapic_sync_from_vapic(vcpu);
4017
4018         r = kvm_x86_ops->handle_exit(vcpu);
4019 out:
4020         return r;
4021 }
4022
4023
4024 static int __vcpu_run(struct kvm_vcpu *vcpu)
4025 {
4026         int r;
4027
4028         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4029                 pr_debug("vcpu %d received sipi with vector # %x\n",
4030                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4031                 kvm_lapic_reset(vcpu);
4032                 r = kvm_arch_vcpu_reset(vcpu);
4033                 if (r)
4034                         return r;
4035                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4036         }
4037
4038         down_read(&vcpu->kvm->slots_lock);
4039         vapic_enter(vcpu);
4040
4041         r = 1;
4042         while (r > 0) {
4043                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4044                         r = vcpu_enter_guest(vcpu);
4045                 else {
4046                         up_read(&vcpu->kvm->slots_lock);
4047                         kvm_vcpu_block(vcpu);
4048                         down_read(&vcpu->kvm->slots_lock);
4049                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4050                         {
4051                                 switch(vcpu->arch.mp_state) {
4052                                 case KVM_MP_STATE_HALTED:
4053                                         vcpu->arch.mp_state =
4054                                                 KVM_MP_STATE_RUNNABLE;
4055                                 case KVM_MP_STATE_RUNNABLE:
4056                                         break;
4057                                 case KVM_MP_STATE_SIPI_RECEIVED:
4058                                 default:
4059                                         r = -EINTR;
4060                                         break;
4061                                 }
4062                         }
4063                 }
4064
4065                 if (r <= 0)
4066                         break;
4067
4068                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4069                 if (kvm_cpu_has_pending_timer(vcpu))
4070                         kvm_inject_pending_timer_irqs(vcpu);
4071
4072                 if (dm_request_for_irq_injection(vcpu)) {
4073                         r = -EINTR;
4074                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4075                         ++vcpu->stat.request_irq_exits;
4076                 }
4077                 if (signal_pending(current)) {
4078                         r = -EINTR;
4079                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4080                         ++vcpu->stat.signal_exits;
4081                 }
4082                 if (need_resched()) {
4083                         up_read(&vcpu->kvm->slots_lock);
4084                         kvm_resched(vcpu);
4085                         down_read(&vcpu->kvm->slots_lock);
4086                 }
4087         }
4088
4089         up_read(&vcpu->kvm->slots_lock);
4090         post_kvm_run_save(vcpu);
4091
4092         vapic_exit(vcpu);
4093
4094         return r;
4095 }
4096
4097 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4098 {
4099         int r;
4100         sigset_t sigsaved;
4101
4102         vcpu_load(vcpu);
4103
4104         if (vcpu->sigset_active)
4105                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4106
4107         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4108                 kvm_vcpu_block(vcpu);
4109                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4110                 r = -EAGAIN;
4111                 goto out;
4112         }
4113
4114         /* re-sync apic's tpr */
4115         if (!irqchip_in_kernel(vcpu->kvm))
4116                 kvm_set_cr8(vcpu, kvm_run->cr8);
4117
4118         if (vcpu->arch.pio.cur_count) {
4119                 r = complete_pio(vcpu);
4120                 if (r)
4121                         goto out;
4122         }
4123         if (vcpu->mmio_needed) {
4124                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4125                 vcpu->mmio_read_completed = 1;
4126                 vcpu->mmio_needed = 0;
4127
4128                 down_read(&vcpu->kvm->slots_lock);
4129                 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4130                                         EMULTYPE_NO_DECODE);
4131                 up_read(&vcpu->kvm->slots_lock);
4132                 if (r == EMULATE_DO_MMIO) {
4133                         /*
4134                          * Read-modify-write.  Back to userspace.
