ccacf0b1b540e7098a391e297e2905df487490b9
[linux-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64         "pre page fault",
65         "post page fault",
66         "pre pte write",
67         "post pte write",
68         "pre sync",
69         "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x)                                                       \
98         if (!(x)) {                                                     \
99                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
100                        __FILE__, __LINE__, #x);                         \
101         }
102 #endif
103
104 #define PTE_PREFETCH_NUM                8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_LEVEL_MASK(level) \
115                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
116
117 #define PT64_INDEX(address, level)\
118         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
119
120
121 #define PT32_LEVEL_BITS 10
122
123 #define PT32_LEVEL_SHIFT(level) \
124                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
125
126 #define PT32_LEVEL_MASK(level) \
127                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
128 #define PT32_LVL_OFFSET_MASK(level) \
129         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130                                                 * PT32_LEVEL_BITS))) - 1))
131
132 #define PT32_INDEX(address, level)\
133         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134
135
136 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
137 #define PT64_DIR_BASE_ADDR_MASK \
138         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139 #define PT64_LVL_ADDR_MASK(level) \
140         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141                                                 * PT64_LEVEL_BITS))) - 1))
142 #define PT64_LVL_OFFSET_MASK(level) \
143         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144                                                 * PT64_LEVEL_BITS))) - 1))
145
146 #define PT32_BASE_ADDR_MASK PAGE_MASK
147 #define PT32_DIR_BASE_ADDR_MASK \
148         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT32_LVL_ADDR_MASK(level) \
150         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151                                             * PT32_LEVEL_BITS))) - 1))
152
153 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
154                         | PT64_NX_MASK)
155
156 #define RMAP_EXT 4
157
158 #define ACC_EXEC_MASK    1
159 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
160 #define ACC_USER_MASK    PT_USER_MASK
161 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
162
163 #include <trace/events/kvm.h>
164
165 #define CREATE_TRACE_POINTS
166 #include "mmutrace.h"
167
168 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
169
170 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
171
172 struct kvm_rmap_desc {
173         u64 *sptes[RMAP_EXT];
174         struct kvm_rmap_desc *more;
175 };
176
177 struct kvm_shadow_walk_iterator {
178         u64 addr;
179         hpa_t shadow_addr;
180         int level;
181         u64 *sptep;
182         unsigned index;
183 };
184
185 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
186         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
187              shadow_walk_okay(&(_walker));                      \
188              shadow_walk_next(&(_walker)))
189
190 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
191
192 static struct kmem_cache *pte_chain_cache;
193 static struct kmem_cache *rmap_desc_cache;
194 static struct kmem_cache *mmu_page_header_cache;
195 static struct percpu_counter kvm_total_used_mmu_pages;
196
197 static u64 __read_mostly shadow_trap_nonpresent_pte;
198 static u64 __read_mostly shadow_notrap_nonpresent_pte;
199 static u64 __read_mostly shadow_nx_mask;
200 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
201 static u64 __read_mostly shadow_user_mask;
202 static u64 __read_mostly shadow_accessed_mask;
203 static u64 __read_mostly shadow_dirty_mask;
204
205 static inline u64 rsvd_bits(int s, int e)
206 {
207         return ((1ULL << (e - s + 1)) - 1) << s;
208 }
209
210 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
211 {
212         shadow_trap_nonpresent_pte = trap_pte;
213         shadow_notrap_nonpresent_pte = notrap_pte;
214 }
215 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
216
217 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
218                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
219 {
220         shadow_user_mask = user_mask;
221         shadow_accessed_mask = accessed_mask;
222         shadow_dirty_mask = dirty_mask;
223         shadow_nx_mask = nx_mask;
224         shadow_x_mask = x_mask;
225 }
226 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
227
228 static bool is_write_protection(struct kvm_vcpu *vcpu)
229 {
230         return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
231 }
232
233 static int is_cpuid_PSE36(void)
234 {
235         return 1;
236 }
237
238 static int is_nx(struct kvm_vcpu *vcpu)
239 {
240         return vcpu->arch.efer & EFER_NX;
241 }
242
243 static int is_shadow_present_pte(u64 pte)
244 {
245         return pte != shadow_trap_nonpresent_pte
246                 && pte != shadow_notrap_nonpresent_pte;
247 }
248
249 static int is_large_pte(u64 pte)
250 {
251         return pte & PT_PAGE_SIZE_MASK;
252 }
253
254 static int is_writable_pte(unsigned long pte)
255 {
256         return pte & PT_WRITABLE_MASK;
257 }
258
259 static int is_dirty_gpte(unsigned long pte)
260 {
261         return pte & PT_DIRTY_MASK;
262 }
263
264 static int is_rmap_spte(u64 pte)
265 {
266         return is_shadow_present_pte(pte);
267 }
268
269 static int is_last_spte(u64 pte, int level)
270 {
271         if (level == PT_PAGE_TABLE_LEVEL)
272                 return 1;
273         if (is_large_pte(pte))
274                 return 1;
275         return 0;
276 }
277
278 static pfn_t spte_to_pfn(u64 pte)
279 {
280         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
281 }
282
283 static gfn_t pse36_gfn_delta(u32 gpte)
284 {
