]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/x86/kvm/svm.c
KVM: SVM: Fold save_host_msrs() and load_host_msrs() into their callers
[linux-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
55
56 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
57 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
58 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67         MSR_FS_BASE,
68 #endif
69         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77         struct vmcb *hsave;
78         u64 hsave_msr;
79         u64 vm_cr_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87         u64 vmcb_iopm;
88
89         /* A VMEXIT is required but not yet emulated */
90         bool exit_required;
91
92         /*
93          * If we vmexit during an instruction emulation we need this to restore
94          * the l1 guest rip after the emulation
95          */
96         unsigned long vmexit_rip;
97         unsigned long vmexit_rsp;
98         unsigned long vmexit_rax;
99
100         /* cache for intercepts of the guest */
101         u16 intercept_cr_read;
102         u16 intercept_cr_write;
103         u16 intercept_dr_read;
104         u16 intercept_dr_write;
105         u32 intercept_exceptions;
106         u64 intercept;
107
108         /* Nested Paging related state */
109         u64 nested_cr3;
110 };
111
112 #define MSRPM_OFFSETS   16
113 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
114
115 struct vcpu_svm {
116         struct kvm_vcpu vcpu;
117         struct vmcb *vmcb;
118         unsigned long vmcb_pa;
119         struct svm_cpu_data *svm_data;
120         uint64_t asid_generation;
121         uint64_t sysenter_esp;
122         uint64_t sysenter_eip;
123
124         u64 next_rip;
125
126         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
127         struct {
128                 u16 fs;
129                 u16 gs;
130                 u16 ldt;
131                 u64 gs_base;
132         } host;
133
134         u32 *msrpm;
135
136         struct nested_state nested;
137
138         bool nmi_singlestep;
139
140         unsigned int3_injected;
141         unsigned long int3_rip;
142         u32 apf_reason;
143 };
144
145 #define MSR_INVALID                     0xffffffffU
146
147 static struct svm_direct_access_msrs {
148         u32 index;   /* Index of the MSR */
149         bool always; /* True if intercept is always on */
150 } direct_access_msrs[] = {
151         { .index = MSR_STAR,                            .always = true  },
152         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
153 #ifdef CONFIG_X86_64
154         { .index = MSR_GS_BASE,                         .always = true  },
155         { .index = MSR_FS_BASE,                         .always = true  },
156         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
157         { .index = MSR_LSTAR,                           .always = true  },
158         { .index = MSR_CSTAR,                           .always = true  },
159         { .index = MSR_SYSCALL_MASK,                    .always = true  },
160 #endif
161         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
162         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
163         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
164         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
165         { .index = MSR_INVALID,                         .always = false },
166 };
167
168 /* enable NPT for AMD64 and X86 with PAE */
169 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
170 static bool npt_enabled = true;
171 #else
172 static bool npt_enabled;
173 #endif
174 static int npt = 1;
175
176 module_param(npt, int, S_IRUGO);
177
178 static int nested = 1;
179 module_param(nested, int, S_IRUGO);
180
181 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
182 static void svm_complete_interrupts(struct vcpu_svm *svm);
183
184 static int nested_svm_exit_handled(struct vcpu_svm *svm);
185 static int nested_svm_intercept(struct vcpu_svm *svm);
186 static int nested_svm_vmexit(struct vcpu_svm *svm);
187 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
188                                       bool has_error_code, u32 error_code);
189
190 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
191 {
192         return container_of(vcpu, struct vcpu_svm, vcpu);
193 }
194
195 static inline bool is_nested(struct vcpu_svm *svm)
196 {
197         return svm->nested.vmcb;
198 }
199
200 static inline void enable_gif(struct vcpu_svm *svm)
201 {
202         svm->vcpu.arch.hflags |= HF_GIF_MASK;
203 }
204
205 static inline void disable_gif(struct vcpu_svm *svm)
206 {
207         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
208 }
209
210 static inline bool gif_set(struct vcpu_svm *svm)
211 {
212         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
213 }
214
215 static unsigned long iopm_base;
216
217 struct kvm_ldttss_desc {
218         u16 limit0;
219         u16 base0;
220         unsigned base1:8, type:5, dpl:2, p:1;
221         unsigned limit1:4, zero0:3, g:1, base2:8;
222         u32 base3;
223         u32 zero1;
224 } __attribute__((packed));
225
226 struct svm_cpu_data {
227         int cpu;
228
229         u64 asid_generation;
230         u32 max_asid;
231         u32 next_asid;
232         struct kvm_ldttss_desc *tss_desc;
233
234         struct page *save_area;
235 };
236
237 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
238 static uint32_t svm_features;
239
240 struct svm_init_data {
241         int cpu;
242         int r;
243 };
244
245 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
246
247 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
248 #define MSRS_RANGE_SIZE 2048
249 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
250
251 static u32 svm_msrpm_offset(u32 msr)
252 {
253         u32 offset;
254         int i;
255
256         for (i = 0; i < NUM_MSR_MAPS; i++) {
257                 if (msr < msrpm_ranges[i] ||
258                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
259                         continue;
260
261                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
262                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
263
264                 /* Now we have the u8 offset - but need the u32 offset */
265                 return offset / 4;
266         }
267
268         /* MSR not in any range */
269         return MSR_INVALID;
270 }
271
272 #define MAX_INST_SIZE 15
273
274 static inline u32 svm_has(u32 feat)
275 {
276         return svm_features & feat;
277 }
278
279 static inline void clgi(void)
280 {
281         asm volatile (__ex(SVM_CLGI));
282 }
283
284 static inline void stgi(void)
285 {
286         asm volatile (__ex(SVM_STGI));
287 }
288
289 static inline void invlpga(unsigned long addr, u32 asid)
290 {
291         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
292 }
293
294 static inline void force_new_asid(struct kvm_vcpu *vcpu)
295 {
296         to_svm(vcpu)->asid_generation--;
297 }
298
299 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
300 {
301         force_new_asid(vcpu);
302 }
303
304 static int get_npt_level(void)
305 {
306 #ifdef CONFIG_X86_64
307         return PT64_ROOT_LEVEL;
308 #else
309         return PT32E_ROOT_LEVEL;
310 #endif
311 }
312
313 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
314 {
315         vcpu->arch.efer = efer;
316         if (!npt_enabled && !(efer & EFER_LMA))
317                 efer &= ~EFER_LME;
318
319         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
320 }
321
322 static int is_external_interrupt(u32 info)
323 {
324         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
325         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
326 }
327
328 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
329 {
330         struct vcpu_svm *svm = to_svm(vcpu);
331         u32 ret = 0;
332
333         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
334                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
335         return ret & mask;
336 }
337
338 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
339 {
340         struct vcpu_svm *svm = to_svm(vcpu);
341
342         if (mask == 0)
343                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
344         else
345                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
346
347 }
348
349 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
350 {
351         struct vcpu_svm *svm = to_svm(vcpu);
352
353         if (svm->vmcb->control.next_rip != 0)
354                 svm->next_rip = svm->vmcb->control.next_rip;
355
356         if (!svm->next_rip) {
357                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
358                                 EMULATE_DONE)
359                         printk(KERN_DEBUG "%s: NOP\n", __func__);
360                 return;
361         }
362         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
363                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
364                        __func__, kvm_rip_read(vcpu), svm->next_rip);
365
366         kvm_rip_write(vcpu, svm->next_rip);
367         svm_set_interrupt_shadow(vcpu, 0);
368 }
369
370 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
371                                 bool has_error_code, u32 error_code,
372                                 bool reinject)
373 {
374         struct vcpu_svm *svm = to_svm(vcpu);
375
376         /*
377          * If we are within a nested VM we'd better #VMEXIT and let the guest
378          * handle the exception
379          */
380         if (!reinject &&
381             nested_svm_check_exception(svm, nr, has_error_code, error_code))
382                 return;
383
384         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
385                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
386
387                 /*
388                  * For guest debugging where we have to reinject #BP if some
389                  * INT3 is guest-owned:
390                  * Emulate nRIP by moving RIP forward. Will fail if injection
391                  * raises a fault that is not intercepted. Still better than
392                  * failing in all cases.
393                  */
394                 skip_emulated_instruction(&svm->vcpu);
395                 rip = kvm_rip_read(&svm->vcpu);
396                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
397                 svm->int3_injected = rip - old_rip;
398         }
399
400         svm->vmcb->control.event_inj = nr
401                 | SVM_EVTINJ_VALID
402                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
403                 | SVM_EVTINJ_TYPE_EXEPT;
404         svm->vmcb->control.event_inj_err = error_code;
405 }
406
407 static void svm_init_erratum_383(void)
408 {
409         u32 low, high;
410         int err;
411         u64 val;
412
413         if (!cpu_has_amd_erratum(amd_erratum_383))
414                 return;
415
416         /* Use _safe variants to not break nested virtualization */
417         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
418         if (err)
419                 return;
420
421         val |= (1ULL << 47);
422
423         low  = lower_32_bits(val);
424         high = upper_32_bits(val);
425
426         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
427
428         erratum_383_found = true;
429 }
430
431 static int has_svm(void)
432 {
433         const char *msg;
434
435         if (!cpu_has_svm(&msg)) {
436                 printk(KERN_INFO "has_svm: %s\n", msg);
437                 return 0;
438         }
439
440         return 1;
441 }
442
443 static void svm_hardware_disable(void *garbage)
444 {
445         cpu_svm_disable();
446 }
447
448 static int svm_hardware_enable(void *garbage)
449 {
450
451         struct svm_cpu_data *sd;
452         uint64_t efer;
453         struct desc_ptr gdt_descr;
454         struct desc_struct *gdt;
455         int me = raw_smp_processor_id();
456
457         rdmsrl(MSR_EFER, efer);
458         if (efer & EFER_SVME)
459                 return -EBUSY;
460
461         if (!has_svm()) {
462                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
463                        me);
464                 return -EINVAL;
465         }
466         sd = per_cpu(svm_data, me);
467
468         if (!sd) {
469                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
470                        me);
471                 return -EINVAL;
472         }
473
474         sd->asid_generation = 1;
475         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
476         sd->next_asid = sd->max_asid + 1;
477
478         native_store_gdt(&gdt_descr);
479         gdt = (struct desc_struct *)gdt_descr.address;
480         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
481
482         wrmsrl(MSR_EFER, efer | EFER_SVME);
483
484         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
485
486         svm_init_erratum_383();
487
488         return 0;
489 }
490
491 static void svm_cpu_uninit(int cpu)
492 {
493         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
494
495         if (!sd)
496                 return;
497
498         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
499         __free_page(sd->save_area);
500         kfree(sd);
501 }
502
503 static int svm_cpu_init(int cpu)
504 {
505         struct svm_cpu_data *sd;
506         int r;
507
508         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
509         if (!sd)
510                 return -ENOMEM;
511         sd->cpu = cpu;
512         sd->save_area = alloc_page(GFP_KERNEL);
513         r = -ENOMEM;
514         if (!sd->save_area)
515                 goto err_1;
516
517         per_cpu(svm_data, cpu) = sd;
518
519         return 0;
520
521 err_1:
522         kfree(sd);
523         return r;
524
525 }
526
527 static bool valid_msr_intercept(u32 index)
528 {
529         int i;
530
531         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
532                 if (direct_access_msrs[i].index == index)
533                         return true;
534
535         return false;
536 }
537
538 static void set_msr_interception(u32 *msrpm, unsigned msr,
539                                  int read, int write)
540 {
541         u8 bit_read, bit_write;
542         unsigned long tmp;
543         u32 offset;
544
545         /*
546          * If this warning triggers extend the direct_access_msrs list at the
547          * beginning of the file
548          */
549         WARN_ON(!valid_msr_intercept(msr));
550
551         offset    = svm_msrpm_offset(msr);
552         bit_read  = 2 * (msr & 0x0f);
553         bit_write = 2 * (msr & 0x0f) + 1;
554         tmp       = msrpm[offset];
555
556         BUG_ON(offset == MSR_INVALID);
557
558         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
559         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
560
561         msrpm[offset] = tmp;
562 }
563
564 static void svm_vcpu_init_msrpm(u32 *msrpm)
565 {
566         int i;
567
568         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
569
570         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
571                 if (!direct_access_msrs[i].always)
572                         continue;
573
574                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
575         }
576 }
577
578 static void add_msr_offset(u32 offset)
579 {
580         int i;
581
582         for (i = 0; i < MSRPM_OFFSETS; ++i) {
583
584                 /* Offset already in list? */
585                 if (msrpm_offsets[i] == offset)
586                         return;
587
588                 /* Slot used by another offset? */
589                 if (msrpm_offsets[i] != MSR_INVALID)
590                         continue;
591
592                 /* Add offset to list */
593                 msrpm_offsets[i] = offset;
594
595                 return;
596         }
597
598         /*
599          * If this BUG triggers the msrpm_offsets table has an overflow. Just
600          * increase MSRPM_OFFSETS in this case.