4135                          */
4136                         r = 0;
4137                         goto out;
4138                 }
4139         }
4140         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4141                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4142                                      kvm_run->hypercall.ret);
4143
4144         r = __vcpu_run(vcpu);
4145
4146 out:
4147         if (vcpu->sigset_active)
4148                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4149
4150         vcpu_put(vcpu);
4151         return r;
4152 }
4153
4154 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4155 {
4156         vcpu_load(vcpu);
4157
4158         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4159         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4160         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4161         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4162         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4163         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4164         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4165         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4166 #ifdef CONFIG_X86_64
4167         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4168         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4169         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4170         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4171         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4172         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4173         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4174         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4175 #endif
4176
4177         regs->rip = kvm_rip_read(vcpu);
4178         regs->rflags = kvm_get_rflags(vcpu);
4179
4180         vcpu_put(vcpu);
4181
4182         return 0;
4183 }
4184
4185 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4186 {
4187         vcpu_load(vcpu);
4188
4189         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4190         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4191         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4192         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4193         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4194         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4195         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4196         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4197 #ifdef CONFIG_X86_64
4198         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4199         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4200         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4201         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4202         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4203         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4204         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4205         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4206 #endif
4207
4208         kvm_rip_write(vcpu, regs->rip);
4209         kvm_set_rflags(vcpu, regs->rflags);
4210
4211         vcpu->arch.exception.pending = false;
4212
4213         vcpu_put(vcpu);
4214
4215         return 0;
4216 }
4217
4218 void kvm_get_segment(struct kvm_vcpu *vcpu,
4219                      struct kvm_segment *var, int seg)
4220 {
4221         kvm_x86_ops->get_segment(vcpu, var, seg);
4222 }
4223
4224 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4225 {
4226         struct kvm_segment cs;
4227
4228         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4229         *db = cs.db;
4230         *l = cs.l;
4231 }
4232 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4233
4234 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4235                                   struct kvm_sregs *sregs)
4236 {
4237         struct descriptor_table dt;
4238
4239         vcpu_load(vcpu);
4240
4241         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4242         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4243         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4244         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4245         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4246         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4247
4248         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4249         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4250
4251         kvm_x86_ops->get_idt(vcpu, &dt);
4252         sregs->idt.limit = dt.limit;
4253         sregs->idt.base = dt.base;
4254         kvm_x86_ops->get_gdt(vcpu, &dt);
4255         sregs->gdt.limit = dt.limit;
4256         sregs->gdt.base = dt.base;
4257
4258         sregs->cr0 = vcpu->arch.cr0;
4259         sregs->cr2 = vcpu->arch.cr2;
4260         sregs->cr3 = vcpu->arch.cr3;
4261         sregs->cr4 = kvm_read_cr4(vcpu);
4262         sregs->cr8 = kvm_get_cr8(vcpu);
4263         sregs->efer = vcpu->arch.shadow_efer;
4264         sregs->apic_base = kvm_get_apic_base(vcpu);
4265
4266         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4267
4268         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4269                 set_bit(vcpu->arch.interrupt.nr,
4270                         (unsigned long *)sregs->interrupt_bitmap);
4271
4272         vcpu_put(vcpu);
4273
4274         return 0;
4275 }
4276
4277 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4278                                     struct kvm_mp_state *mp_state)
4279 {
4280         vcpu_load(vcpu);
4281         mp_state->mp_state = vcpu->arch.mp_state;
4282         vcpu_put(vcpu);
4283         return 0;
4284 }
4285
4286 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4287                                     struct kvm_mp_state *mp_state)
4288 {
4289         vcpu_load(vcpu);
4290         vcpu->arch.mp_state = mp_state->mp_state;
4291         vcpu_put(vcpu);
4292         return 0;
4293 }
4294
4295 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4296                         struct kvm_segment *var, int seg)
4297 {
4298         kvm_x86_ops->set_segment(vcpu, var, seg);
4299 }
4300
4301 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4302                                    struct kvm_segment *kvm_desct)
4303 {
4304         kvm_desct->base = get_desc_base(seg_desc);
4305         kvm_desct->limit = get_desc_limit(seg_desc);
4306         if (seg_desc->g) {
4307                 kvm_desct->limit <<= 12;
4308                 kvm_desct->limit |= 0xfff;
4309         }
4310         kvm_desct->selector = selector;
4311         kvm_desct->type = seg_desc->type;
4312         kvm_desct->present = seg_desc->p;
4313         kvm_desct->dpl = seg_desc->dpl;
4314         kvm_desct->db = seg_desc->d;
4315         kvm_desct->s = seg_desc->s;
4316         kvm_desct->l = seg_desc->l;
4317         kvm_desct->g = seg_desc->g;
4318         kvm_desct->avl = seg_desc->avl;
4319         if (!selector)
4320                 kvm_desct->unusable = 1;
4321         else
4322                 kvm_desct->unusable = 0;
4323         kvm_desct->padding = 0;
4324 }
4325
4326 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4327                                           u16 selector,