285         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287         return (gpte & PT32_DIR_PSE36_MASK) << shift;
288 }
289
290 static void __set_spte(u64 *sptep, u64 spte)
291 {
292         set_64bit(sptep, spte);
293 }
294
295 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
296 {
297 #ifdef CONFIG_X86_64
298         return xchg(sptep, new_spte);
299 #else
300         u64 old_spte;
301
302         do {
303                 old_spte = *sptep;
304         } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
305
306         return old_spte;
307 #endif
308 }
309
310 static bool spte_has_volatile_bits(u64 spte)
311 {
312         if (!shadow_accessed_mask)
313                 return false;
314
315         if (!is_shadow_present_pte(spte))
316                 return false;
317
318         if ((spte & shadow_accessed_mask) &&
319               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
320                 return false;
321
322         return true;
323 }
324
325 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
326 {
327         return (old_spte & bit_mask) && !(new_spte & bit_mask);
328 }
329
330 static void update_spte(u64 *sptep, u64 new_spte)
331 {
332         u64 mask, old_spte = *sptep;
333
334         WARN_ON(!is_rmap_spte(new_spte));
335
336         new_spte |= old_spte & shadow_dirty_mask;
337
338         mask = shadow_accessed_mask;
339         if (is_writable_pte(old_spte))
340                 mask |= shadow_dirty_mask;
341
342         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
343                 __set_spte(sptep, new_spte);
344         else
345                 old_spte = __xchg_spte(sptep, new_spte);
346
347         if (!shadow_accessed_mask)
348                 return;
349
350         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
351                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
352         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
353                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
354 }
355
356 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
357                                   struct kmem_cache *base_cache, int min)
358 {
359         void *obj;
360
361         if (cache->nobjs >= min)
362                 return 0;
363         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
364                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
365                 if (!obj)
366                         return -ENOMEM;
367                 cache->objects[cache->nobjs++] = obj;
368         }
369         return 0;
370 }
371
372 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
373                                   struct kmem_cache *cache)
374 {
375         while (mc->nobjs)
376                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
377 }
378
379 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
380                                        int min)
381 {
382         struct page *page;
383
384         if (cache->nobjs >= min)
385                 return 0;
386         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
387                 page = alloc_page(GFP_KERNEL);
388                 if (!page)
389                         return -ENOMEM;
390                 cache->objects[cache->nobjs++] = page_address(page);
391         }
392         return 0;
393 }
394
395 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
396 {
397         while (mc->nobjs)
398                 free_page((unsigned long)mc->objects[--mc->nobjs]);
399 }
400
401 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
402 {
403         int r;
404
405         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
406                                    pte_chain_cache, 4);
407         if (r)
408                 goto out;
409         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
410                                    rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
411         if (r)
412                 goto out;
413         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
414         if (r)
415                 goto out;
416         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
417                                    mmu_page_header_cache, 4);
418 out:
419         return r;
420 }
421
422 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
423 {
424         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
425         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
426         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
427         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
428                                 mmu_page_header_cache);
429 }
430
431 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
432                                     size_t size)
433 {
434         void *p;
435
436         BUG_ON(!mc->nobjs);
437         p = mc->objects[--mc->nobjs];
438         return p;
439 }
440
441 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
442 {
443         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
444                                       sizeof(struct kvm_pte_chain));
445 }
446
447 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
448 {
449         kmem_cache_free(pte_chain_cache, pc);
450 }
451
452 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
453 {
454         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
455                                       sizeof(struct kvm_rmap_desc));
456 }
457
458 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
459 {
460         kmem_cache_free(rmap_desc_cache, rd);
461 }
462
463 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
464 {
465         if (!sp->role.direct)
466                 return sp->gfns[index];
467
468         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
469 }
470
471 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
472 {
473         if (sp->role.direct)
474                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
475         else
476                 sp->gfns[index] = gfn;
477 }
478
479 /*
480  * Return the pointer to the large page information for a given gfn,
481  * handling slots that are not large page aligned.