601          */
602         BUG();
603 }
604
605 static void init_msrpm_offsets(void)
606 {
607         int i;
608
609         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
610
611         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
612                 u32 offset;
613
614                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
615                 BUG_ON(offset == MSR_INVALID);
616
617                 add_msr_offset(offset);
618         }
619 }
620
621 static void svm_enable_lbrv(struct vcpu_svm *svm)
622 {
623         u32 *msrpm = svm->msrpm;
624
625         svm->vmcb->control.lbr_ctl = 1;
626         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
627         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
628         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
629         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
630 }
631
632 static void svm_disable_lbrv(struct vcpu_svm *svm)
633 {
634         u32 *msrpm = svm->msrpm;
635
636         svm->vmcb->control.lbr_ctl = 0;
637         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
638         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
639         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
640         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
641 }
642
643 static __init int svm_hardware_setup(void)
644 {
645         int cpu;
646         struct page *iopm_pages;
647         void *iopm_va;
648         int r;
649
650         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
651
652         if (!iopm_pages)
653                 return -ENOMEM;
654
655         iopm_va = page_address(iopm_pages);
656         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
657         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
658
659         init_msrpm_offsets();
660
661         if (boot_cpu_has(X86_FEATURE_NX))
662                 kvm_enable_efer_bits(EFER_NX);
663
664         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
665                 kvm_enable_efer_bits(EFER_FFXSR);
666
667         if (nested) {
668                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
669                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
670         }
671
672         for_each_possible_cpu(cpu) {
673                 r = svm_cpu_init(cpu);
674                 if (r)
675                         goto err;
676         }
677
678         svm_features = cpuid_edx(SVM_CPUID_FUNC);
679
680         if (!svm_has(SVM_FEATURE_NPT))
681                 npt_enabled = false;
682
683         if (npt_enabled && !npt) {
684                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
685                 npt_enabled = false;
686         }
687
688         if (npt_enabled) {
689                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
690                 kvm_enable_tdp();
691         } else
692                 kvm_disable_tdp();
693
694         return 0;
695
696 err:
697         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
698         iopm_base = 0;
699         return r;
700 }
701
702 static __exit void svm_hardware_unsetup(void)
703 {
704         int cpu;
705
706         for_each_possible_cpu(cpu)
707                 svm_cpu_uninit(cpu);
708
709         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
710         iopm_base = 0;
711 }
712
713 static void init_seg(struct vmcb_seg *seg)
714 {
715         seg->selector = 0;
716         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
717                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
718         seg->limit = 0xffff;
719         seg->base = 0;
720 }
721
722 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
723 {
724         seg->selector = 0;
725         seg->attrib = SVM_SELECTOR_P_MASK | type;
726         seg->limit = 0xffff;
727         seg->base = 0;
728 }
729
730 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
731 {
732         struct vcpu_svm *svm = to_svm(vcpu);
733         u64 g_tsc_offset = 0;
734
735         if (is_nested(svm)) {
736                 g_tsc_offset = svm->vmcb->control.tsc_offset -
737                                svm->nested.hsave->control.tsc_offset;
738                 svm->nested.hsave->control.tsc_offset = offset;
739         }
740
741         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
742 }
743
744 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
745 {
746         struct vcpu_svm *svm = to_svm(vcpu);
747
748         svm->vmcb->control.tsc_offset += adjustment;
749         if (is_nested(svm))
750                 svm->nested.hsave->control.tsc_offset += adjustment;
751 }
752
753 static void init_vmcb(struct vcpu_svm *svm)
754 {
755         struct vmcb_control_area *control = &svm->vmcb->control;
756         struct vmcb_save_area *save = &svm->vmcb->save;
757
758         svm->vcpu.fpu_active = 1;
759
760         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
761                                         INTERCEPT_CR3_MASK |
762                                         INTERCEPT_CR4_MASK;
763
764         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
765                                         INTERCEPT_CR3_MASK |
766                                         INTERCEPT_CR4_MASK |
767                                         INTERCEPT_CR8_MASK;
768
769         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
770                                         INTERCEPT_DR1_MASK |
771                                         INTERCEPT_DR2_MASK |
772                                         INTERCEPT_DR3_MASK |
773                                         INTERCEPT_DR4_MASK |
774                                         INTERCEPT_DR5_MASK |
775                                         INTERCEPT_DR6_MASK |
776                                         INTERCEPT_DR7_MASK;
777
778         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
779                                         INTERCEPT_DR1_MASK |
780                                         INTERCEPT_DR2_MASK |
781                                         INTERCEPT_DR3_MASK |
782                                         INTERCEPT_DR4_MASK |
783                                         INTERCEPT_DR5_MASK |
784                                         INTERCEPT_DR6_MASK |
785                                         INTERCEPT_DR7_MASK;
786
787         control->intercept_exceptions = (1 << PF_VECTOR) |
788                                         (1 << UD_VECTOR) |
789                                         (1 << MC_VECTOR);
790
791
792         control->intercept =    (1ULL << INTERCEPT_INTR) |
793                                 (1ULL << INTERCEPT_NMI) |
794                                 (1ULL << INTERCEPT_SMI) |
795                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
796                                 (1ULL << INTERCEPT_CPUID) |
797                                 (1ULL << INTERCEPT_INVD) |
798                                 (1ULL << INTERCEPT_HLT) |
799                                 (1ULL << INTERCEPT_INVLPG) |
800                                 (1ULL << INTERCEPT_INVLPGA) |
801                                 (1ULL << INTERCEPT_IOIO_PROT) |
802                                 (1ULL << INTERCEPT_MSR_PROT) |
803                                 (1ULL << INTERCEPT_TASK_SWITCH) |
804                                 (1ULL << INTERCEPT_SHUTDOWN) |
805                                 (1ULL << INTERCEPT_VMRUN) |
806                                 (1ULL << INTERCEPT_VMMCALL) |
807                                 (1ULL << INTERCEPT_VMLOAD) |
808                                 (1ULL << INTERCEPT_VMSAVE) |
809                                 (1ULL << INTERCEPT_STGI) |
810                                 (1ULL << INTERCEPT_CLGI) |
811                                 (1ULL << INTERCEPT_SKINIT) |
812                                 (1ULL << INTERCEPT_WBINVD) |
813                                 (1ULL << INTERCEPT_MONITOR) |
814                                 (1ULL << INTERCEPT_MWAIT);
815
816         control->iopm_base_pa = iopm_base;
817         control->msrpm_base_pa = __pa(svm->msrpm);
818         control->int_ctl = V_INTR_MASKING_MASK;
819
820         init_seg(&save->es);
821         init_seg(&save->ss);
822         init_seg(&save->ds);
823         init_seg(&save->fs);
824         init_seg(&save->gs);
825
826         save->cs.selector = 0xf000;
827         /* Executable/Readable Code Segment */
828         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
829                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
830         save->cs.limit = 0xffff;
831         /*
832          * cs.base should really be 0xffff0000, but vmx can't handle that, so
833          * be consistent with it.
834          *
835          * Replace when we have real mode working for vmx.
836          */
837         save->cs.base = 0xf0000;
838
839         save->gdtr.limit = 0xffff;
840         save->idtr.limit = 0xffff;
841
842         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
843         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
844
845         svm_set_efer(&svm->vcpu, 0);
846         save->dr6 = 0xffff0ff0;
847         save->dr7 = 0x400;
848         save->rflags = 2;
849         save->rip = 0x0000fff0;
850         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
851
852         /*
853          * This is the guest-visible cr0 value.
854          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
855          */
856         svm->vcpu.arch.cr0 = 0;
857         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
858
859         save->cr4 = X86_CR4_PAE;
860         /* rdx = ?? */
861
862         if (npt_enabled) {
863                 /* Setup VMCB for Nested Paging */
864                 control->nested_ctl = 1;
865                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
866                                         (1ULL << INTERCEPT_INVLPG));
867                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
868                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
869                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
870                 save->g_pat = 0x0007040600070406ULL;
871                 save->cr3 = 0;
872                 save->cr4 = 0;
873         }
874         force_new_asid(&svm->vcpu);
875
876         svm->nested.vmcb = 0;
877         svm->vcpu.arch.hflags = 0;
878
879         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
880                 control->pause_filter_count = 3000;
881                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
882         }
883
884         enable_gif(svm);
885 }
886
887 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
888 {
889         struct vcpu_svm *svm = to_svm(vcpu);
890
891         init_vmcb(svm);
892
893         if (!kvm_vcpu_is_bsp(vcpu)) {
894                 kvm_rip_write(vcpu, 0);
895                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
896                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
897         }
898         vcpu->arch.regs_avail = ~0;
899         vcpu->arch.regs_dirty = ~0;
900
901         return 0;
902 }
903
904 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
905 {
906         struct vcpu_svm *svm;
907         struct page *page;
908         struct page *msrpm_pages;
909         struct page *hsave_page;
910         struct page *nested_msrpm_pages;
911         int err;
912
913         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
914         if (!svm) {
915                 err = -ENOMEM;
916                 goto out;
917         }
918
919         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
920         if (err)
921                 goto free_svm;
922
923         err = -ENOMEM;
924         page = alloc_page(GFP_KERNEL);
925         if (!page)
926                 goto uninit;
927
928         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
929         if (!msrpm_pages)
930                 goto free_page1;
931
932         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
933         if (!nested_msrpm_pages)
934                 goto free_page2;
935
936         hsave_page = alloc_page(GFP_KERNEL);
937         if (!hsave_page)
938                 goto free_page3;
939
940         svm->nested.hsave = page_address(hsave_page);
941
942         svm->msrpm = page_address(msrpm_pages);
943         svm_vcpu_init_msrpm(svm->msrpm);
944
945         svm->nested.msrpm = page_address(nested_msrpm_pages);
946         svm_vcpu_init_msrpm(svm->nested.msrpm);
947
948         svm->vmcb = page_address(page);
949         clear_page(svm->vmcb);
950         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
951         svm->asid_generation = 0;
952         init_vmcb(svm);
953         kvm_write_tsc(&svm->vcpu, 0);
954
955         err = fx_init(&svm->vcpu);
956         if (err)
957                 goto free_page4;
958
959         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
960         if (kvm_vcpu_is_bsp(&svm->vcpu))
961                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
962
963         return &svm->vcpu;
964
965 free_page4:
966         __free_page(hsave_page);
967 free_page3:
968         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
969 free_page2:
970         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
971 free_page1:
972         __free_page(page);
973 uninit:
974         kvm_vcpu_uninit(&svm->vcpu);
975 free_svm:
976         kmem_cache_free(kvm_vcpu_cache, svm);
977 out:
978         return ERR_PTR(err);
979 }
980
981 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
982 {
983         struct vcpu_svm *svm = to_svm(vcpu);
984
985         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
986         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
987         __free_page(virt_to_page(svm->nested.hsave));
988         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
989         kvm_vcpu_uninit(vcpu);
990         kmem_cache_free(kvm_vcpu_cache, svm);
991 }
992
993 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         int i;
997
998         if (unlikely(cpu != vcpu->cpu)) {
999                 svm->asid_generation = 0;
1000         }
1001
1002 #ifdef CONFIG_X86_64
1003         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1004 #endif
1005         savesegment(fs, svm->host.fs);
1006         savesegment(gs, svm->host.gs);
1007         svm->host.ldt = kvm_read_ldt();
1008
1009         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1010                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1011 }
1012
1013 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1014 {
1015         struct vcpu_svm *svm = to_svm(vcpu);
1016         int i;
1017
1018         ++vcpu->stat.host_state_reload;
1019         kvm_load_ldt(svm->host.ldt);
1020 #ifdef CONFIG_X86_64
1021         loadsegment(fs, svm->host.fs);
1022         load_gs_index(svm->host.gs);
1023         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1024 #else
1025         loadsegment(gs, svm->host.gs);
1026 #endif
1027         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1028                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1029 }
1030
1031 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1032 {
1033         return to_svm(vcpu)->vmcb->save.rflags;
1034 }
1035
1036 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1037 {
1038         to_svm(vcpu)->vmcb->save.rflags = rflags;
1039 }
1040
1041 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1042 {
1043         switch (reg) {
1044         case VCPU_EXREG_PDPTR:
1045                 BUG_ON(!npt_enabled);
1046                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1047                 break;
1048         default:
1049                 BUG();
1050         }
1051 }
1052
1053 static void svm_set_vintr(struct vcpu_svm *svm)
1054 {
1055         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1056 }
1057
1058 static void svm_clear_vintr(struct vcpu_svm *svm)
1059 {
1060         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1061 }
1062
1063 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1064 {
1065         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1066
1067         switch (seg) {
1068         case VCPU_SREG_CS: return &save->cs;
1069         case VCPU_SREG_DS: return &save->ds;
1070         case VCPU_SREG_ES: return &save->es;
1071         case VCPU_SREG_FS: return &save->fs;
1072         case VCPU_SREG_GS: return &save->gs;
1073         case VCPU_SREG_SS: return &save->ss;
1074         case VCPU_SREG_TR: return &save->tr;
1075         case VCPU_SREG_LDTR: return &save->ldtr;
1076         }
1077         BUG();
1078         return NULL;
1079 }
1080
1081 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1082 {
1083         struct vmcb_seg *s = svm_seg(vcpu, seg);
1084
1085         return s->base;
1086 }
1087
1088 static void svm_get_segment(struct kvm_vcpu *vcpu,
1089                             struct kvm_segment *var, int seg)
1090 {
1091         struct vmcb_seg *s = svm_seg(vcpu, seg);
1092
1093         var->base = s->base;
1094         var->limit = s->limit;
1095         var->selector = s->selector;
1096         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1097         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1098         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1099         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1100         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1101         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1102         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1103         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1104
1105         /*
1106          * AMD's VMCB does not have an explicit unusable field, so emulate it
1107          * for cross vendor migration purposes by "not present"
1108          */
1109         var->unusable = !var->present || (var->type == 0);
1110
1111         switch (seg) {
1112         case VCPU_SREG_CS:
1113                 /*
1114                  * SVM always stores 0 for the 'G' bit in the CS selector in
1115                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1116                  * Intel's VMENTRY has a check on the 'G' bit.