4328                                           struct descriptor_table *dtable)
4329 {
4330         if (selector & 1 << 2) {
4331                 struct kvm_segment kvm_seg;
4332
4333                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4334
4335                 if (kvm_seg.unusable)
4336                         dtable->limit = 0;
4337                 else
4338                         dtable->limit = kvm_seg.limit;
4339                 dtable->base = kvm_seg.base;
4340         }
4341         else
4342                 kvm_x86_ops->get_gdt(vcpu, dtable);
4343 }
4344
4345 /* allowed just for 8 bytes segments */
4346 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4347                                          struct desc_struct *seg_desc)
4348 {
4349         struct descriptor_table dtable;
4350         u16 index = selector >> 3;
4351
4352         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4353
4354         if (dtable.limit < index * 8 + 7) {
4355                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4356                 return 1;
4357         }
4358         return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4359 }
4360
4361 /* allowed just for 8 bytes segments */
4362 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4363                                          struct desc_struct *seg_desc)
4364 {
4365         struct descriptor_table dtable;
4366         u16 index = selector >> 3;
4367
4368         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4369
4370         if (dtable.limit < index * 8 + 7)
4371                 return 1;
4372         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4373 }
4374
4375 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4376                              struct desc_struct *seg_desc)
4377 {
4378         u32 base_addr = get_desc_base(seg_desc);
4379
4380         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4381 }
4382
4383 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4384 {
4385         struct kvm_segment kvm_seg;
4386
4387         kvm_get_segment(vcpu, &kvm_seg, seg);
4388         return kvm_seg.selector;
4389 }
4390
4391 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4392                                                 u16 selector,
4393                                                 struct kvm_segment *kvm_seg)
4394 {
4395         struct desc_struct seg_desc;
4396
4397         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4398                 return 1;
4399         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4400         return 0;
4401 }
4402
4403 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4404 {
4405         struct kvm_segment segvar = {
4406                 .base = selector << 4,
4407                 .limit = 0xffff,
4408                 .selector = selector,
4409                 .type = 3,
4410                 .present = 1,
4411                 .dpl = 3,
4412                 .db = 0,
4413                 .s = 1,
4414                 .l = 0,
4415                 .g = 0,
4416                 .avl = 0,
4417                 .unusable = 0,
4418         };
4419         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4420         return 0;
4421 }
4422
4423 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4424 {
4425         return (seg != VCPU_SREG_LDTR) &&
4426                 (seg != VCPU_SREG_TR) &&
4427                 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4428 }
4429
4430 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4431                                          u16 selector)
4432 {
4433         /* NULL selector is not valid for CS and SS */
4434         if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4435                 if (!selector)
4436                         kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4437 }
4438
4439 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4440                                 int type_bits, int seg)
4441 {
4442         struct kvm_segment kvm_seg;
4443
4444         if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4445                 return kvm_load_realmode_segment(vcpu, selector, seg);
4446         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4447                 return 1;
4448
4449         kvm_check_segment_descriptor(vcpu, seg, selector);
4450         kvm_seg.type |= type_bits;
4451
4452         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4453             seg != VCPU_SREG_LDTR)
4454                 if (!kvm_seg.s)
4455                         kvm_seg.unusable = 1;
4456
4457         kvm_set_segment(vcpu, &kvm_seg, seg);
4458         return 0;
4459 }
4460
4461 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4462                                 struct tss_segment_32 *tss)
4463 {
4464         tss->cr3 = vcpu->arch.cr3;
4465         tss->eip = kvm_rip_read(vcpu);
4466         tss->eflags = kvm_get_rflags(vcpu);
4467         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4468         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4469         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4470         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4471         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4472         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4473         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4474         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4475         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4476         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4477         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4478         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4479         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4480         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4481         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4482 }
4483
4484 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4485                                   struct tss_segment_32 *tss)
4486 {
4487         kvm_set_cr3(vcpu, tss->cr3);
4488
4489         kvm_rip_write(vcpu, tss->eip);
4490         kvm_set_rflags(vcpu, tss->eflags | 2);
4491
4492         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4493         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4494         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4495         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4496         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4497         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4498         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4499         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4500
4501         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4502                 return 1;
4503
4504         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4505                 return 1;
4506
4507         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4508                 return 1;
4509
4510         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4511                 return 1;
4512
4513         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4514                 return 1;