482  */
483 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
484                                               struct kvm_memory_slot *slot,
485                                               int level)
486 {
487         unsigned long idx;
488
489         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
490               (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
491         return &slot->lpage_info[level - 2][idx];
492 }
493
494 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
495 {
496         struct kvm_memory_slot *slot;
497         struct kvm_lpage_info *linfo;
498         int i;
499
500         slot = gfn_to_memslot(kvm, gfn);
501         for (i = PT_DIRECTORY_LEVEL;
502              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
503                 linfo = lpage_info_slot(gfn, slot, i);
504                 linfo->write_count += 1;
505         }
506 }
507
508 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
509 {
510         struct kvm_memory_slot *slot;
511         struct kvm_lpage_info *linfo;
512         int i;
513
514         slot = gfn_to_memslot(kvm, gfn);
515         for (i = PT_DIRECTORY_LEVEL;
516              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
517                 linfo = lpage_info_slot(gfn, slot, i);
518                 linfo->write_count -= 1;
519                 WARN_ON(linfo->write_count < 0);
520         }
521 }
522
523 static int has_wrprotected_page(struct kvm *kvm,
524                                 gfn_t gfn,
525                                 int level)
526 {
527         struct kvm_memory_slot *slot;
528         struct kvm_lpage_info *linfo;
529
530         slot = gfn_to_memslot(kvm, gfn);
531         if (slot) {
532                 linfo = lpage_info_slot(gfn, slot, level);
533                 return linfo->write_count;
534         }
535
536         return 1;
537 }
538
539 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
540 {
541         unsigned long page_size;
542         int i, ret = 0;
543
544         page_size = kvm_host_page_size(kvm, gfn);
545
546         for (i = PT_PAGE_TABLE_LEVEL;
547              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
548                 if (page_size >= KVM_HPAGE_SIZE(i))
549                         ret = i;
550                 else
551                         break;
552         }
553
554         return ret;
555 }
556
557 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
558 {
559         struct kvm_memory_slot *slot;
560         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
561         if (slot && slot->dirty_bitmap)
562                 return true;
563         return false;
564 }
565
566 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
567 {
568         int host_level, level, max_level;
569
570         host_level = host_mapping_level(vcpu->kvm, large_gfn);
571
572         if (host_level == PT_PAGE_TABLE_LEVEL)
573                 return host_level;
574
575         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
576                 kvm_x86_ops->get_lpage_level() : host_level;
577
578         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
579                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
580                         break;
581
582         return level - 1;
583 }
584
585 /*
586  * Take gfn and return the reverse mapping to it.
587  */
588
589 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
590 {
591         struct kvm_memory_slot *slot;
592         struct kvm_lpage_info *linfo;
593
594         slot = gfn_to_memslot(kvm, gfn);
595         if (likely(level == PT_PAGE_TABLE_LEVEL))
596                 return &slot->rmap[gfn - slot->base_gfn];
597
598         linfo = lpage_info_slot(gfn, slot, level);
599
600         return &linfo->rmap_pde;
601 }
602
603 /*
604  * Reverse mapping data structures:
605  *
606  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
607  * that points to page_address(page).
608  *
609  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
610  * containing more mappings.
611  *
612  * Returns the number of rmap entries before the spte was added or zero if
613  * the spte was not added.
614  *
615  */
616 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
617 {
618         struct kvm_mmu_page *sp;
619         struct kvm_rmap_desc *desc;
620         unsigned long *rmapp;
621         int i, count = 0;
622
623         if (!is_rmap_spte(*spte))
624                 return count;
625         sp = page_header(__pa(spte));
626         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
627         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
628         if (!*rmapp) {
629                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
630                 *rmapp = (unsigned long)spte;
631         } else if (!(*rmapp & 1)) {
632                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
633                 desc = mmu_alloc_rmap_desc(vcpu);
634                 desc->sptes[0] = (u64 *)*rmapp;
635                 desc->sptes[1] = spte;
636                 *rmapp = (unsigned long)desc | 1;
637                 ++count;
638         } else {
639                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
640                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
641                 while (desc->sptes[RMAP_EXT-1] && desc->more) {
642                         desc = desc->more;
643                         count += RMAP_EXT;
644                 }
645                 if (desc->sptes[RMAP_EXT-1]) {
646                         desc->more = mmu_alloc_rmap_desc(vcpu);
647                         desc = desc->more;
648                 }
649                 for (i = 0; desc->sptes[i]; ++i)
650                         ++count;
651                 desc->sptes[i] = spte;
652         }
653         return count;
654 }
655
656 static void rmap_desc_remove_entry(unsigned long *rmapp,
657                                    struct kvm_rmap_desc *desc,
658                                    int i,
659                                    struct kvm_rmap_desc *prev_desc)
660 {
661         int j;
662
663         for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
664                 ;
665         desc->sptes[i] = desc->sptes[j];
666         desc->sptes[j] = NULL;
667         if (j != 0)
668                 return;
669         if (!prev_desc && !desc->more)
670                 *rmapp = (unsigned long)desc->sptes[0];
671         else
672                 if (prev_desc)
673                         prev_desc->more = desc->more;
674                 else
675                         *rmapp = (unsigned long)desc->more | 1;
676         mmu_free_rmap_desc(desc);
677 }
678
679 static void rmap_remove(struct kvm *kvm, u64 *spte)
680 {
681         struct kvm_rmap_desc *desc;
682         struct kvm_rmap_desc *prev_desc;
683         struct kvm_mmu_page *sp;
684         gfn_t gfn;
685         unsigned long *rmapp;
686         int i;
687
688         sp = page_header(__pa(spte));
689         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
690         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
691         if (!*rmapp) {
692                 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
693                 BUG();
694         } else if (!(*rmapp & 1)) {
695                 rmap_printk("rmap_remove:  %p 1->0\n", spte);
696                 if ((u64 *)*rmapp != spte) {
697                         printk(KERN_ERR "rmap_remove:  %p 1->BUG\n", spte);
698                         BUG();
699                 }
700                 *rmapp = 0;
701         } else {
702                 rmap_printk("rmap_remove:  %p many->many\n", spte);
703                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
704                 prev_desc = NULL;
705                 while (desc) {
706                         for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
707                                 if (desc->sptes[i] == spte) {
708                                         rmap_desc_remove_entry(rmapp,
709                                                                desc, i,