1117                  */
1118                 var->g = s->limit > 0xfffff;
1119                 break;
1120         case VCPU_SREG_TR:
1121                 /*
1122                  * Work around a bug where the busy flag in the tr selector
1123                  * isn't exposed
1124                  */
1125                 var->type |= 0x2;
1126                 break;
1127         case VCPU_SREG_DS:
1128         case VCPU_SREG_ES:
1129         case VCPU_SREG_FS:
1130         case VCPU_SREG_GS:
1131                 /*
1132                  * The accessed bit must always be set in the segment
1133                  * descriptor cache, although it can be cleared in the
1134                  * descriptor, the cached bit always remains at 1. Since
1135                  * Intel has a check on this, set it here to support
1136                  * cross-vendor migration.
1137                  */
1138                 if (!var->unusable)
1139                         var->type |= 0x1;
1140                 break;
1141         case VCPU_SREG_SS:
1142                 /*
1143                  * On AMD CPUs sometimes the DB bit in the segment
1144                  * descriptor is left as 1, although the whole segment has
1145                  * been made unusable. Clear it here to pass an Intel VMX
1146                  * entry check when cross vendor migrating.
1147                  */
1148                 if (var->unusable)
1149                         var->db = 0;
1150                 break;
1151         }
1152 }
1153
1154 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1155 {
1156         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1157
1158         return save->cpl;
1159 }
1160
1161 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1162 {
1163         struct vcpu_svm *svm = to_svm(vcpu);
1164
1165         dt->size = svm->vmcb->save.idtr.limit;
1166         dt->address = svm->vmcb->save.idtr.base;
1167 }
1168
1169 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1170 {
1171         struct vcpu_svm *svm = to_svm(vcpu);
1172
1173         svm->vmcb->save.idtr.limit = dt->size;
1174         svm->vmcb->save.idtr.base = dt->address ;
1175 }
1176
1177 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1178 {
1179         struct vcpu_svm *svm = to_svm(vcpu);
1180
1181         dt->size = svm->vmcb->save.gdtr.limit;
1182         dt->address = svm->vmcb->save.gdtr.base;
1183 }
1184
1185 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1186 {
1187         struct vcpu_svm *svm = to_svm(vcpu);
1188
1189         svm->vmcb->save.gdtr.limit = dt->size;
1190         svm->vmcb->save.gdtr.base = dt->address ;
1191 }
1192
1193 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1194 {
1195 }
1196
1197 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1198 {
1199 }
1200
1201 static void update_cr0_intercept(struct vcpu_svm *svm)
1202 {
1203         struct vmcb *vmcb = svm->vmcb;
1204         ulong gcr0 = svm->vcpu.arch.cr0;
1205         u64 *hcr0 = &svm->vmcb->save.cr0;
1206
1207         if (!svm->vcpu.fpu_active)
1208                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1209         else
1210                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1211                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1212
1213
1214         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1215                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1216                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1217                 if (is_nested(svm)) {
1218                         struct vmcb *hsave = svm->nested.hsave;
1219
1220                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1221                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1222                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1223                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1224                 }
1225         } else {
1226                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1227                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1228                 if (is_nested(svm)) {
1229                         struct vmcb *hsave = svm->nested.hsave;
1230
1231                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1232                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1233                 }
1234         }
1235 }
1236
1237 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1238 {
1239         struct vcpu_svm *svm = to_svm(vcpu);
1240
1241         if (is_nested(svm)) {
1242                 /*
1243                  * We are here because we run in nested mode, the host kvm
1244                  * intercepts cr0 writes but the l1 hypervisor does not.
1245                  * But the L1 hypervisor may intercept selective cr0 writes.
1246                  * This needs to be checked here.
1247                  */
1248                 unsigned long old, new;
1249
1250                 /* Remove bits that would trigger a real cr0 write intercept */
1251                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1252                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1253
1254                 if (old == new) {
1255                         /* cr0 write with ts and mp unchanged */
1256                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1257                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1258                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1259                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1260                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1261                                 return;
1262                         }
1263                 }
1264         }
1265
1266 #ifdef CONFIG_X86_64
1267         if (vcpu->arch.efer & EFER_LME) {
1268                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1269                         vcpu->arch.efer |= EFER_LMA;
1270                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1271                 }
1272
1273                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1274                         vcpu->arch.efer &= ~EFER_LMA;
1275                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1276                 }
1277         }
1278 #endif
1279         vcpu->arch.cr0 = cr0;
1280
1281         if (!npt_enabled)
1282                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1283
1284         if (!vcpu->fpu_active)
1285                 cr0 |= X86_CR0_TS;
1286         /*
1287          * re-enable caching here because the QEMU bios
1288          * does not do it - this results in some delay at
1289          * reboot
1290          */
1291         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1292         svm->vmcb->save.cr0 = cr0;
1293         update_cr0_intercept(svm);
1294 }
1295
1296 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1297 {
1298         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1299         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1300
1301         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1302                 force_new_asid(vcpu);
1303
1304         vcpu->arch.cr4 = cr4;
1305         if (!npt_enabled)
1306                 cr4 |= X86_CR4_PAE;
1307         cr4 |= host_cr4_mce;
1308         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1309 }
1310
1311 static void svm_set_segment(struct kvm_vcpu *vcpu,
1312                             struct kvm_segment *var, int seg)
1313 {
1314         struct vcpu_svm *svm = to_svm(vcpu);
1315         struct vmcb_seg *s = svm_seg(vcpu, seg);
1316
1317         s->base = var->base;
1318         s->limit = var->limit;
1319         s->selector = var->selector;
1320         if (var->unusable)
1321                 s->attrib = 0;
1322         else {
1323                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1324                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1325                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1326                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1327                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1328                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1329                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1330                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1331         }
1332         if (seg == VCPU_SREG_CS)
1333                 svm->vmcb->save.cpl
1334                         = (svm->vmcb->save.cs.attrib
1335                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1336
1337 }
1338
1339 static void update_db_intercept(struct kvm_vcpu *vcpu)
1340 {
1341         struct vcpu_svm *svm = to_svm(vcpu);
1342
1343         svm->vmcb->control.intercept_exceptions &=
1344                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1345
1346         if (svm->nmi_singlestep)
1347                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1348
1349         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1350                 if (vcpu->guest_debug &
1351                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1352                         svm->vmcb->control.intercept_exceptions |=
1353                                 1 << DB_VECTOR;
1354                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1355                         svm->vmcb->control.intercept_exceptions |=
1356                                 1 << BP_VECTOR;
1357         } else
1358                 vcpu->guest_debug = 0;
1359 }
1360
1361 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1362 {
1363         struct vcpu_svm *svm = to_svm(vcpu);
1364
1365         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1366                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1367         else
1368                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1369
1370         update_db_intercept(vcpu);
1371 }
1372
1373 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1374 {
1375         if (sd->next_asid > sd->max_asid) {
1376                 ++sd->asid_generation;
1377                 sd->next_asid = 1;
1378                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1379         }
1380
1381         svm->asid_generation = sd->asid_generation;
1382         svm->vmcb->control.asid = sd->next_asid++;
1383 }
1384
1385 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1386 {
1387         struct vcpu_svm *svm = to_svm(vcpu);
1388
1389         svm->vmcb->save.dr7 = value;
1390 }
1391
1392 static int pf_interception(struct vcpu_svm *svm)
1393 {
1394         u64 fault_address = svm->vmcb->control.exit_info_2;
1395         u32 error_code;
1396         int r = 1;
1397
1398         switch (svm->apf_reason) {
1399         default:
1400                 error_code = svm->vmcb->control.exit_info_1;
1401
1402                 trace_kvm_page_fault(fault_address, error_code);
1403                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1404                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1405                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1406                 break;
1407         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1408                 svm->apf_reason = 0;
1409                 local_irq_disable();
1410                 kvm_async_pf_task_wait(fault_address);
1411                 local_irq_enable();
1412                 break;
1413         case KVM_PV_REASON_PAGE_READY:
1414                 svm->apf_reason = 0;
1415                 local_irq_disable();
1416                 kvm_async_pf_task_wake(fault_address);
1417                 local_irq_enable();
1418                 break;
1419         }
1420         return r;
1421 }
1422
1423 static int db_interception(struct vcpu_svm *svm)
1424 {
1425         struct kvm_run *kvm_run = svm->vcpu.run;
1426
1427         if (!(svm->vcpu.guest_debug &
1428               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1429                 !svm->nmi_singlestep) {
1430                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1431                 return 1;
1432         }
1433
1434         if (svm->nmi_singlestep) {
1435                 svm->nmi_singlestep = false;
1436                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1437                         svm->vmcb->save.rflags &=
1438                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1439                 update_db_intercept(&svm->vcpu);
1440         }
1441
1442         if (svm->vcpu.guest_debug &
1443             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1444                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1445                 kvm_run->debug.arch.pc =
1446                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1447                 kvm_run->debug.arch.exception = DB_VECTOR;
1448                 return 0;
1449         }
1450
1451         return 1;
1452 }
1453
1454 static int bp_interception(struct vcpu_svm *svm)
1455 {
1456         struct kvm_run *kvm_run = svm->vcpu.run;
1457
1458         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1459         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1460         kvm_run->debug.arch.exception = BP_VECTOR;
1461         return 0;
1462 }
1463
1464 static int ud_interception(struct vcpu_svm *svm)
1465 {
1466         int er;
1467
1468         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1469         if (er != EMULATE_DONE)
1470                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1471         return 1;
1472 }
1473
1474 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1475 {
1476         struct vcpu_svm *svm = to_svm(vcpu);
1477         u32 excp;
1478
1479         if (is_nested(svm)) {
1480                 u32 h_excp, n_excp;
1481
1482                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1483                 n_excp  = svm->nested.intercept_exceptions;
1484                 h_excp &= ~(1 << NM_VECTOR);
1485                 excp    = h_excp | n_excp;
1486         } else {
1487                 excp  = svm->vmcb->control.intercept_exceptions;
1488                 excp &= ~(1 << NM_VECTOR);
1489         }
1490
1491         svm->vmcb->control.intercept_exceptions = excp;
1492
1493         svm->vcpu.fpu_active = 1;
1494         update_cr0_intercept(svm);
1495 }
1496
1497 static int nm_interception(struct vcpu_svm *svm)
1498 {
1499         svm_fpu_activate(&svm->vcpu);
1500         return 1;
1501 }
1502
1503 static bool is_erratum_383(void)
1504 {
1505         int err, i;
1506         u64 value;
1507
1508         if (!erratum_383_found)
1509                 return false;
1510
1511         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1512         if (err)
1513                 return false;
1514
1515         /* Bit 62 may or may not be set for this mce */
1516         value &= ~(1ULL << 62);
1517
1518         if (value != 0xb600000000010015ULL)
1519                 return false;
1520
1521         /* Clear MCi_STATUS registers */
1522         for (i = 0; i < 6; ++i)
1523                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1524
1525         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1526         if (!err) {
1527                 u32 low, high;
1528
1529                 value &= ~(1ULL << 2);
1530                 low    = lower_32_bits(value);
1531                 high   = upper_32_bits(value);
1532
1533                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1534         }
1535
1536         /* Flush tlb to evict multi-match entries */
1537         __flush_tlb_all();
1538
1539         return true;
1540 }
1541
1542 static void svm_handle_mce(struct vcpu_svm *svm)
1543 {
1544         if (is_erratum_383()) {
1545                 /*
1546                  * Erratum 383 triggered. Guest state is corrupt so kill the
1547                  * guest.