4515
4516         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4517                 return 1;
4518
4519         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4520                 return 1;
4521         return 0;
4522 }
4523
4524 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4525                                 struct tss_segment_16 *tss)
4526 {
4527         tss->ip = kvm_rip_read(vcpu);
4528         tss->flag = kvm_get_rflags(vcpu);
4529         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4530         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4531         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4532         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4533         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4534         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4535         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4536         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4537
4538         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4539         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4540         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4541         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4542         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4543 }
4544
4545 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4546                                  struct tss_segment_16 *tss)
4547 {
4548         kvm_rip_write(vcpu, tss->ip);
4549         kvm_set_rflags(vcpu, tss->flag | 2);
4550         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4551         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4552         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4553         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4554         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4555         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4556         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4557         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4558
4559         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4560                 return 1;
4561
4562         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4563                 return 1;
4564
4565         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4566                 return 1;
4567
4568         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4569                 return 1;
4570
4571         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4572                 return 1;
4573         return 0;
4574 }
4575
4576 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4577                               u16 old_tss_sel, u32 old_tss_base,
4578                               struct desc_struct *nseg_desc)
4579 {
4580         struct tss_segment_16 tss_segment_16;
4581         int ret = 0;
4582
4583         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4584                            sizeof tss_segment_16))
4585                 goto out;
4586
4587         save_state_to_tss16(vcpu, &tss_segment_16);
4588
4589         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4590                             sizeof tss_segment_16))
4591                 goto out;
4592
4593         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4594                            &tss_segment_16, sizeof tss_segment_16))
4595                 goto out;
4596
4597         if (old_tss_sel != 0xffff) {
4598                 tss_segment_16.prev_task_link = old_tss_sel;
4599
4600                 if (kvm_write_guest(vcpu->kvm,
4601                                     get_tss_base_addr(vcpu, nseg_desc),
4602                                     &tss_segment_16.prev_task_link,
4603                                     sizeof tss_segment_16.prev_task_link))
4604                         goto out;
4605         }
4606
4607         if (load_state_from_tss16(vcpu, &tss_segment_16))
4608                 goto out;
4609
4610         ret = 1;
4611 out:
4612         return ret;
4613 }
4614
4615 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4616                        u16 old_tss_sel, u32 old_tss_base,
4617                        struct desc_struct *nseg_desc)
4618 {
4619         struct tss_segment_32 tss_segment_32;
4620         int ret = 0;
4621
4622         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4623                            sizeof tss_segment_32))
4624                 goto out;
4625
4626         save_state_to_tss32(vcpu, &tss_segment_32);
4627
4628         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4629                             sizeof tss_segment_32))
4630                 goto out;
4631
4632         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4633                            &tss_segment_32, sizeof tss_segment_32))
4634                 goto out;
4635
4636         if (old_tss_sel != 0xffff) {
4637                 tss_segment_32.prev_task_link = old_tss_sel;
4638
4639                 if (kvm_write_guest(vcpu->kvm,
4640                                     get_tss_base_addr(vcpu, nseg_desc),
4641                                     &tss_segment_32.prev_task_link,
4642                                     sizeof tss_segment_32.prev_task_link))
4643                         goto out;
4644         }
4645
4646         if (load_state_from_tss32(vcpu, &tss_segment_32))
4647                 goto out;
4648
4649         ret = 1;
4650 out:
4651         return ret;
4652 }
4653
4654 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4655 {
4656         struct kvm_segment tr_seg;
4657         struct desc_struct cseg_desc;
4658         struct desc_struct nseg_desc;
4659         int ret = 0;
4660         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4661         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4662
4663         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4664
4665         /* FIXME: Handle errors. Failure to read either TSS or their
4666          * descriptors should generate a pagefault.
4667          */
4668         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4669                 goto out;
4670
4671         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4672                 goto out;
4673
4674         if (reason != TASK_SWITCH_IRET) {
4675                 int cpl;
4676
4677                 cpl = kvm_x86_ops->get_cpl(vcpu);
4678                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4679                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4680                         return 1;
4681                 }
4682         }
4683
4684         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4685                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4686                 return 1;
4687         }
4688
4689         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4690                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4691                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4692         }
4693
4694         if (reason == TASK_SWITCH_IRET) {
4695                 u32 eflags = kvm_get_rflags(vcpu);
4696                 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4697         }
4698
4699         /* set back link to prev task only if NT bit is set in eflags