710                                                                prev_desc);
711                                         return;
712                                 }
713                         prev_desc = desc;
714                         desc = desc->more;
715                 }
716                 pr_err("rmap_remove: %p many->many\n", spte);
717                 BUG();
718         }
719 }
720
721 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
722 {
723         pfn_t pfn;
724         u64 old_spte = *sptep;
725
726         if (!spte_has_volatile_bits(old_spte))
727                 __set_spte(sptep, new_spte);
728         else
729                 old_spte = __xchg_spte(sptep, new_spte);
730
731         if (!is_rmap_spte(old_spte))
732                 return 0;
733
734         pfn = spte_to_pfn(old_spte);
735         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
736                 kvm_set_pfn_accessed(pfn);
737         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
738                 kvm_set_pfn_dirty(pfn);
739         return 1;
740 }
741
742 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
743 {
744         if (set_spte_track_bits(sptep, new_spte))
745                 rmap_remove(kvm, sptep);
746 }
747
748 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
749 {
750         struct kvm_rmap_desc *desc;
751         u64 *prev_spte;
752         int i;
753
754         if (!*rmapp)
755                 return NULL;
756         else if (!(*rmapp & 1)) {
757                 if (!spte)
758                         return (u64 *)*rmapp;
759                 return NULL;
760         }
761         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
762         prev_spte = NULL;
763         while (desc) {
764                 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
765                         if (prev_spte == spte)
766                                 return desc->sptes[i];
767                         prev_spte = desc->sptes[i];
768                 }
769                 desc = desc->more;
770         }
771         return NULL;
772 }
773
774 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
775 {
776         unsigned long *rmapp;
777         u64 *spte;
778         int i, write_protected = 0;
779
780         rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
781
782         spte = rmap_next(kvm, rmapp, NULL);
783         while (spte) {
784                 BUG_ON(!spte);
785                 BUG_ON(!(*spte & PT_PRESENT_MASK));
786                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
787                 if (is_writable_pte(*spte)) {
788                         update_spte(spte, *spte & ~PT_WRITABLE_MASK);
789                         write_protected = 1;
790                 }
791                 spte = rmap_next(kvm, rmapp, spte);
792         }
793
794         /* check for huge page mappings */
795         for (i = PT_DIRECTORY_LEVEL;
796              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
797                 rmapp = gfn_to_rmap(kvm, gfn, i);
798                 spte = rmap_next(kvm, rmapp, NULL);
799                 while (spte) {
800                         BUG_ON(!spte);
801                         BUG_ON(!(*spte & PT_PRESENT_MASK));
802                         BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
803                         pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
804                         if (is_writable_pte(*spte)) {
805                                 drop_spte(kvm, spte,
806                                           shadow_trap_nonpresent_pte);
807                                 --kvm->stat.lpages;
808                                 spte = NULL;
809                                 write_protected = 1;
810                         }
811                         spte = rmap_next(kvm, rmapp, spte);
812                 }
813         }
814
815         return write_protected;
816 }
817
818 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
819                            unsigned long data)
820 {
821         u64 *spte;
822         int need_tlb_flush = 0;
823
824         while ((spte = rmap_next(kvm, rmapp, NULL))) {
825                 BUG_ON(!(*spte & PT_PRESENT_MASK));
826                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
827                 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
828                 need_tlb_flush = 1;
829         }
830         return need_tlb_flush;
831 }
832
833 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
834                              unsigned long data)
835 {
836         int need_flush = 0;
837         u64 *spte, new_spte;
838         pte_t *ptep = (pte_t *)data;
839         pfn_t new_pfn;
840
841         WARN_ON(pte_huge(*ptep));
842         new_pfn = pte_pfn(*ptep);
843         spte = rmap_next(kvm, rmapp, NULL);
844         while (spte) {
845                 BUG_ON(!is_shadow_present_pte(*spte));
846                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
847                 need_flush = 1;
848                 if (pte_write(*ptep)) {
849                         drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
850                         spte = rmap_next(kvm, rmapp, NULL);
851                 } else {
852                         new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
853                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
854
855                         new_spte &= ~PT_WRITABLE_MASK;
856                         new_spte &= ~SPTE_HOST_WRITEABLE;
857                         new_spte &= ~shadow_accessed_mask;
858                         set_spte_track_bits(spte, new_spte);
859                         spte = rmap_next(kvm, rmapp, spte);
860                 }
861         }
862         if (need_flush)
863                 kvm_flush_remote_tlbs(kvm);
864
865         return 0;
866 }
867
868 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
869                           unsigned long data,
870                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
871                                          unsigned long data))
872 {
873         int i, j;
874         int ret;
875         int retval = 0;
876         struct kvm_memslots *slots;
877
878         slots = kvm_memslots(kvm);
879
880         for (i = 0; i < slots->nmemslots; i++) {
881                 struct kvm_memory_slot *memslot = &slots->memslots[i];
882                 unsigned long start = memslot->userspace_addr;
883                 unsigned long end;
884
885                 end = start + (memslot->npages << PAGE_SHIFT);
886                 if (hva >= start && hva < end) {
887                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
888                         gfn_t gfn = memslot->base_gfn + gfn_offset;
889
890                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
891
892                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
893                                 struct kvm_lpage_info *linfo;
894
895                                 linfo = lpage_info_slot(gfn, memslot,
896                                                         PT_DIRECTORY_LEVEL + j);
897                                 ret |= handler(kvm, &linfo->rmap_pde, data);
898                         }
899                         trace_kvm_age_page(hva, memslot, ret);
900                         retval |= ret;
901                 }
902         }
903
904         return retval;
905 }
906
907 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
908 {
909         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
910 }
911
912 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
913 {
914         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
915 }
916
917 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
918                          unsigned long data)
919 {
920         u64 *spte;
921         int young = 0;
922
923         /*
924          * Emulate the accessed bit for EPT, by checking if this page has
925          * an EPT mapping, and clearing it if it does. On the next access,
926          * a new EPT mapping will be established.