1548                  */
1549                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1550
1551                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1552
1553                 return;
1554         }
1555
1556         /*
1557          * On an #MC intercept the MCE handler is not called automatically in
1558          * the host. So do it by hand here.
1559          */
1560         asm volatile (
1561                 "int $0x12\n");
1562         /* not sure if we ever come back to this point */
1563
1564         return;
1565 }
1566
1567 static int mc_interception(struct vcpu_svm *svm)
1568 {
1569         return 1;
1570 }
1571
1572 static int shutdown_interception(struct vcpu_svm *svm)
1573 {
1574         struct kvm_run *kvm_run = svm->vcpu.run;
1575
1576         /*
1577          * VMCB is undefined after a SHUTDOWN intercept
1578          * so reinitialize it.
1579          */
1580         clear_page(svm->vmcb);
1581         init_vmcb(svm);
1582
1583         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1584         return 0;
1585 }
1586
1587 static int io_interception(struct vcpu_svm *svm)
1588 {
1589         struct kvm_vcpu *vcpu = &svm->vcpu;
1590         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1591         int size, in, string;
1592         unsigned port;
1593
1594         ++svm->vcpu.stat.io_exits;
1595         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1596         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1597         if (string || in)
1598                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1599
1600         port = io_info >> 16;
1601         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1602         svm->next_rip = svm->vmcb->control.exit_info_2;
1603         skip_emulated_instruction(&svm->vcpu);
1604
1605         return kvm_fast_pio_out(vcpu, size, port);
1606 }
1607
1608 static int nmi_interception(struct vcpu_svm *svm)
1609 {
1610         return 1;
1611 }
1612
1613 static int intr_interception(struct vcpu_svm *svm)
1614 {
1615         ++svm->vcpu.stat.irq_exits;
1616         return 1;
1617 }
1618
1619 static int nop_on_interception(struct vcpu_svm *svm)
1620 {
1621         return 1;
1622 }
1623
1624 static int halt_interception(struct vcpu_svm *svm)
1625 {
1626         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1627         skip_emulated_instruction(&svm->vcpu);
1628         return kvm_emulate_halt(&svm->vcpu);
1629 }
1630
1631 static int vmmcall_interception(struct vcpu_svm *svm)
1632 {
1633         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1634         skip_emulated_instruction(&svm->vcpu);
1635         kvm_emulate_hypercall(&svm->vcpu);
1636         return 1;
1637 }
1638
1639 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1640 {
1641         struct vcpu_svm *svm = to_svm(vcpu);
1642
1643         return svm->nested.nested_cr3;
1644 }
1645
1646 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1647                                    unsigned long root)
1648 {
1649         struct vcpu_svm *svm = to_svm(vcpu);
1650
1651         svm->vmcb->control.nested_cr3 = root;
1652         force_new_asid(vcpu);
1653 }
1654
1655 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
1656 {
1657         struct vcpu_svm *svm = to_svm(vcpu);
1658
1659         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1660         svm->vmcb->control.exit_code_hi = 0;
1661         svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
1662         svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
1663
1664         nested_svm_vmexit(svm);
1665 }
1666
1667 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1668 {
1669         int r;
1670
1671         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1672
1673         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1674         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1675         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1676         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1677         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1678
1679         return r;
1680 }
1681
1682 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1683 {
1684         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1685 }
1686
1687 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1688 {
1689         if (!(svm->vcpu.arch.efer & EFER_SVME)
1690             || !is_paging(&svm->vcpu)) {
1691                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1692                 return 1;
1693         }
1694
1695         if (svm->vmcb->save.cpl) {
1696                 kvm_inject_gp(&svm->vcpu, 0);
1697                 return 1;
1698         }
1699
1700        return 0;
1701 }
1702
1703 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1704                                       bool has_error_code, u32 error_code)
1705 {
1706         int vmexit;
1707
1708         if (!is_nested(svm))
1709                 return 0;
1710
1711         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1712         svm->vmcb->control.exit_code_hi = 0;
1713         svm->vmcb->control.exit_info_1 = error_code;
1714         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1715
1716         vmexit = nested_svm_intercept(svm);
1717         if (vmexit == NESTED_EXIT_DONE)
1718                 svm->nested.exit_required = true;
1719
1720         return vmexit;
1721 }
1722
1723 /* This function returns true if it is save to enable the irq window */
1724 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1725 {
1726         if (!is_nested(svm))
1727                 return true;
1728
1729         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1730                 return true;
1731
1732         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1733                 return false;
1734
1735         /*
1736          * if vmexit was already requested (by intercepted exception
1737          * for instance) do not overwrite it with "external interrupt"
1738          * vmexit.
1739          */
1740         if (svm->nested.exit_required)
1741                 return false;
1742
1743         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1744         svm->vmcb->control.exit_info_1 = 0;
1745         svm->vmcb->control.exit_info_2 = 0;
1746
1747         if (svm->nested.intercept & 1ULL) {
1748                 /*
1749                  * The #vmexit can't be emulated here directly because this
1750                  * code path runs with irqs and preemtion disabled. A
1751                  * #vmexit emulation might sleep. Only signal request for
1752                  * the #vmexit here.
1753                  */
1754                 svm->nested.exit_required = true;
1755                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1756                 return false;
1757         }
1758
1759         return true;
1760 }
1761
1762 /* This function returns true if it is save to enable the nmi window */
1763 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1764 {
1765         if (!is_nested(svm))
1766                 return true;
1767
1768         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1769                 return true;
1770
1771         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1772         svm->nested.exit_required = true;
1773
1774         return false;
1775 }
1776
1777 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1778 {
1779         struct page *page;
1780
1781         might_sleep();
1782
1783         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1784         if (is_error_page(page))
1785                 goto error;
1786
1787         *_page = page;
1788
1789         return kmap(page);
1790
1791 error:
1792         kvm_release_page_clean(page);
1793         kvm_inject_gp(&svm->vcpu, 0);
1794
1795         return NULL;
1796 }
1797
1798 static void nested_svm_unmap(struct page *page)
1799 {
1800         kunmap(page);
1801         kvm_release_page_dirty(page);
1802 }
1803
1804 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1805 {
1806         unsigned port;
1807         u8 val, bit;
1808         u64 gpa;
1809
1810         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1811                 return NESTED_EXIT_HOST;
1812
1813         port = svm->vmcb->control.exit_info_1 >> 16;
1814         gpa  = svm->nested.vmcb_iopm + (port / 8);
1815         bit  = port % 8;
1816         val  = 0;
1817
1818         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1819                 val &= (1 << bit);
1820
1821         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1822 }
1823
1824 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1825 {
1826         u32 offset, msr, value;
1827         int write, mask;
1828
1829         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1830                 return NESTED_EXIT_HOST;
1831
1832         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1833         offset = svm_msrpm_offset(msr);
1834         write  = svm->vmcb->control.exit_info_1 & 1;
1835         mask   = 1 << ((2 * (msr & 0xf)) + write);
1836
1837         if (offset == MSR_INVALID)
1838                 return NESTED_EXIT_DONE;
1839
1840         /* Offset is in 32 bit units but need in 8 bit units */
1841         offset *= 4;
1842
1843         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1844                 return NESTED_EXIT_DONE;
1845
1846         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1847 }
1848
1849 static int nested_svm_exit_special(struct vcpu_svm *svm)
1850 {
1851         u32 exit_code = svm->vmcb->control.exit_code;
1852
1853         switch (exit_code) {
1854         case SVM_EXIT_INTR:
1855         case SVM_EXIT_NMI:
1856         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1857                 return NESTED_EXIT_HOST;
1858         case SVM_EXIT_NPF:
1859                 /* For now we are always handling NPFs when using them */
1860                 if (npt_enabled)
1861                         return NESTED_EXIT_HOST;
1862                 break;
1863         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1864                 /* When we're shadowing, trap PFs, but not async PF */
1865                 if (!npt_enabled && svm->apf_reason == 0)
1866                         return NESTED_EXIT_HOST;
1867                 break;
1868         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1869                 nm_interception(svm);
1870                 break;
1871         default:
1872                 break;
1873         }
1874
1875         return NESTED_EXIT_CONTINUE;
1876 }
1877
1878 /*
1879  * If this function returns true, this #vmexit was already handled
1880  */
1881 static int nested_svm_intercept(struct vcpu_svm *svm)
1882 {
1883         u32 exit_code = svm->vmcb->control.exit_code;
1884         int vmexit = NESTED_EXIT_HOST;
1885
1886         switch (exit_code) {
1887         case SVM_EXIT_MSR:
1888                 vmexit = nested_svm_exit_handled_msr(svm);
1889                 break;
1890         case SVM_EXIT_IOIO:
1891                 vmexit = nested_svm_intercept_ioio(svm);
1892                 break;
1893         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1894                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1895                 if (svm->nested.intercept_cr_read & cr_bits)
1896                         vmexit = NESTED_EXIT_DONE;
1897                 break;
1898         }
1899         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1900                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1901                 if (svm->nested.intercept_cr_write & cr_bits)
1902                         vmexit = NESTED_EXIT_DONE;
1903                 break;
1904         }
1905         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1906                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1907                 if (svm->nested.intercept_dr_read & dr_bits)
1908                         vmexit = NESTED_EXIT_DONE;
1909                 break;
1910         }
1911         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1912                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1913                 if (svm->nested.intercept_dr_write & dr_bits)
1914                         vmexit = NESTED_EXIT_DONE;
1915                 break;
1916         }
1917         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1918                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1919                 if (svm->nested.intercept_exceptions & excp_bits)
1920                         vmexit = NESTED_EXIT_DONE;
1921                 /* async page fault always cause vmexit */
1922                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
1923                          svm->apf_reason != 0)
1924                         vmexit = NESTED_EXIT_DONE;
1925                 break;
1926         }
1927         case SVM_EXIT_ERR: {
1928                 vmexit = NESTED_EXIT_DONE;
1929                 break;
1930         }
1931         default: {
1932                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1933                 if (svm->nested.intercept & exit_bits)
1934                         vmexit = NESTED_EXIT_DONE;
1935         }
1936         }
1937
1938         return vmexit;
1939 }
1940
1941 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1942 {
1943         int vmexit;
1944
1945         vmexit = nested_svm_intercept(svm);
1946
1947         if (vmexit == NESTED_EXIT_DONE)
1948                 nested_svm_vmexit(svm);
1949
1950         return vmexit;
1951 }
1952
1953 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1954 {
1955         struct vmcb_control_area *dst  = &dst_vmcb->control;
1956         struct vmcb_control_area *from = &from_vmcb->control;
1957
1958         dst->intercept_cr_read    = from->intercept_cr_read;
1959         dst->intercept_cr_write   = from->intercept_cr_write;
1960         dst->intercept_dr_read    = from->intercept_dr_read;
1961         dst->intercept_dr_write   = from->intercept_dr_write;
1962         dst->intercept_exceptions = from->intercept_exceptions;
1963         dst->intercept            = from->intercept;
1964         dst->iopm_base_pa         = from->iopm_base_pa;
1965         dst->msrpm_base_pa        = from->msrpm_base_pa;
1966         dst->tsc_offset           = from->tsc_offset;
1967         dst->asid                 = from->asid;
1968         dst->tlb_ctl              = from->tlb_ctl;
1969         dst->int_ctl              = from->int_ctl;
1970         dst->int_vector           = from->int_vector;
1971         dst->int_state            = from->int_state;
1972         dst->exit_code            = from->exit_code;
1973         dst->exit_code_hi         = from->exit_code_hi;
1974         dst->exit_info_1          = from->exit_info_1;
1975         dst->exit_info_2          = from->exit_info_2;
1976         dst->exit_int_info        = from->exit_int_info;
1977         dst->exit_int_info_err    = from->exit_int_info_err;
1978         dst->nested_ctl           = from->nested_ctl;
1979         dst->event_inj            = from->event_inj;
1980         dst->event_inj_err        = from->event_inj_err;
1981         dst->nested_cr3           = from->nested_cr3;
1982         dst->lbr_ctl              = from->lbr_ctl;
1983 }
1984
1985 static int nested_svm_vmexit(struct vcpu_svm *svm)
1986 {
1987         struct vmcb *nested_vmcb;
1988         struct vmcb *hsave = svm->nested.hsave;
1989         struct vmcb *vmcb = svm->vmcb;
1990         struct page *page;
1991
1992         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1993                                        vmcb->control.exit_info_1,
1994                                        vmcb->control.exit_info_2,
1995                                        vmcb->control.exit_int_info,
1996                                        vmcb->control.exit_int_info_err);
1997
1998         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1999         if (!nested_vmcb)
2000                 return 1;
2001
2002         /* Exit nested SVM mode */
2003         svm->nested.vmcb = 0;
2004
2005         /* Give the current vmcb to the guest */
2006         disable_gif(svm);
2007
2008         nested_vmcb->save.es     = vmcb->save.es;
2009         nested_vmcb->save.cs     = vmcb->save.cs;
2010         nested_vmcb->save.ss     = vmcb->save.ss;
2011         nested_vmcb->save.ds     = vmcb->save.ds;
2012         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2013         nested_vmcb->save.idtr   = vmcb->save.idtr;
2014         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2015         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2016         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
2017         nested_vmcb->save.cr2    = vmcb->save.cr2;
2018         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2019         nested_vmcb->save.rflags = vmcb->save.rflags;
2020         nested_vmcb->save.rip    = vmcb->save.rip;
2021         nested_vmcb->save.rsp    = vmcb->save.rsp;
2022         nested_vmcb->save.rax    = vmcb->save.rax;
2023         nested_vmcb->save.dr7    = vmcb->save.dr7;
2024         nested_vmcb->save.dr6    = vmcb->save.dr6;
2025         nested_vmcb->save.cpl    = vmcb->save.cpl;
2026
2027         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2028         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2029         nested_vmcb->control.int_state         = vmcb->control.int_state;
2030         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2031         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2032         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2033         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2034         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2035         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2036         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2037
2038         /*
2039          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2040          * to make sure that we do not lose injected events. So check event_inj
2041          * here and copy it to exit_int_info if it is valid.