4700            note that old_tss_sel is not used afetr this point */
4701         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4702                 old_tss_sel = 0xffff;
4703
4704         if (nseg_desc.type & 8)
4705                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4706                                          old_tss_base, &nseg_desc);
4707         else
4708                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4709                                          old_tss_base, &nseg_desc);
4710
4711         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4712                 u32 eflags = kvm_get_rflags(vcpu);
4713                 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4714         }
4715
4716         if (reason != TASK_SWITCH_IRET) {
4717                 nseg_desc.type |= (1 << 1);
4718                 save_guest_segment_descriptor(vcpu, tss_selector,
4719                                               &nseg_desc);
4720         }
4721
4722         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4723         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4724         tr_seg.type = 11;
4725         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4726 out:
4727         return ret;
4728 }
4729 EXPORT_SYMBOL_GPL(kvm_task_switch);
4730
4731 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4732                                   struct kvm_sregs *sregs)
4733 {
4734         int mmu_reset_needed = 0;
4735         int pending_vec, max_bits;
4736         struct descriptor_table dt;
4737
4738         vcpu_load(vcpu);
4739
4740         dt.limit = sregs->idt.limit;
4741         dt.base = sregs->idt.base;
4742         kvm_x86_ops->set_idt(vcpu, &dt);
4743         dt.limit = sregs->gdt.limit;
4744         dt.base = sregs->gdt.base;
4745         kvm_x86_ops->set_gdt(vcpu, &dt);
4746
4747         vcpu->arch.cr2 = sregs->cr2;
4748         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4749         vcpu->arch.cr3 = sregs->cr3;
4750
4751         kvm_set_cr8(vcpu, sregs->cr8);
4752
4753         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4754         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4755         kvm_set_apic_base(vcpu, sregs->apic_base);
4756
4757         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4758         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4759         vcpu->arch.cr0 = sregs->cr0;
4760
4761         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4762         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4763         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4764                 load_pdptrs(vcpu, vcpu->arch.cr3);
4765                 mmu_reset_needed = 1;
4766         }
4767
4768         if (mmu_reset_needed)
4769                 kvm_mmu_reset_context(vcpu);
4770
4771         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4772         pending_vec = find_first_bit(
4773                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4774         if (pending_vec < max_bits) {
4775                 kvm_queue_interrupt(vcpu, pending_vec, false);
4776                 pr_debug("Set back pending irq %d\n", pending_vec);
4777                 if (irqchip_in_kernel(vcpu->kvm))
4778                         kvm_pic_clear_isr_ack(vcpu->kvm);
4779         }
4780
4781         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4782         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4783         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4784         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4785         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4786         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4787
4788         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4789         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4790
4791         update_cr8_intercept(vcpu);
4792
4793         /* Older userspace won't unhalt the vcpu on reset. */
4794         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4795             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4796             !(vcpu->arch.cr0 & X86_CR0_PE))
4797                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4798
4799         vcpu_put(vcpu);
4800
4801         return 0;
4802 }
4803
4804 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4805                                         struct kvm_guest_debug *dbg)
4806 {
4807         unsigned long rflags;
4808         int i, r;
4809
4810         vcpu_load(vcpu);
4811
4812         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4813                 r = -EBUSY;
4814                 if (vcpu->arch.exception.pending)
4815                         goto unlock_out;
4816                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4817                         kvm_queue_exception(vcpu, DB_VECTOR);
4818                 else
4819                         kvm_queue_exception(vcpu, BP_VECTOR);
4820         }
4821
4822         /*
4823          * Read rflags as long as potentially injected trace flags are still
4824          * filtered out.
4825          */
4826         rflags = kvm_get_rflags(vcpu);
4827
4828         vcpu->guest_debug = dbg->control;
4829         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4830                 vcpu->guest_debug = 0;
4831
4832         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4833                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4834                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4835                 vcpu->arch.switch_db_regs =
4836                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4837         } else {
4838                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4839                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4840                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4841         }
4842
4843         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4844                 vcpu->arch.singlestep_cs =
4845                         get_segment_selector(vcpu, VCPU_SREG_CS);
4846                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
4847         }
4848
4849         /*
4850          * Trigger an rflags update that will inject or remove the trace
4851          * flags.
4852          */
4853         kvm_set_rflags(vcpu, rflags);
4854
4855         kvm_x86_ops->set_guest_debug(vcpu, dbg);
4856
4857         r = 0;
4858
4859 unlock_out:
4860         vcpu_put(vcpu);
4861
4862         return r;
4863 }
4864
4865 /*
4866  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4867  * we have asm/x86/processor.h
4868  */
4869 struct fxsave {
4870         u16     cwd;
4871         u16     swd;
4872         u16     twd;
4873         u16     fop;
4874         u64     rip;
4875         u64     rdp;
4876         u32     mxcsr;
4877         u32     mxcsr_mask;
4878         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4879 #ifdef CONFIG_X86_64
4880         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4881 #else
4882         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4883 #endif
4884 };
4885
4886 /*
4887  * Translate a guest virtual address to a guest physical address.