927          * This has some overhead, but not as much as the cost of swapping
928          * out actively used pages or breaking up actively used hugepages.
929          */
930         if (!shadow_accessed_mask)
931                 return kvm_unmap_rmapp(kvm, rmapp, data);
932
933         spte = rmap_next(kvm, rmapp, NULL);
934         while (spte) {
935                 int _young;
936                 u64 _spte = *spte;
937                 BUG_ON(!(_spte & PT_PRESENT_MASK));
938                 _young = _spte & PT_ACCESSED_MASK;
939                 if (_young) {
940                         young = 1;
941                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
942                 }
943                 spte = rmap_next(kvm, rmapp, spte);
944         }
945         return young;
946 }
947
948 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
949                               unsigned long data)
950 {
951         u64 *spte;
952         int young = 0;
953
954         /*
955          * If there's no access bit in the secondary pte set by the
956          * hardware it's up to gup-fast/gup to set the access bit in
957          * the primary pte or in the page structure.
958          */
959         if (!shadow_accessed_mask)
960                 goto out;
961
962         spte = rmap_next(kvm, rmapp, NULL);
963         while (spte) {
964                 u64 _spte = *spte;
965                 BUG_ON(!(_spte & PT_PRESENT_MASK));
966                 young = _spte & PT_ACCESSED_MASK;
967                 if (young) {
968                         young = 1;
969                         break;
970                 }
971                 spte = rmap_next(kvm, rmapp, spte);
972         }
973 out:
974         return young;
975 }
976
977 #define RMAP_RECYCLE_THRESHOLD 1000
978
979 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
980 {
981         unsigned long *rmapp;
982         struct kvm_mmu_page *sp;
983
984         sp = page_header(__pa(spte));
985
986         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
987
988         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
989         kvm_flush_remote_tlbs(vcpu->kvm);
990 }
991
992 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
993 {
994         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
995 }
996
997 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
998 {
999         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1000 }
1001
1002 #ifdef MMU_DEBUG
1003 static int is_empty_shadow_page(u64 *spt)
1004 {
1005         u64 *pos;
1006         u64 *end;
1007
1008         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1009                 if (is_shadow_present_pte(*pos)) {
1010                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1011                                pos, *pos);
1012                         return 0;
1013                 }
1014         return 1;
1015 }
1016 #endif
1017
1018 /*
1019  * This value is the sum of all of the kvm instances's
1020  * kvm->arch.n_used_mmu_pages values.  We need a global,
1021  * aggregate version in order to make the slab shrinker
1022  * faster
1023  */
1024 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1025 {
1026         kvm->arch.n_used_mmu_pages += nr;
1027         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1028 }
1029
1030 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1031 {
1032         ASSERT(is_empty_shadow_page(sp->spt));
1033         hlist_del(&sp->hash_link);
1034         list_del(&sp->link);
1035         __free_page(virt_to_page(sp->spt));
1036         if (!sp->role.direct)
1037                 __free_page(virt_to_page(sp->gfns));
1038         kmem_cache_free(mmu_page_header_cache, sp);
1039         kvm_mod_used_mmu_pages(kvm, -1);
1040 }
1041
1042 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1043 {
1044         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1045 }
1046
1047 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1048                                                u64 *parent_pte, int direct)
1049 {
1050         struct kvm_mmu_page *sp;
1051
1052         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1053         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1054         if (!direct)
1055                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1056                                                   PAGE_SIZE);
1057         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1058         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1059         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1060         sp->multimapped = 0;
1061         sp->parent_pte = parent_pte;
1062         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1063         return sp;
1064 }
1065
1066 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1067                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1068 {
1069         struct kvm_pte_chain *pte_chain;
1070         struct hlist_node *node;
1071         int i;
1072
1073         if (!parent_pte)
1074                 return;
1075         if (!sp->multimapped) {
1076                 u64 *old = sp->parent_pte;
1077
1078                 if (!old) {
1079                         sp->parent_pte = parent_pte;
1080                         return;
1081                 }
1082                 sp->multimapped = 1;
1083                 pte_chain = mmu_alloc_pte_chain(vcpu);
1084                 INIT_HLIST_HEAD(&sp->parent_ptes);
1085                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1086                 pte_chain->parent_ptes[0] = old;
1087         }
1088         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1089                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1090                         continue;
1091                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1092                         if (!pte_chain->parent_ptes[i]) {
1093                                 pte_chain->parent_ptes[i] = parent_pte;
1094                                 return;
1095                         }
1096         }
1097         pte_chain = mmu_alloc_pte_chain(vcpu);
1098         BUG_ON(!pte_chain);
1099         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1100         pte_chain->parent_ptes[0] = parent_pte;
1101 }
1102
1103 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1104                                        u64 *parent_pte)
1105 {
1106         struct kvm_pte_chain *pte_chain;