2042          * Exit_int_info and event_inj can't be both valid because the case
2043          * below only happens on a VMRUN instruction intercept which has
2044          * no valid exit_int_info set.
2045          */
2046         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2047                 struct vmcb_control_area *nc = &nested_vmcb->control;
2048
2049                 nc->exit_int_info     = vmcb->control.event_inj;
2050                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2051         }
2052
2053         nested_vmcb->control.tlb_ctl           = 0;
2054         nested_vmcb->control.event_inj         = 0;
2055         nested_vmcb->control.event_inj_err     = 0;
2056
2057         /* We always set V_INTR_MASKING and remember the old value in hflags */
2058         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2059                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2060
2061         /* Restore the original control entries */
2062         copy_vmcb_control_area(vmcb, hsave);
2063
2064         kvm_clear_exception_queue(&svm->vcpu);
2065         kvm_clear_interrupt_queue(&svm->vcpu);
2066
2067         svm->nested.nested_cr3 = 0;
2068
2069         /* Restore selected save entries */
2070         svm->vmcb->save.es = hsave->save.es;
2071         svm->vmcb->save.cs = hsave->save.cs;
2072         svm->vmcb->save.ss = hsave->save.ss;
2073         svm->vmcb->save.ds = hsave->save.ds;
2074         svm->vmcb->save.gdtr = hsave->save.gdtr;
2075         svm->vmcb->save.idtr = hsave->save.idtr;
2076         svm->vmcb->save.rflags = hsave->save.rflags;
2077         svm_set_efer(&svm->vcpu, hsave->save.efer);
2078         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2079         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2080         if (npt_enabled) {
2081                 svm->vmcb->save.cr3 = hsave->save.cr3;
2082                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2083         } else {
2084                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2085         }
2086         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2087         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2088         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2089         svm->vmcb->save.dr7 = 0;
2090         svm->vmcb->save.cpl = 0;
2091         svm->vmcb->control.exit_int_info = 0;
2092
2093         nested_svm_unmap(page);
2094
2095         nested_svm_uninit_mmu_context(&svm->vcpu);
2096         kvm_mmu_reset_context(&svm->vcpu);
2097         kvm_mmu_load(&svm->vcpu);
2098
2099         return 0;
2100 }
2101
2102 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2103 {
2104         /*
2105          * This function merges the msr permission bitmaps of kvm and the
2106          * nested vmcb. It is omptimized in that it only merges the parts where
2107          * the kvm msr permission bitmap may contain zero bits
2108          */
2109         int i;
2110
2111         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2112                 return true;
2113
2114         for (i = 0; i < MSRPM_OFFSETS; i++) {
2115                 u32 value, p;
2116                 u64 offset;
2117
2118                 if (msrpm_offsets[i] == 0xffffffff)
2119                         break;
2120
2121                 p      = msrpm_offsets[i];
2122                 offset = svm->nested.vmcb_msrpm + (p * 4);
2123
2124                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2125                         return false;
2126
2127                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2128         }
2129
2130         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2131
2132         return true;
2133 }
2134
2135 static bool nested_vmcb_checks(struct vmcb *vmcb)
2136 {
2137         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2138                 return false;
2139
2140         if (vmcb->control.asid == 0)
2141                 return false;
2142
2143         if (vmcb->control.nested_ctl && !npt_enabled)
2144                 return false;
2145
2146         return true;
2147 }
2148
2149 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2150 {
2151         struct vmcb *nested_vmcb;
2152         struct vmcb *hsave = svm->nested.hsave;
2153         struct vmcb *vmcb = svm->vmcb;
2154         struct page *page;
2155         u64 vmcb_gpa;
2156
2157         vmcb_gpa = svm->vmcb->save.rax;
2158
2159         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2160         if (!nested_vmcb)
2161                 return false;
2162
2163         if (!nested_vmcb_checks(nested_vmcb)) {
2164                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2165                 nested_vmcb->control.exit_code_hi = 0;
2166                 nested_vmcb->control.exit_info_1  = 0;
2167                 nested_vmcb->control.exit_info_2  = 0;
2168
2169                 nested_svm_unmap(page);
2170
2171                 return false;
2172         }
2173
2174         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2175                                nested_vmcb->save.rip,
2176                                nested_vmcb->control.int_ctl,
2177                                nested_vmcb->control.event_inj,
2178                                nested_vmcb->control.nested_ctl);
2179
2180         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2181                                     nested_vmcb->control.intercept_cr_write,
2182                                     nested_vmcb->control.intercept_exceptions,
2183                                     nested_vmcb->control.intercept);
2184
2185         /* Clear internal status */
2186         kvm_clear_exception_queue(&svm->vcpu);
2187         kvm_clear_interrupt_queue(&svm->vcpu);
2188
2189         /*
2190          * Save the old vmcb, so we don't need to pick what we save, but can
2191          * restore everything when a VMEXIT occurs
2192          */
2193         hsave->save.es     = vmcb->save.es;
2194         hsave->save.cs     = vmcb->save.cs;
2195         hsave->save.ss     = vmcb->save.ss;
2196         hsave->save.ds     = vmcb->save.ds;
2197         hsave->save.gdtr   = vmcb->save.gdtr;
2198         hsave->save.idtr   = vmcb->save.idtr;
2199         hsave->save.efer   = svm->vcpu.arch.efer;
2200         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2201         hsave->save.cr4    = svm->vcpu.arch.cr4;
2202         hsave->save.rflags = vmcb->save.rflags;
2203         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2204         hsave->save.rsp    = vmcb->save.rsp;
2205         hsave->save.rax    = vmcb->save.rax;
2206         if (npt_enabled)
2207                 hsave->save.cr3    = vmcb->save.cr3;
2208         else
2209                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2210
2211         copy_vmcb_control_area(hsave, vmcb);
2212
2213         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2214                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2215         else
2216                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2217
2218         if (nested_vmcb->control.nested_ctl) {
2219                 kvm_mmu_unload(&svm->vcpu);
2220                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2221                 nested_svm_init_mmu_context(&svm->vcpu);
2222         }
2223
2224         /* Load the nested guest state */
2225         svm->vmcb->save.es = nested_vmcb->save.es;
2226         svm->vmcb->save.cs = nested_vmcb->save.cs;
2227         svm->vmcb->save.ss = nested_vmcb->save.ss;
2228         svm->vmcb->save.ds = nested_vmcb->save.ds;
2229         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2230         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2231         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2232         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2233         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2234         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2235         if (npt_enabled) {
2236                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2237                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2238         } else
2239                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2240
2241         /* Guest paging mode is active - reset mmu */
2242         kvm_mmu_reset_context(&svm->vcpu);
2243
2244         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2245         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2246         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2247         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2248
2249         /* In case we don't even reach vcpu_run, the fields are not updated */
2250         svm->vmcb->save.rax = nested_vmcb->save.rax;
2251         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2252         svm->vmcb->save.rip = nested_vmcb->save.rip;
2253         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2254         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2255         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2256
2257         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2258         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2259
2260         /* cache intercepts */
2261         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2262         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2263         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2264         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2265         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2266         svm->nested.intercept            = nested_vmcb->control.intercept;
2267
2268         force_new_asid(&svm->vcpu);
2269         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2270         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2271                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2272         else
2273                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2274
2275         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2276                 /* We only want the cr8 intercept bits of the guest */
2277                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2278                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2279         }
2280
2281         /* We don't want to see VMMCALLs from a nested guest */
2282         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2283
2284         /*
2285          * We don't want a nested guest to be more powerful than the guest, so
2286          * all intercepts are ORed
2287          */
2288         svm->vmcb->control.intercept_cr_read |=
2289                 nested_vmcb->control.intercept_cr_read;
2290         svm->vmcb->control.intercept_cr_write |=
2291                 nested_vmcb->control.intercept_cr_write;
2292         svm->vmcb->control.intercept_dr_read |=
2293                 nested_vmcb->control.intercept_dr_read;
2294         svm->vmcb->control.intercept_dr_write |=
2295                 nested_vmcb->control.intercept_dr_write;
2296         svm->vmcb->control.intercept_exceptions |=
2297                 nested_vmcb->control.intercept_exceptions;
2298
2299         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2300
2301         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2302         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2303         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2304         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2305         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2306         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2307
2308         nested_svm_unmap(page);
2309
2310         /* nested_vmcb is our indicator if nested SVM is activated */
2311         svm->nested.vmcb = vmcb_gpa;
2312
2313         enable_gif(svm);
2314
2315         return true;
2316 }
2317
2318 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2319 {
2320         to_vmcb->save.fs = from_vmcb->save.fs;
2321         to_vmcb->save.gs = from_vmcb->save.gs;
2322         to_vmcb->save.tr = from_vmcb->save.tr;
2323         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2324         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2325         to_vmcb->save.star = from_vmcb->save.star;
2326         to_vmcb->save.lstar = from_vmcb->save.lstar;
2327         to_vmcb->save.cstar = from_vmcb->save.cstar;
2328         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2329         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2330         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2331         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2332 }
2333
2334 static int vmload_interception(struct vcpu_svm *svm)
2335 {
2336         struct vmcb *nested_vmcb;
2337         struct page *page;
2338
2339         if (nested_svm_check_permissions(svm))
2340                 return 1;
2341
2342         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2343         skip_emulated_instruction(&svm->vcpu);
2344
2345         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2346         if (!nested_vmcb)
2347                 return 1;
2348
2349         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2350         nested_svm_unmap(page);
2351
2352         return 1;
2353 }
2354
2355 static int vmsave_interception(struct vcpu_svm *svm)
2356 {
2357         struct vmcb *nested_vmcb;
2358         struct page *page;
2359
2360         if (nested_svm_check_permissions(svm))
2361                 return 1;
2362
2363         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2364         skip_emulated_instruction(&svm->vcpu);
2365
2366         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2367         if (!nested_vmcb)
2368                 return 1;
2369
2370         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2371         nested_svm_unmap(page);
2372
2373         return 1;
2374 }
2375
2376 static int vmrun_interception(struct vcpu_svm *svm)
2377 {
2378         if (nested_svm_check_permissions(svm))
2379                 return 1;
2380
2381         /* Save rip after vmrun instruction */
2382         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2383
2384         if (!nested_svm_vmrun(svm))
2385                 return 1;
2386
2387         if (!nested_svm_vmrun_msrpm(svm))
2388                 goto failed;
2389
2390         return 1;
2391
2392 failed:
2393
2394         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2395         svm->vmcb->control.exit_code_hi = 0;
2396         svm->vmcb->control.exit_info_1  = 0;
2397         svm->vmcb->control.exit_info_2  = 0;
2398
2399         nested_svm_vmexit(svm);
2400
2401         return 1;
2402 }
2403
2404 static int stgi_interception(struct vcpu_svm *svm)
2405 {
2406         if (nested_svm_check_permissions(svm))
2407                 return 1;
2408
2409         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2410         skip_emulated_instruction(&svm->vcpu);
2411         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2412
2413         enable_gif(svm);
2414
2415         return 1;
2416 }
2417
2418 static int clgi_interception(struct vcpu_svm *svm)
2419 {
2420         if (nested_svm_check_permissions(svm))
2421                 return 1;
2422
2423         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2424         skip_emulated_instruction(&svm->vcpu);
2425
2426         disable_gif(svm);
2427
2428         /* After a CLGI no interrupts should come */
2429         svm_clear_vintr(svm);
2430         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2431
2432         return 1;
2433 }
2434
2435 static int invlpga_interception(struct vcpu_svm *svm)
2436 {
2437         struct kvm_vcpu *vcpu = &svm->vcpu;
2438
2439         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2440                           vcpu->arch.regs[VCPU_REGS_RAX]);
2441
2442         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2443         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2444
2445         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2446         skip_emulated_instruction(&svm->vcpu);
2447         return 1;
2448 }
2449
2450 static int skinit_interception(struct vcpu_svm *svm)
2451 {
2452         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2453
2454         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2455         return 1;
2456 }
2457
2458 static int invalid_op_interception(struct vcpu_svm *svm)
2459 {
2460         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2461         return 1;
2462 }
2463
2464 static int task_switch_interception(struct vcpu_svm *svm)
2465 {
2466         u16 tss_selector;
2467         int reason;
2468         int int_type = svm->vmcb->control.exit_int_info &
2469                 SVM_EXITINTINFO_TYPE_MASK;
2470         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2471         uint32_t type =
2472                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2473         uint32_t idt_v =
2474                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2475         bool has_error_code = false;
2476         u32 error_code = 0;
2477
2478         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2479
2480         if (svm->vmcb->control.exit_info_2 &
2481             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2482                 reason = TASK_SWITCH_IRET;