4888  */
4889 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4890                                     struct kvm_translation *tr)
4891 {
4892         unsigned long vaddr = tr->linear_address;
4893         gpa_t gpa;
4894
4895         vcpu_load(vcpu);
4896         down_read(&vcpu->kvm->slots_lock);
4897         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4898         up_read(&vcpu->kvm->slots_lock);
4899         tr->physical_address = gpa;
4900         tr->valid = gpa != UNMAPPED_GVA;
4901         tr->writeable = 1;
4902         tr->usermode = 0;
4903         vcpu_put(vcpu);
4904
4905         return 0;
4906 }
4907
4908 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4909 {
4910         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4911
4912         vcpu_load(vcpu);
4913
4914         memcpy(fpu->fpr, fxsave->st_space, 128);
4915         fpu->fcw = fxsave->cwd;
4916         fpu->fsw = fxsave->swd;
4917         fpu->ftwx = fxsave->twd;
4918         fpu->last_opcode = fxsave->fop;
4919         fpu->last_ip = fxsave->rip;
4920         fpu->last_dp = fxsave->rdp;
4921         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4922
4923         vcpu_put(vcpu);
4924
4925         return 0;
4926 }
4927
4928 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4929 {
4930         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4931
4932         vcpu_load(vcpu);
4933
4934         memcpy(fxsave->st_space, fpu->fpr, 128);
4935         fxsave->cwd = fpu->fcw;
4936         fxsave->swd = fpu->fsw;
4937         fxsave->twd = fpu->ftwx;
4938         fxsave->fop = fpu->last_opcode;
4939         fxsave->rip = fpu->last_ip;
4940         fxsave->rdp = fpu->last_dp;
4941         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4942
4943         vcpu_put(vcpu);
4944
4945         return 0;
4946 }
4947
4948 void fx_init(struct kvm_vcpu *vcpu)
4949 {
4950         unsigned after_mxcsr_mask;
4951
4952         /*
4953          * Touch the fpu the first time in non atomic context as if
4954          * this is the first fpu instruction the exception handler
4955          * will fire before the instruction returns and it'll have to
4956          * allocate ram with GFP_KERNEL.
4957          */
4958         if (!used_math())
4959                 kvm_fx_save(&vcpu->arch.host_fx_image);
4960
4961         /* Initialize guest FPU by resetting ours and saving into guest's */
4962         preempt_disable();
4963         kvm_fx_save(&vcpu->arch.host_fx_image);
4964         kvm_fx_finit();
4965         kvm_fx_save(&vcpu->arch.guest_fx_image);
4966         kvm_fx_restore(&vcpu->arch.host_fx_image);
4967         preempt_enable();
4968
4969         vcpu->arch.cr0 |= X86_CR0_ET;
4970         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4971         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4972         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4973                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4974 }
4975 EXPORT_SYMBOL_GPL(fx_init);
4976
4977 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4978 {
4979         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4980                 return;
4981
4982         vcpu->guest_fpu_loaded = 1;
4983         kvm_fx_save(&vcpu->arch.host_fx_image);
4984         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4985 }
4986 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4987
4988 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4989 {
4990         if (!vcpu->guest_fpu_loaded)
4991                 return;
4992
4993         vcpu->guest_fpu_loaded = 0;
4994         kvm_fx_save(&vcpu->arch.guest_fx_image);
4995         kvm_fx_restore(&vcpu->arch.host_fx_image);
4996         ++vcpu->stat.fpu_reload;
4997 }
4998 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4999
5000 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5001 {
5002         if (vcpu->arch.time_page) {
5003                 kvm_release_page_dirty(vcpu->arch.time_page);
5004                 vcpu->arch.time_page = NULL;
5005         }
5006
5007         kvm_x86_ops->vcpu_free(vcpu);
5008 }
5009
5010 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5011                                                 unsigned int id)
5012 {
5013         return kvm_x86_ops->vcpu_create(kvm, id);
5014 }
5015
5016 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5017 {
5018         int r;
5019
5020         /* We do fxsave: this must be aligned. */
5021         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5022
5023         vcpu->arch.mtrr_state.have_fixed = 1;
5024         vcpu_load(vcpu);
5025         r = kvm_arch_vcpu_reset(vcpu);
5026         if (r == 0)
5027                 r = kvm_mmu_setup(vcpu);
5028         vcpu_put(vcpu);
5029         if (r < 0)
5030                 goto free_vcpu;
5031
5032         return 0;
5033 free_vcpu:
5034         kvm_x86_ops->vcpu_free(vcpu);
5035         return r;
5036 }
5037
5038 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5039 {
5040         vcpu_load(vcpu);
5041         kvm_mmu_unload(vcpu);
5042         vcpu_put(vcpu);
5043
5044         kvm_x86_ops->vcpu_free(vcpu);
5045 }
5046
5047 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5048 {
5049         vcpu->arch.nmi_pending = false;
5050         vcpu->arch.nmi_injected = false;
5051
5052         vcpu->arch.switch_db_regs = 0;
5053         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5054         vcpu->arch.dr6 = DR6_FIXED_1;
5055         vcpu->arch.dr7 = DR7_FIXED_1;
5056
5057         return kvm_x86_ops->vcpu_reset(vcpu);
5058 }
5059
5060 int kvm_arch_hardware_enable(void *garbage)
5061 {
5062         /*
5063          * Since this may be called from a hotplug notifcation,
5064          * we can't get the CPU frequency directly.