1107         struct hlist_node *node;
1108         int i;
1109
1110         if (!sp->multimapped) {
1111                 BUG_ON(sp->parent_pte != parent_pte);
1112                 sp->parent_pte = NULL;
1113                 return;
1114         }
1115         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1116                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1117                         if (!pte_chain->parent_ptes[i])
1118                                 break;
1119                         if (pte_chain->parent_ptes[i] != parent_pte)
1120                                 continue;
1121                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
1122                                 && pte_chain->parent_ptes[i + 1]) {
1123                                 pte_chain->parent_ptes[i]
1124                                         = pte_chain->parent_ptes[i + 1];
1125                                 ++i;
1126                         }
1127                         pte_chain->parent_ptes[i] = NULL;
1128                         if (i == 0) {
1129                                 hlist_del(&pte_chain->link);
1130                                 mmu_free_pte_chain(pte_chain);
1131                                 if (hlist_empty(&sp->parent_ptes)) {
1132                                         sp->multimapped = 0;
1133                                         sp->parent_pte = NULL;
1134                                 }
1135                         }
1136                         return;
1137                 }
1138         BUG();
1139 }
1140
1141 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1142 {
1143         struct kvm_pte_chain *pte_chain;
1144         struct hlist_node *node;
1145         struct kvm_mmu_page *parent_sp;
1146         int i;
1147
1148         if (!sp->multimapped && sp->parent_pte) {
1149                 parent_sp = page_header(__pa(sp->parent_pte));
1150                 fn(parent_sp, sp->parent_pte);
1151                 return;
1152         }
1153
1154         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1155                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1156                         u64 *spte = pte_chain->parent_ptes[i];
1157
1158                         if (!spte)
1159                                 break;
1160                         parent_sp = page_header(__pa(spte));
1161                         fn(parent_sp, spte);
1162                 }
1163 }
1164
1165 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1166 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1167 {
1168         mmu_parent_walk(sp, mark_unsync);
1169 }
1170
1171 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1172 {
1173         unsigned int index;
1174
1175         index = spte - sp->spt;
1176         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1177                 return;
1178         if (sp->unsync_children++)
1179                 return;
1180         kvm_mmu_mark_parents_unsync(sp);
1181 }
1182
1183 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1184                                     struct kvm_mmu_page *sp)
1185 {
1186         int i;
1187
1188         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1189                 sp->spt[i] = shadow_trap_nonpresent_pte;
1190 }
1191
1192 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1193                                struct kvm_mmu_page *sp)
1194 {
1195         return 1;
1196 }
1197
1198 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1199 {
1200 }
1201
1202 #define KVM_PAGE_ARRAY_NR 16
1203
1204 struct kvm_mmu_pages {
1205         struct mmu_page_and_offset {
1206                 struct kvm_mmu_page *sp;
1207                 unsigned int idx;
1208         } page[KVM_PAGE_ARRAY_NR];
1209         unsigned int nr;
1210 };
1211
1212 #define for_each_unsync_children(bitmap, idx)           \
1213         for (idx = find_first_bit(bitmap, 512);         \
1214              idx < 512;                                 \
1215              idx = find_next_bit(bitmap, 512, idx+1))
1216
1217 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1218                          int idx)
1219 {
1220         int i;
1221
1222         if (sp->unsync)
1223                 for (i=0; i < pvec->nr; i++)
1224                         if (pvec->page[i].sp == sp)
1225                                 return 0;
1226
1227         pvec->page[pvec->nr].sp = sp;
1228         pvec->page[pvec->nr].idx = idx;
1229         pvec->nr++;
1230         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1231 }
1232
1233 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1234                            struct kvm_mmu_pages *pvec)
1235 {
1236         int i, ret, nr_unsync_leaf = 0;
1237
1238         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1239                 struct kvm_mmu_page *child;
1240                 u64 ent = sp->spt[i];
1241
1242                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1243                         goto clear_child_bitmap;
1244
1245                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1246
1247                 if (child->unsync_children) {
1248                         if (mmu_pages_add(pvec, child, i))
1249                                 return -ENOSPC;
1250
1251                         ret = __mmu_unsync_walk(child, pvec);
1252                         if (!ret)
1253                                 goto clear_child_bitmap;
1254                         else if (ret > 0)
1255                                 nr_unsync_leaf += ret;
1256                         else
1257                                 return ret;
1258                 } else if (child->unsync) {
1259                         nr_unsync_leaf++;
1260                         if (mmu_pages_add(pvec, child, i))
1261                                 return -ENOSPC;
1262                 } else
1263                          goto clear_child_bitmap;
1264
1265                 continue;
1266
1267 clear_child_bitmap:
1268                 __clear_bit(i, sp->unsync_child_bitmap);
1269                 sp->unsync_children--;
1270                 WARN_ON((int)sp->unsync_children < 0);
1271         }
1272
1273
1274         return nr_unsync_leaf;
1275 }
1276
1277 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1278                            struct kvm_mmu_pages *pvec)
1279 {
1280         if (!sp->unsync_children)
1281                 return 0;
1282
1283         mmu_pages_add(pvec, sp, 0);