2483         else if (svm->vmcb->control.exit_info_2 &
2484                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2485                 reason = TASK_SWITCH_JMP;
2486         else if (idt_v)
2487                 reason = TASK_SWITCH_GATE;
2488         else
2489                 reason = TASK_SWITCH_CALL;
2490
2491         if (reason == TASK_SWITCH_GATE) {
2492                 switch (type) {
2493                 case SVM_EXITINTINFO_TYPE_NMI:
2494                         svm->vcpu.arch.nmi_injected = false;
2495                         break;
2496                 case SVM_EXITINTINFO_TYPE_EXEPT:
2497                         if (svm->vmcb->control.exit_info_2 &
2498                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2499                                 has_error_code = true;
2500                                 error_code =
2501                                         (u32)svm->vmcb->control.exit_info_2;
2502                         }
2503                         kvm_clear_exception_queue(&svm->vcpu);
2504                         break;
2505                 case SVM_EXITINTINFO_TYPE_INTR:
2506                         kvm_clear_interrupt_queue(&svm->vcpu);
2507                         break;
2508                 default:
2509                         break;
2510                 }
2511         }
2512
2513         if (reason != TASK_SWITCH_GATE ||
2514             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2515             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2516              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2517                 skip_emulated_instruction(&svm->vcpu);
2518
2519         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2520                                 has_error_code, error_code) == EMULATE_FAIL) {
2521                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2522                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2523                 svm->vcpu.run->internal.ndata = 0;
2524                 return 0;
2525         }
2526         return 1;
2527 }
2528
2529 static int cpuid_interception(struct vcpu_svm *svm)
2530 {
2531         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2532         kvm_emulate_cpuid(&svm->vcpu);
2533         return 1;
2534 }
2535
2536 static int iret_interception(struct vcpu_svm *svm)
2537 {
2538         ++svm->vcpu.stat.nmi_window_exits;
2539         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2540         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2541         return 1;
2542 }
2543
2544 static int invlpg_interception(struct vcpu_svm *svm)
2545 {
2546         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2547 }
2548
2549 static int emulate_on_interception(struct vcpu_svm *svm)
2550 {
2551         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2552 }
2553
2554 static int cr0_write_interception(struct vcpu_svm *svm)
2555 {
2556         struct kvm_vcpu *vcpu = &svm->vcpu;
2557         int r;
2558
2559         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2560
2561         if (svm->nested.vmexit_rip) {
2562                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2563                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2564                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2565                 svm->nested.vmexit_rip = 0;
2566         }
2567
2568         return r == EMULATE_DONE;
2569 }
2570
2571 static int cr8_write_interception(struct vcpu_svm *svm)
2572 {
2573         struct kvm_run *kvm_run = svm->vcpu.run;
2574
2575         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2576         /* instruction emulation calls kvm_set_cr8() */
2577         emulate_instruction(&svm->vcpu, 0, 0, 0);
2578         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2579                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2580                 return 1;
2581         }
2582         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2583                 return 1;
2584         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2585         return 0;
2586 }
2587
2588 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2589 {
2590         struct vcpu_svm *svm = to_svm(vcpu);
2591
2592         switch (ecx) {
2593         case MSR_IA32_TSC: {
2594                 u64 tsc_offset;
2595
2596                 if (is_nested(svm))
2597                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2598                 else
2599                         tsc_offset = svm->vmcb->control.tsc_offset;
2600
2601                 *data = tsc_offset + native_read_tsc();
2602                 break;
2603         }
2604         case MSR_STAR:
2605                 *data = svm->vmcb->save.star;
2606                 break;
2607 #ifdef CONFIG_X86_64
2608         case MSR_LSTAR:
2609                 *data = svm->vmcb->save.lstar;
2610                 break;
2611         case MSR_CSTAR:
2612                 *data = svm->vmcb->save.cstar;
2613                 break;
2614         case MSR_KERNEL_GS_BASE:
2615                 *data = svm->vmcb->save.kernel_gs_base;
2616                 break;
2617         case MSR_SYSCALL_MASK:
2618                 *data = svm->vmcb->save.sfmask;
2619                 break;
2620 #endif
2621         case MSR_IA32_SYSENTER_CS:
2622                 *data = svm->vmcb->save.sysenter_cs;
2623                 break;
2624         case MSR_IA32_SYSENTER_EIP:
2625                 *data = svm->sysenter_eip;
2626                 break;
2627         case MSR_IA32_SYSENTER_ESP:
2628                 *data = svm->sysenter_esp;
2629                 break;
2630         /*
2631          * Nobody will change the following 5 values in the VMCB so we can
2632          * safely return them on rdmsr. They will always be 0 until LBRV is
2633          * implemented.
2634          */
2635         case MSR_IA32_DEBUGCTLMSR:
2636                 *data = svm->vmcb->save.dbgctl;
2637                 break;
2638         case MSR_IA32_LASTBRANCHFROMIP:
2639                 *data = svm->vmcb->save.br_from;
2640                 break;
2641         case MSR_IA32_LASTBRANCHTOIP:
2642                 *data = svm->vmcb->save.br_to;
2643                 break;
2644         case MSR_IA32_LASTINTFROMIP:
2645                 *data = svm->vmcb->save.last_excp_from;
2646                 break;
2647         case MSR_IA32_LASTINTTOIP:
2648                 *data = svm->vmcb->save.last_excp_to;
2649                 break;
2650         case MSR_VM_HSAVE_PA:
2651                 *data = svm->nested.hsave_msr;
2652                 break;
2653         case MSR_VM_CR:
2654                 *data = svm->nested.vm_cr_msr;
2655                 break;
2656         case MSR_IA32_UCODE_REV:
2657                 *data = 0x01000065;
2658                 break;
2659         default:
2660                 return kvm_get_msr_common(vcpu, ecx, data);
2661         }
2662         return 0;
2663 }
2664
2665 static int rdmsr_interception(struct vcpu_svm *svm)
2666 {
2667         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2668         u64 data;
2669
2670         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2671                 trace_kvm_msr_read_ex(ecx);
2672                 kvm_inject_gp(&svm->vcpu, 0);
2673         } else {
2674                 trace_kvm_msr_read(ecx, data);
2675
2676                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2677                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2678                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2679                 skip_emulated_instruction(&svm->vcpu);
2680         }
2681         return 1;
2682 }
2683
2684 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2685 {
2686         struct vcpu_svm *svm = to_svm(vcpu);
2687         int svm_dis, chg_mask;
2688
2689         if (data & ~SVM_VM_CR_VALID_MASK)
2690                 return 1;
2691
2692         chg_mask = SVM_VM_CR_VALID_MASK;
2693
2694         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2695                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2696
2697         svm->nested.vm_cr_msr &= ~chg_mask;
2698         svm->nested.vm_cr_msr |= (data & chg_mask);
2699
2700         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2701
2702         /* check for svm_disable while efer.svme is set */
2703         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2704                 return 1;
2705
2706         return 0;
2707 }
2708
2709 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2710 {
2711         struct vcpu_svm *svm = to_svm(vcpu);
2712
2713         switch (ecx) {
2714         case MSR_IA32_TSC:
2715                 kvm_write_tsc(vcpu, data);
2716                 break;
2717         case MSR_STAR:
2718                 svm->vmcb->save.star = data;
2719                 break;
2720 #ifdef CONFIG_X86_64
2721         case MSR_LSTAR:
2722                 svm->vmcb->save.lstar = data;
2723                 break;
2724         case MSR_CSTAR:
2725                 svm->vmcb->save.cstar = data;
2726                 break;
2727         case MSR_KERNEL_GS_BASE:
2728                 svm->vmcb->save.kernel_gs_base = data;
2729                 break;
2730         case MSR_SYSCALL_MASK:
2731                 svm->vmcb->save.sfmask = data;
2732                 break;
2733 #endif
2734         case MSR_IA32_SYSENTER_CS:
2735                 svm->vmcb->save.sysenter_cs = data;
2736                 break;
2737         case MSR_IA32_SYSENTER_EIP:
2738                 svm->sysenter_eip = data;
2739                 svm->vmcb->save.sysenter_eip = data;
2740                 break;
2741         case MSR_IA32_SYSENTER_ESP:
2742                 svm->sysenter_esp = data;
2743                 svm->vmcb->save.sysenter_esp = data;
2744                 break;
2745         case MSR_IA32_DEBUGCTLMSR:
2746                 if (!svm_has(SVM_FEATURE_LBRV)) {
2747                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2748                                         __func__, data);
2749                         break;
2750                 }
2751                 if (data & DEBUGCTL_RESERVED_BITS)
2752                         return 1;
2753
2754                 svm->vmcb->save.dbgctl = data;
2755                 if (data & (1ULL<<0))
2756                         svm_enable_lbrv(svm);
2757                 else
2758                         svm_disable_lbrv(svm);
2759                 break;
2760         case MSR_VM_HSAVE_PA:
2761                 svm->nested.hsave_msr = data;
2762                 break;
2763         case MSR_VM_CR:
2764                 return svm_set_vm_cr(vcpu, data);
2765         case MSR_VM_IGNNE:
2766                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2767                 break;
2768         default:
2769                 return kvm_set_msr_common(vcpu, ecx, data);
2770         }
2771         return 0;
2772 }
2773
2774 static int wrmsr_interception(struct vcpu_svm *svm)
2775 {
2776         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2777         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2778                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2779
2780
2781         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2782         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2783                 trace_kvm_msr_write_ex(ecx, data);
2784                 kvm_inject_gp(&svm->vcpu, 0);
2785         } else {
2786                 trace_kvm_msr_write(ecx, data);
2787                 skip_emulated_instruction(&svm->vcpu);
2788         }
2789         return 1;
2790 }
2791
2792 static int msr_interception(struct vcpu_svm *svm)
2793 {
2794         if (svm->vmcb->control.exit_info_1)
2795                 return wrmsr_interception(svm);
2796         else
2797                 return rdmsr_interception(svm);
2798 }
2799
2800 static int interrupt_window_interception(struct vcpu_svm *svm)
2801 {
2802         struct kvm_run *kvm_run = svm->vcpu.run;
2803
2804         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2805         svm_clear_vintr(svm);
2806         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2807         /*
2808          * If the user space waits to inject interrupts, exit as soon as
2809          * possible
2810          */
2811         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2812             kvm_run->request_interrupt_window &&
2813             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2814                 ++svm->vcpu.stat.irq_window_exits;
2815                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2816                 return 0;
2817         }
2818
2819         return 1;
2820 }
2821
2822 static int pause_interception(struct vcpu_svm *svm)
2823 {
2824         kvm_vcpu_on_spin(&(svm->vcpu));
2825         return 1;
2826 }
2827
2828 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2829         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2830         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2831         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2832         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2833         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2834         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2835         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2836         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2837         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2838         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2839         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2840         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2841         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2842         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2843         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2844         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2845         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2846         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2847         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2848         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2849         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2850         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2851         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2852         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2853         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2854         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2855         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2856         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2857         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2858         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2859         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2860         [SVM_EXIT_INTR]                         = intr_interception,
2861         [SVM_EXIT_NMI]                          = nmi_interception,
2862         [SVM_EXIT_SMI]                          = nop_on_interception,
2863         [SVM_EXIT_INIT]                         = nop_on_interception,
2864         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2865         [SVM_EXIT_CPUID]                        = cpuid_interception,
2866         [SVM_EXIT_IRET]                         = iret_interception,
2867         [SVM_EXIT_INVD]                         = emulate_on_interception,
2868         [SVM_EXIT_PAUSE]                        = pause_interception,
2869         [SVM_EXIT_HLT]                          = halt_interception,
2870         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2871         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2872         [SVM_EXIT_IOIO]                         = io_interception,
2873         [SVM_EXIT_MSR]                          = msr_interception,
2874         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2875         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2876         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2877         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2878         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2879         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2880         [SVM_EXIT_STGI]                         = stgi_interception,
2881         [SVM_EXIT_CLGI]                         = clgi_interception,
2882         [SVM_EXIT_SKINIT]                       = skinit_interception,
2883         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2884         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2885         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2886         [SVM_EXIT_NPF]                          = pf_interception,
2887 };
2888
2889 void dump_vmcb(struct kvm_vcpu *vcpu)
2890 {
2891         struct vcpu_svm *svm = to_svm(vcpu);
2892         struct vmcb_control_area *control = &svm->vmcb->control;
2893         struct vmcb_save_area *save = &svm->vmcb->save;
2894
2895         pr_err("VMCB Control Area:\n");
2896         pr_err("cr_read:            %04x\n", control->intercept_cr_read);
2897         pr_err("cr_write:           %04x\n", control->intercept_cr_write);
2898         pr_err("dr_read:            %04x\n", control->intercept_dr_read);
2899         pr_err("dr_write:           %04x\n", control->intercept_dr_write);