5065          */
5066         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5067                 int cpu = raw_smp_processor_id();
5068                 per_cpu(cpu_tsc_khz, cpu) = 0;
5069         }
5070
5071         kvm_shared_msr_cpu_online();
5072
5073         return kvm_x86_ops->hardware_enable(garbage);
5074 }
5075
5076 void kvm_arch_hardware_disable(void *garbage)
5077 {
5078         kvm_x86_ops->hardware_disable(garbage);
5079         drop_user_return_notifiers(garbage);
5080 }
5081
5082 int kvm_arch_hardware_setup(void)
5083 {
5084         return kvm_x86_ops->hardware_setup();
5085 }
5086
5087 void kvm_arch_hardware_unsetup(void)
5088 {
5089         kvm_x86_ops->hardware_unsetup();
5090 }
5091
5092 void kvm_arch_check_processor_compat(void *rtn)
5093 {
5094         kvm_x86_ops->check_processor_compatibility(rtn);
5095 }
5096
5097 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5098 {
5099         struct page *page;
5100         struct kvm *kvm;
5101         int r;
5102
5103         BUG_ON(vcpu->kvm == NULL);
5104         kvm = vcpu->kvm;
5105
5106         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5107         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5108                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5109         else
5110                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5111
5112         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5113         if (!page) {
5114                 r = -ENOMEM;
5115                 goto fail;
5116         }
5117         vcpu->arch.pio_data = page_address(page);
5118
5119         r = kvm_mmu_create(vcpu);
5120         if (r < 0)
5121                 goto fail_free_pio_data;
5122
5123         if (irqchip_in_kernel(kvm)) {
5124                 r = kvm_create_lapic(vcpu);
5125                 if (r < 0)
5126                         goto fail_mmu_destroy;
5127         }
5128
5129         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5130                                        GFP_KERNEL);
5131         if (!vcpu->arch.mce_banks) {
5132                 r = -ENOMEM;
5133                 goto fail_free_lapic;
5134         }
5135         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5136
5137         return 0;
5138 fail_free_lapic:
5139         kvm_free_lapic(vcpu);
5140 fail_mmu_destroy:
5141         kvm_mmu_destroy(vcpu);
5142 fail_free_pio_data:
5143         free_page((unsigned long)vcpu->arch.pio_data);
5144 fail:
5145         return r;
5146 }
5147
5148 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5149 {
5150         kfree(vcpu->arch.mce_banks);
5151         kvm_free_lapic(vcpu);
5152         down_read(&vcpu->kvm->slots_lock);
5153         kvm_mmu_destroy(vcpu);
5154         up_read(&vcpu->kvm->slots_lock);
5155         free_page((unsigned long)vcpu->arch.pio_data);
5156 }
5157
5158 struct  kvm *kvm_arch_create_vm(void)
5159 {
5160         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5161
5162         if (!kvm)
5163                 return ERR_PTR(-ENOMEM);
5164
5165         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5166         if (!kvm->arch.aliases) {
5167                 kfree(kvm);
5168                 return ERR_PTR(-ENOMEM);
5169         }
5170
5171         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5172         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5173
5174         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5175         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5176
5177         rdtscll(kvm->arch.vm_init_tsc);
5178
5179         return kvm;
5180 }
5181
5182 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5183 {
5184         vcpu_load(vcpu);
5185         kvm_mmu_unload(vcpu);
5186         vcpu_put(vcpu);
5187 }
5188
5189 static void kvm_free_vcpus(struct kvm *kvm)
5190 {
5191         unsigned int i;
5192         struct kvm_vcpu *vcpu;
5193
5194         /*
5195          * Unpin any mmu pages first.