1284         return __mmu_unsync_walk(sp, pvec);
1285 }
1286
1287 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1288 {
1289         WARN_ON(!sp->unsync);
1290         trace_kvm_mmu_sync_page(sp);
1291         sp->unsync = 0;
1292         --kvm->stat.mmu_unsync;
1293 }
1294
1295 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1296                                     struct list_head *invalid_list);
1297 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1298                                     struct list_head *invalid_list);
1299
1300 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1301   hlist_for_each_entry(sp, pos,                                         \
1302    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1303         if ((sp)->gfn != (gfn)) {} else
1304
1305 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1306   hlist_for_each_entry(sp, pos,                                         \
1307    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1308                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1309                         (sp)->role.invalid) {} else
1310
1311 /* @sp->gfn should be write-protected at the call site */
1312 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1313                            struct list_head *invalid_list, bool clear_unsync)
1314 {
1315         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1316                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1317                 return 1;
1318         }
1319
1320         if (clear_unsync)
1321                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1322
1323         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1324                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1325                 return 1;
1326         }
1327
1328         kvm_mmu_flush_tlb(vcpu);
1329         return 0;
1330 }
1331
1332 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1333                                    struct kvm_mmu_page *sp)
1334 {
1335         LIST_HEAD(invalid_list);
1336         int ret;
1337
1338         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1339         if (ret)
1340                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1341
1342         return ret;
1343 }
1344
1345 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1346                          struct list_head *invalid_list)
1347 {
1348         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1349 }
1350
1351 /* @gfn should be write-protected at the call site */
1352 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1353 {
1354         struct kvm_mmu_page *s;
1355         struct hlist_node *node;
1356         LIST_HEAD(invalid_list);
1357         bool flush = false;
1358
1359         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1360                 if (!s->unsync)
1361                         continue;
1362
1363                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1364                 kvm_unlink_unsync_page(vcpu->kvm, s);
1365                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1366                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1367                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1368                         continue;
1369                 }
1370                 flush = true;
1371         }
1372
1373         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1374         if (flush)
1375                 kvm_mmu_flush_tlb(vcpu);
1376 }
1377
1378 struct mmu_page_path {
1379         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1380         unsigned int idx[PT64_ROOT_LEVEL-1];
1381 };
1382
1383 #define for_each_sp(pvec, sp, parents, i)                       \
1384                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1385                         sp = pvec.page[i].sp;                   \
1386                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1387                         i = mmu_pages_next(&pvec, &parents, i))
1388
1389 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1390                           struct mmu_page_path *parents,
1391                           int i)
1392 {
1393         int n;
1394
1395         for (n = i+1; n < pvec->nr; n++) {
1396                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1397
1398                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1399                         parents->idx[0] = pvec->page[n].idx;
1400                         return n;
1401                 }
1402
1403                 parents->parent[sp->role.level-2] = sp;
1404                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1405         }
1406
1407         return n;
1408 }
1409
1410 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1411 {
1412         struct kvm_mmu_page *sp;
1413         unsigned int level = 0;
1414
1415         do {
1416                 unsigned int idx = parents->idx[level];
1417
1418                 sp = parents->parent[level];
1419                 if (!sp)
1420                         return;
1421
1422                 --sp->unsync_children;
1423                 WARN_ON((int)sp->unsync_children < 0);
1424                 __clear_bit(idx, sp->unsync_child_bitmap);
1425                 level++;
1426         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1427 }
1428
1429 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1430                                struct mmu_page_path *parents,
1431                                struct kvm_mmu_pages *pvec)
1432 {
1433         parents->parent[parent->role.level-1] = NULL;
1434         pvec->nr = 0;
1435 }
1436
1437 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1438                               struct kvm_mmu_page *parent)
1439 {
1440         int i;
1441         struct kvm_mmu_page *sp;
1442         struct mmu_page_path parents;
1443         struct kvm_mmu_pages pages;
1444         LIST_HEAD(invalid_list);
1445
1446         kvm_mmu_pages_init(parent, &parents, &pages);
1447         while (mmu_unsync_walk(parent, &pages)) {
1448                 int protected = 0;
1449
1450                 for_each_sp(pages, sp, parents, i)
1451                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1452
1453                 if (protected)
1454                         kvm_flush_remote_tlbs(vcpu->kvm);
1455
1456                 for_each_sp(pages, sp, parents, i) {