2900         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2901         pr_err("intercepts:         %016llx\n", control->intercept);
2902         pr_err("pause filter count: %d\n", control->pause_filter_count);
2903         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2904         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2905         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2906         pr_err("asid:               %d\n", control->asid);
2907         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2908         pr_err("int_ctl:            %08x\n", control->int_ctl);
2909         pr_err("int_vector:         %08x\n", control->int_vector);
2910         pr_err("int_state:          %08x\n", control->int_state);
2911         pr_err("exit_code:          %08x\n", control->exit_code);
2912         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2913         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2914         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2915         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2916         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2917         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2918         pr_err("event_inj:          %08x\n", control->event_inj);
2919         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2920         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2921         pr_err("next_rip:           %016llx\n", control->next_rip);
2922         pr_err("VMCB State Save Area:\n");
2923         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2924                 save->es.selector, save->es.attrib,
2925                 save->es.limit, save->es.base);
2926         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2927                 save->cs.selector, save->cs.attrib,
2928                 save->cs.limit, save->cs.base);
2929         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
2930                 save->ss.selector, save->ss.attrib,
2931                 save->ss.limit, save->ss.base);
2932         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
2933                 save->ds.selector, save->ds.attrib,
2934                 save->ds.limit, save->ds.base);
2935         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
2936                 save->fs.selector, save->fs.attrib,
2937                 save->fs.limit, save->fs.base);
2938         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
2939                 save->gs.selector, save->gs.attrib,
2940                 save->gs.limit, save->gs.base);
2941         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2942                 save->gdtr.selector, save->gdtr.attrib,
2943                 save->gdtr.limit, save->gdtr.base);
2944         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2945                 save->ldtr.selector, save->ldtr.attrib,
2946                 save->ldtr.limit, save->ldtr.base);
2947         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2948                 save->idtr.selector, save->idtr.attrib,
2949                 save->idtr.limit, save->idtr.base);
2950         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
2951                 save->tr.selector, save->tr.attrib,
2952                 save->tr.limit, save->tr.base);
2953         pr_err("cpl:            %d                efer:         %016llx\n",
2954                 save->cpl, save->efer);
2955         pr_err("cr0:            %016llx cr2:          %016llx\n",
2956                 save->cr0, save->cr2);
2957         pr_err("cr3:            %016llx cr4:          %016llx\n",
2958                 save->cr3, save->cr4);
2959         pr_err("dr6:            %016llx dr7:          %016llx\n",
2960                 save->dr6, save->dr7);
2961         pr_err("rip:            %016llx rflags:       %016llx\n",
2962                 save->rip, save->rflags);
2963         pr_err("rsp:            %016llx rax:          %016llx\n",
2964                 save->rsp, save->rax);
2965         pr_err("star:           %016llx lstar:        %016llx\n",
2966                 save->star, save->lstar);
2967         pr_err("cstar:          %016llx sfmask:       %016llx\n",
2968                 save->cstar, save->sfmask);
2969         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
2970                 save->kernel_gs_base, save->sysenter_cs);
2971         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
2972                 save->sysenter_esp, save->sysenter_eip);
2973         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
2974                 save->g_pat, save->dbgctl);
2975         pr_err("br_from:        %016llx br_to:        %016llx\n",
2976                 save->br_from, save->br_to);
2977         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
2978                 save->last_excp_from, save->last_excp_to);
2979
2980 }
2981
2982 static int handle_exit(struct kvm_vcpu *vcpu)
2983 {
2984         struct vcpu_svm *svm = to_svm(vcpu);
2985         struct kvm_run *kvm_run = vcpu->run;
2986         u32 exit_code = svm->vmcb->control.exit_code;
2987
2988         trace_kvm_exit(exit_code, vcpu);
2989
2990         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2991                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2992         if (npt_enabled)
2993                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2994
2995         if (unlikely(svm->nested.exit_required)) {
2996                 nested_svm_vmexit(svm);
2997                 svm->nested.exit_required = false;
2998
2999                 return 1;
3000         }
3001
3002         if (is_nested(svm)) {
3003                 int vmexit;
3004
3005                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3006                                         svm->vmcb->control.exit_info_1,
3007                                         svm->vmcb->control.exit_info_2,
3008                                         svm->vmcb->control.exit_int_info,
3009                                         svm->vmcb->control.exit_int_info_err);
3010
3011                 vmexit = nested_svm_exit_special(svm);
3012
3013                 if (vmexit == NESTED_EXIT_CONTINUE)
3014                         vmexit = nested_svm_exit_handled(svm);
3015
3016                 if (vmexit == NESTED_EXIT_DONE)
3017                         return 1;
3018         }
3019
3020         svm_complete_interrupts(svm);
3021
3022         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3023                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3024                 kvm_run->fail_entry.hardware_entry_failure_reason
3025                         = svm->vmcb->control.exit_code;
3026                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3027                 dump_vmcb(vcpu);
3028                 return 0;
3029         }
3030
3031         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3032             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3033             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3034             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3035                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3036                        "exit_code 0x%x\n",
3037                        __func__, svm->vmcb->control.exit_int_info,
3038                        exit_code);
3039
3040         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3041             || !svm_exit_handlers[exit_code]) {
3042                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3043                 kvm_run->hw.hardware_exit_reason = exit_code;
3044                 return 0;
3045         }
3046
3047         return svm_exit_handlers[exit_code](svm);
3048 }
3049
3050 static void reload_tss(struct kvm_vcpu *vcpu)
3051 {
3052         int cpu = raw_smp_processor_id();
3053
3054         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3055         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3056         load_TR_desc();
3057 }
3058
3059 static void pre_svm_run(struct vcpu_svm *svm)
3060 {
3061         int cpu = raw_smp_processor_id();
3062
3063         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3064
3065         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3066         /* FIXME: handle wraparound of asid_generation */
3067         if (svm->asid_generation != sd->asid_generation)
3068                 new_asid(svm, sd);
3069 }
3070
3071 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3072 {
3073         struct vcpu_svm *svm = to_svm(vcpu);
3074
3075         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3076         vcpu->arch.hflags |= HF_NMI_MASK;
3077         svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3078         ++vcpu->stat.nmi_injections;
3079 }
3080
3081 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3082 {
3083         struct vmcb_control_area *control;
3084
3085         control = &svm->vmcb->control;
3086         control->int_vector = irq;
3087         control->int_ctl &= ~V_INTR_PRIO_MASK;
3088         control->int_ctl |= V_IRQ_MASK |
3089                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3090 }
3091
3092 static void svm_set_irq(struct kvm_vcpu *vcpu)
3093 {
3094         struct vcpu_svm *svm = to_svm(vcpu);
3095
3096         BUG_ON(!(gif_set(svm)));
3097
3098         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3099         ++vcpu->stat.irq_injections;
3100
3101         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3102                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3103 }
3104
3105 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3106 {
3107         struct vcpu_svm *svm = to_svm(vcpu);
3108
3109         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3110                 return;
3111
3112         if (irr == -1)
3113                 return;
3114
3115         if (tpr >= irr)
3116                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
3117 }
3118
3119 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3120 {
3121         struct vcpu_svm *svm = to_svm(vcpu);
3122         struct vmcb *vmcb = svm->vmcb;
3123         int ret;
3124         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3125               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3126         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3127
3128         return ret;
3129 }
3130
3131 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3132 {
3133         struct vcpu_svm *svm = to_svm(vcpu);
3134
3135         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3136 }
3137
3138 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3139 {
3140         struct vcpu_svm *svm = to_svm(vcpu);
3141
3142         if (masked) {
3143                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3144                 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3145         } else {
3146                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3147                 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3148         }
3149 }
3150
3151 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3152 {
3153         struct vcpu_svm *svm = to_svm(vcpu);
3154         struct vmcb *vmcb = svm->vmcb;
3155         int ret;
3156
3157         if (!gif_set(svm) ||
3158              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3159                 return 0;
3160
3161         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3162
3163         if (is_nested(svm))
3164                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3165
3166         return ret;
3167 }
3168
3169 static void enable_irq_window(struct kvm_vcpu *vcpu)
3170 {
3171         struct vcpu_svm *svm = to_svm(vcpu);
3172
3173         /*
3174          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3175          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3176          * get that intercept, this function will be called again though and
3177          * we'll get the vintr intercept.
3178          */
3179         if (gif_set(svm) && nested_svm_intr(svm)) {
3180                 svm_set_vintr(svm);
3181                 svm_inject_irq(svm, 0x0);
3182         }
3183 }
3184
3185 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3186 {
3187         struct vcpu_svm *svm = to_svm(vcpu);
3188
3189         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3190             == HF_NMI_MASK)
3191                 return; /* IRET will cause a vm exit */
3192
3193         /*
3194          * Something prevents NMI from been injected. Single step over possible
3195          * problem (IRET or exception injection or interrupt shadow)
3196          */
3197         svm->nmi_singlestep = true;
3198         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3199         update_db_intercept(vcpu);
3200 }
3201
3202 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3203 {
3204         return 0;
3205 }
3206
3207 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3208 {
3209         force_new_asid(vcpu);
3210 }
3211
3212 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3213 {
3214 }
3215
3216 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3217 {
3218         struct vcpu_svm *svm = to_svm(vcpu);
3219
3220         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3221                 return;
3222
3223         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3224                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3225                 kvm_set_cr8(vcpu, cr8);
3226         }
3227 }
3228
3229 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3230 {
3231         struct vcpu_svm *svm = to_svm(vcpu);
3232         u64 cr8;
3233
3234         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3235                 return;
3236
3237         cr8 = kvm_get_cr8(vcpu);
3238         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3239         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3240 }
3241
3242 static void svm_complete_interrupts(struct vcpu_svm *svm)
3243 {
3244         u8 vector;
3245         int type;
3246         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3247         unsigned int3_injected = svm->int3_injected;
3248
3249         svm->int3_injected = 0;
3250
3251         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3252                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3253                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3254         }
3255
3256         svm->vcpu.arch.nmi_injected = false;
3257         kvm_clear_exception_queue(&svm->vcpu);
3258         kvm_clear_interrupt_queue(&svm->vcpu);
3259
3260         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3261                 return;
3262
3263         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3264
3265         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3266         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3267
3268         switch (type) {
3269         case SVM_EXITINTINFO_TYPE_NMI:
3270                 svm->vcpu.arch.nmi_injected = true;
3271                 break;
3272         case SVM_EXITINTINFO_TYPE_EXEPT:
3273                 /*
3274                  * In case of software exceptions, do not reinject the vector,
3275                  * but re-execute the instruction instead. Rewind RIP first
3276                  * if we emulated INT3 before.
3277                  */
3278                 if (kvm_exception_is_soft(vector)) {
3279                         if (vector == BP_VECTOR && int3_injected &&
3280                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3281                                 kvm_rip_write(&svm->vcpu,
3282                                               kvm_rip_read(&svm->vcpu) -
3283                                               int3_injected);
3284                         break;
3285                 }
3286                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3287                         u32 err = svm->vmcb->control.exit_int_info_err;
3288                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3289
3290                 } else
3291                         kvm_requeue_exception(&svm->vcpu, vector);
3292                 break;
3293         case SVM_EXITINTINFO_TYPE_INTR:
3294                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3295                 break;
3296         default:
3297                 break;
3298         }
3299 }
3300
3301 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3302 {
3303         struct vcpu_svm *svm = to_svm(vcpu);
3304         struct vmcb_control_area *control = &svm->vmcb->control;
3305
3306         control->exit_int_info = control->event_inj;
3307         control->exit_int_info_err = control->event_inj_err;
3308         control->event_inj = 0;
3309         svm_complete_interrupts(svm);
3310 }
3311
3312 #ifdef CONFIG_X86_64
3313 #define R "r"
3314 #else
3315 #define R "e"
3316 #endif
3317
3318 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3319 {
3320         struct vcpu_svm *svm = to_svm(vcpu);
3321
3322         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3323         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3324         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3325
3326         /*
3327          * A vmexit emulation is required before the vcpu can be executed
3328          * again.