5196          */
5197         kvm_for_each_vcpu(i, vcpu, kvm)
5198                 kvm_unload_vcpu_mmu(vcpu);
5199         kvm_for_each_vcpu(i, vcpu, kvm)
5200                 kvm_arch_vcpu_free(vcpu);
5201
5202         mutex_lock(&kvm->lock);
5203         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5204                 kvm->vcpus[i] = NULL;
5205
5206         atomic_set(&kvm->online_vcpus, 0);
5207         mutex_unlock(&kvm->lock);
5208 }
5209
5210 void kvm_arch_sync_events(struct kvm *kvm)
5211 {
5212         kvm_free_all_assigned_devices(kvm);
5213 }
5214
5215 void kvm_arch_destroy_vm(struct kvm *kvm)
5216 {
5217         kvm_iommu_unmap_guest(kvm);
5218         kvm_free_pit(kvm);
5219         kfree(kvm->arch.vpic);
5220         kfree(kvm->arch.vioapic);
5221         kvm_free_vcpus(kvm);
5222         kvm_free_physmem(kvm);
5223         if (kvm->arch.apic_access_page)
5224                 put_page(kvm->arch.apic_access_page);
5225         if (kvm->arch.ept_identity_pagetable)
5226                 put_page(kvm->arch.ept_identity_pagetable);
5227         kfree(kvm->arch.aliases);
5228         kfree(kvm);
5229 }
5230
5231 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5232                                 struct kvm_memory_slot *memslot,
5233                                 struct kvm_memory_slot old,
5234                                 struct kvm_userspace_memory_region *mem,
5235                                 int user_alloc)
5236 {
5237         int npages = memslot->npages;
5238
5239         /*To keep backward compatibility with older userspace,
5240          *x86 needs to hanlde !user_alloc case.
5241          */
5242         if (!user_alloc) {
5243                 if (npages && !old.rmap) {
5244                         unsigned long userspace_addr;
5245
5246                         down_write(&current->mm->mmap_sem);
5247                         userspace_addr = do_mmap(NULL, 0,
5248                                                  npages * PAGE_SIZE,
5249                                                  PROT_READ | PROT_WRITE,
5250                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5251                                                  0);
5252                         up_write(&current->mm->mmap_sem);
5253
5254                         if (IS_ERR((void *)userspace_addr))
5255                                 return PTR_ERR((void *)userspace_addr);
5256
5257                         memslot->userspace_addr = userspace_addr;
5258                 }
5259         }
5260
5261
5262         return 0;
5263 }
5264
5265 void kvm_arch_commit_memory_region(struct kvm *kvm,
5266                                 struct kvm_userspace_memory_region *mem,
5267                                 struct kvm_memory_slot old,
5268                                 int user_alloc)
5269 {
5270
5271         int npages = mem->memory_size >> PAGE_SHIFT;
5272
5273         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5274                 int ret;
5275
5276                 down_write(&current->mm->mmap_sem);
5277                 ret = do_munmap(current->mm, old.userspace_addr,
5278                                 old.npages * PAGE_SIZE);
5279                 up_write(&current->mm->mmap_sem);
5280                 if (ret < 0)
5281                         printk(KERN_WARNING
5282                                "kvm_vm_ioctl_set_memory_region: "
5283                                "failed to munmap memory\n");
5284         }
5285
5286         spin_lock(&kvm->mmu_lock);
5287         if (!kvm->arch.n_requested_mmu_pages) {
5288                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5289                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5290         }
5291
5292         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5293         spin_unlock(&kvm->mmu_lock);
5294 }
5295
5296 void kvm_arch_flush_shadow(struct kvm *kvm)
5297 {
5298         kvm_mmu_zap_all(kvm);
5299         kvm_reload_remote_mmus(kvm);
5300 }
5301
5302 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5303 {
5304         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5305                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5306                 || vcpu->arch.nmi_pending ||
5307                 (kvm_arch_interrupt_allowed(vcpu) &&
5308                  kvm_cpu_has_interrupt(vcpu));
5309 }
5310
5311 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5312 {
5313         int me;
5314         int cpu = vcpu->cpu;
5315
5316         if (waitqueue_active(&vcpu->wq)) {
5317                 wake_up_interruptible(&vcpu->wq);
5318                 ++vcpu->stat.halt_wakeup;
5319         }
5320
5321         me = get_cpu();
5322         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5323                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5324                         smp_send_reschedule(cpu);
5325         put_cpu();
5326 }
5327
5328 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5329 {
5330         return kvm_x86_ops->interrupt_allowed(vcpu);
5331 }
5332
5333 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5334 {
5335         unsigned long rflags;
5336
5337         rflags = kvm_x86_ops->get_rflags(vcpu);
5338         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5339                 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5340         return rflags;
5341 }
5342 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5343
5344 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5345 {
5346         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5347             vcpu->arch.singlestep_cs ==
5348                         get_segment_selector(vcpu, VCPU_SREG_CS) &&
5349             vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5350                 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5351         kvm_x86_ops->set_rflags(vcpu, rflags);
5352 }
5353 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5354
5355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5362 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5363 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5364 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5365 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);