3329          */
3330         if (unlikely(svm->nested.exit_required))
3331                 return;
3332
3333         pre_svm_run(svm);
3334
3335         sync_lapic_to_cr8(vcpu);
3336
3337         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3338
3339         clgi();
3340
3341         local_irq_enable();
3342
3343         asm volatile (
3344                 "push %%"R"bp; \n\t"
3345                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3346                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3347                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3348                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3349                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3350                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3351 #ifdef CONFIG_X86_64
3352                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3353                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3354                 "mov %c[r10](%[svm]), %%r10 \n\t"
3355                 "mov %c[r11](%[svm]), %%r11 \n\t"
3356                 "mov %c[r12](%[svm]), %%r12 \n\t"
3357                 "mov %c[r13](%[svm]), %%r13 \n\t"
3358                 "mov %c[r14](%[svm]), %%r14 \n\t"
3359                 "mov %c[r15](%[svm]), %%r15 \n\t"
3360 #endif
3361
3362                 /* Enter guest mode */
3363                 "push %%"R"ax \n\t"
3364                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3365                 __ex(SVM_VMLOAD) "\n\t"
3366                 __ex(SVM_VMRUN) "\n\t"
3367                 __ex(SVM_VMSAVE) "\n\t"
3368                 "pop %%"R"ax \n\t"
3369
3370                 /* Save guest registers, load host registers */
3371                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3372                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3373                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3374                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3375                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3376                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3377 #ifdef CONFIG_X86_64
3378                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3379                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3380                 "mov %%r10, %c[r10](%[svm]) \n\t"
3381                 "mov %%r11, %c[r11](%[svm]) \n\t"
3382                 "mov %%r12, %c[r12](%[svm]) \n\t"
3383                 "mov %%r13, %c[r13](%[svm]) \n\t"
3384                 "mov %%r14, %c[r14](%[svm]) \n\t"
3385                 "mov %%r15, %c[r15](%[svm]) \n\t"
3386 #endif
3387                 "pop %%"R"bp"
3388                 :
3389                 : [svm]"a"(svm),
3390                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3391                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3392                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3393                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3394                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3395                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3396                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3397 #ifdef CONFIG_X86_64
3398                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3399                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3400                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3401                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3402                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3403                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3404                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3405                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3406 #endif
3407                 : "cc", "memory"
3408                 , R"bx", R"cx", R"dx", R"si", R"di"
3409 #ifdef CONFIG_X86_64
3410                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3411 #endif
3412                 );
3413
3414 #ifdef CONFIG_X86_64
3415         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3416 #else
3417         loadsegment(fs, svm->host.fs);
3418 #endif
3419
3420         reload_tss(vcpu);
3421
3422         local_irq_disable();
3423
3424         stgi();
3425
3426         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3427         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3428         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3429         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3430
3431         sync_cr8_to_lapic(vcpu);
3432
3433         svm->next_rip = 0;
3434
3435         /* if exit due to PF check for async PF */
3436         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3437                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3438
3439         if (npt_enabled) {
3440                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3441                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3442         }
3443
3444         /*
3445          * We need to handle MC intercepts here before the vcpu has a chance to
3446          * change the physical cpu
3447          */
3448         if (unlikely(svm->vmcb->control.exit_code ==
3449                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3450                 svm_handle_mce(svm);
3451 }
3452
3453 #undef R
3454
3455 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3456 {
3457         struct vcpu_svm *svm = to_svm(vcpu);
3458
3459         svm->vmcb->save.cr3 = root;
3460         force_new_asid(vcpu);
3461 }
3462
3463 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3464 {
3465         struct vcpu_svm *svm = to_svm(vcpu);
3466
3467         svm->vmcb->control.nested_cr3 = root;
3468
3469         /* Also sync guest cr3 here in case we live migrate */
3470         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3471
3472         force_new_asid(vcpu);
3473 }
3474
3475 static int is_disabled(void)
3476 {
3477         u64 vm_cr;
3478
3479         rdmsrl(MSR_VM_CR, vm_cr);
3480         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3481                 return 1;
3482
3483         return 0;
3484 }
3485
3486 static void
3487 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3488 {
3489         /*
3490          * Patch in the VMMCALL instruction:
3491          */
3492         hypercall[0] = 0x0f;
3493         hypercall[1] = 0x01;
3494         hypercall[2] = 0xd9;
3495 }
3496
3497 static void svm_check_processor_compat(void *rtn)
3498 {
3499         *(int *)rtn = 0;
3500 }
3501
3502 static bool svm_cpu_has_accelerated_tpr(void)
3503 {
3504         return false;
3505 }
3506
3507 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3508 {
3509         return 0;
3510 }
3511
3512 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3513 {
3514 }
3515
3516 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3517 {
3518         switch (func) {
3519         case 0x00000001:
3520                 /* Mask out xsave bit as long as it is not supported by SVM */
3521                 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3522                 break;
3523         case 0x80000001:
3524                 if (nested)
3525                         entry->ecx |= (1 << 2); /* Set SVM bit */
3526                 break;
3527         case 0x8000000A:
3528                 entry->eax = 1; /* SVM revision 1 */
3529                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3530                                    ASID emulation to nested SVM */
3531                 entry->ecx = 0; /* Reserved */
3532                 entry->edx = 0; /* Per default do not support any
3533                                    additional features */
3534
3535                 /* Support next_rip if host supports it */
3536                 if (svm_has(SVM_FEATURE_NRIP))
3537                         entry->edx |= SVM_FEATURE_NRIP;
3538
3539                 /* Support NPT for the guest if enabled */
3540                 if (npt_enabled)
3541                         entry->edx |= SVM_FEATURE_NPT;
3542
3543                 break;
3544         }
3545 }
3546
3547 static const struct trace_print_flags svm_exit_reasons_str[] = {
3548         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3549         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3550         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3551         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3552         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3553         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3554         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3555         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3556         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3557         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3558         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3559         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3560         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3561         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3562         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3563         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3564         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3565         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3566         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3567         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3568         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3569         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3570         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3571         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3572         { SVM_EXIT_INTR,                        "interrupt" },
3573         { SVM_EXIT_NMI,                         "nmi" },
3574         { SVM_EXIT_SMI,                         "smi" },
3575         { SVM_EXIT_INIT,                        "init" },
3576         { SVM_EXIT_VINTR,                       "vintr" },
3577         { SVM_EXIT_CPUID,                       "cpuid" },
3578         { SVM_EXIT_INVD,                        "invd" },
3579         { SVM_EXIT_HLT,                         "hlt" },
3580         { SVM_EXIT_INVLPG,                      "invlpg" },
3581         { SVM_EXIT_INVLPGA,                     "invlpga" },
3582         { SVM_EXIT_IOIO,                        "io" },
3583         { SVM_EXIT_MSR,                         "msr" },
3584         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3585         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3586         { SVM_EXIT_VMRUN,                       "vmrun" },
3587         { SVM_EXIT_VMMCALL,                     "hypercall" },
3588         { SVM_EXIT_VMLOAD,                      "vmload" },
3589         { SVM_EXIT_VMSAVE,                      "vmsave" },
3590         { SVM_EXIT_STGI,                        "stgi" },
3591         { SVM_EXIT_CLGI,                        "clgi" },
3592         { SVM_EXIT_SKINIT,                      "skinit" },
3593         { SVM_EXIT_WBINVD,                      "wbinvd" },
3594         { SVM_EXIT_MONITOR,                     "monitor" },
3595         { SVM_EXIT_MWAIT,                       "mwait" },
3596         { SVM_EXIT_NPF,                         "npf" },
3597         { -1, NULL }
3598 };
3599
3600 static int svm_get_lpage_level(void)
3601 {
3602         return PT_PDPE_LEVEL;
3603 }
3604
3605 static bool svm_rdtscp_supported(void)
3606 {
3607         return false;
3608 }
3609
3610 static bool svm_has_wbinvd_exit(void)
3611 {
3612         return true;
3613 }
3614
3615 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3616 {
3617         struct vcpu_svm *svm = to_svm(vcpu);
3618
3619         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3620         if (is_nested(svm))
3621                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3622         update_cr0_intercept(svm);
3623 }
3624
3625 static struct kvm_x86_ops svm_x86_ops = {
3626         .cpu_has_kvm_support = has_svm,
3627         .disabled_by_bios = is_disabled,
3628         .hardware_setup = svm_hardware_setup,
3629         .hardware_unsetup = svm_hardware_unsetup,
3630         .check_processor_compatibility = svm_check_processor_compat,
3631         .hardware_enable = svm_hardware_enable,
3632         .hardware_disable = svm_hardware_disable,
3633         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3634
3635         .vcpu_create = svm_create_vcpu,
3636         .vcpu_free = svm_free_vcpu,
3637         .vcpu_reset = svm_vcpu_reset,
3638
3639         .prepare_guest_switch = svm_prepare_guest_switch,
3640         .vcpu_load = svm_vcpu_load,
3641         .vcpu_put = svm_vcpu_put,
3642
3643         .set_guest_debug = svm_guest_debug,
3644         .get_msr = svm_get_msr,
3645         .set_msr = svm_set_msr,
3646         .get_segment_base = svm_get_segment_base,
3647         .get_segment = svm_get_segment,
3648         .set_segment = svm_set_segment,
3649         .get_cpl = svm_get_cpl,
3650         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3651         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3652         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3653         .set_cr0 = svm_set_cr0,
3654         .set_cr3 = svm_set_cr3,
3655         .set_cr4 = svm_set_cr4,
3656         .set_efer = svm_set_efer,
3657         .get_idt = svm_get_idt,
3658         .set_idt = svm_set_idt,
3659         .get_gdt = svm_get_gdt,
3660         .set_gdt = svm_set_gdt,
3661         .set_dr7 = svm_set_dr7,
3662         .cache_reg = svm_cache_reg,
3663         .get_rflags = svm_get_rflags,
3664         .set_rflags = svm_set_rflags,
3665         .fpu_activate = svm_fpu_activate,
3666         .fpu_deactivate = svm_fpu_deactivate,
3667
3668         .tlb_flush = svm_flush_tlb,
3669
3670         .run = svm_vcpu_run,
3671         .handle_exit = handle_exit,
3672         .skip_emulated_instruction = skip_emulated_instruction,
3673         .set_interrupt_shadow = svm_set_interrupt_shadow,
3674         .get_interrupt_shadow = svm_get_interrupt_shadow,
3675         .patch_hypercall = svm_patch_hypercall,
3676         .set_irq = svm_set_irq,
3677         .set_nmi = svm_inject_nmi,
3678         .queue_exception = svm_queue_exception,
3679         .cancel_injection = svm_cancel_injection,
3680         .interrupt_allowed = svm_interrupt_allowed,
3681         .nmi_allowed = svm_nmi_allowed,
3682         .get_nmi_mask = svm_get_nmi_mask,
3683         .set_nmi_mask = svm_set_nmi_mask,
3684         .enable_nmi_window = enable_nmi_window,
3685         .enable_irq_window = enable_irq_window,
3686         .update_cr8_intercept = update_cr8_intercept,
3687
3688         .set_tss_addr = svm_set_tss_addr,
3689         .get_tdp_level = get_npt_level,
3690         .get_mt_mask = svm_get_mt_mask,
3691
3692         .exit_reasons_str = svm_exit_reasons_str,
3693         .get_lpage_level = svm_get_lpage_level,
3694
3695         .cpuid_update = svm_cpuid_update,
3696
3697         .rdtscp_supported = svm_rdtscp_supported,
3698
3699         .set_supported_cpuid = svm_set_supported_cpuid,
3700
3701         .has_wbinvd_exit = svm_has_wbinvd_exit,
3702
3703         .write_tsc_offset = svm_write_tsc_offset,
3704         .adjust_tsc_offset = svm_adjust_tsc_offset,
3705
3706         .set_tdp_cr3 = set_tdp_cr3,
3707 };
3708
3709 static int __init svm_init(void)
3710 {
3711         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3712                         __alignof__(struct vcpu_svm), THIS_MODULE);
3713 }
3714
3715 static void __exit svm_exit(void)
3716 {
3717         kvm_exit();
3718 }
3719
3720 module_init(svm_init)
3721 module_exit(svm_exit)