1457                         kvm_sync_page(vcpu, sp, &invalid_list);
1458                         mmu_pages_clear_parents(&parents);
1459                 }
1460                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1461                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1462                 kvm_mmu_pages_init(parent, &parents, &pages);
1463         }
1464 }
1465
1466 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1467                                              gfn_t gfn,
1468                                              gva_t gaddr,
1469                                              unsigned level,
1470                                              int direct,
1471                                              unsigned access,
1472                                              u64 *parent_pte)
1473 {
1474         union kvm_mmu_page_role role;
1475         unsigned quadrant;
1476         struct kvm_mmu_page *sp;
1477         struct hlist_node *node;
1478         bool need_sync = false;
1479
1480         role = vcpu->arch.mmu.base_role;
1481         role.level = level;
1482         role.direct = direct;
1483         if (role.direct)
1484                 role.cr4_pae = 0;
1485         role.access = access;
1486         if (!vcpu->arch.mmu.direct_map
1487             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1488                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1489                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1490                 role.quadrant = quadrant;
1491         }
1492         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1493                 if (!need_sync && sp->unsync)
1494                         need_sync = true;
1495
1496                 if (sp->role.word != role.word)
1497                         continue;
1498
1499                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1500                         break;
1501
1502                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1503                 if (sp->unsync_children) {
1504                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1505                         kvm_mmu_mark_parents_unsync(sp);
1506                 } else if (sp->unsync)
1507                         kvm_mmu_mark_parents_unsync(sp);
1508
1509                 trace_kvm_mmu_get_page(sp, false);
1510                 return sp;
1511         }
1512         ++vcpu->kvm->stat.mmu_cache_miss;
1513         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1514         if (!sp)
1515                 return sp;
1516         sp->gfn = gfn;
1517         sp->role = role;
1518         hlist_add_head(&sp->hash_link,
1519                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1520         if (!direct) {
1521                 if (rmap_write_protect(vcpu->kvm, gfn))
1522                         kvm_flush_remote_tlbs(vcpu->kvm);
1523                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1524                         kvm_sync_pages(vcpu, gfn);
1525
1526                 account_shadowed(vcpu->kvm, gfn);
1527         }
1528         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1529                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1530         else
1531                 nonpaging_prefetch_page(vcpu, sp);
1532         trace_kvm_mmu_get_page(sp, true);
1533         return sp;
1534 }
1535
1536 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1537                              struct kvm_vcpu *vcpu, u64 addr)
1538 {
1539         iterator->addr = addr;
1540         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1541         iterator->level = vcpu->arch.mmu.shadow_root_level;
1542
1543         if (iterator->level == PT64_ROOT_LEVEL &&
1544             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1545             !vcpu->arch.mmu.direct_map)
1546                 --iterator->level;
1547
1548         if (iterator->level == PT32E_ROOT_LEVEL) {
1549                 iterator->shadow_addr
1550                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1551                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1552                 --iterator->level;
1553                 if (!iterator->shadow_addr)
1554                         iterator->level = 0;
1555         }
1556 }
1557
1558 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1559 {
1560         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1561                 return false;
1562
1563         if (iterator->level == PT_PAGE_TABLE_LEVEL)
1564                 if (is_large_pte(*iterator->sptep))
1565                         return false;
1566
1567         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1568         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1569         return true;
1570 }
1571
1572 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1573 {
1574         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1575         --iterator->level;
1576 }
1577
1578 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1579 {
1580         u64 spte;
1581
1582         spte = __pa(sp->spt)
1583                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1584                 | PT_WRITABLE_MASK | PT_USER_MASK;
1585         __set_spte(sptep, spte);
1586 }
1587
1588 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1589 {
1590         if (is_large_pte(*sptep)) {
1591                 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1592                 kvm_flush_remote_tlbs(vcpu->kvm);
1593         }
1594 }
1595
1596 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1597                                    unsigned direct_access)
1598 {
1599         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1600                 struct kvm_mmu_page *child;
1601
1602                 /*
1603                  * For the direct sp, if the guest pte's dirty bit
1604                  * changed form clean to dirty, it will corrupt the
1605                  * sp's access: allow writable in the read-only sp,
1606                  * so we should update the spte at this point to get
1607                  * a new sp with the correct access.
1608                  */
1609                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1610                 if (child->role.access == direct_access)
1611                         return;
1612
1613                 mmu_page_remove_parent_pte(child, sptep);
1614                 __set_spte(sptep, shadow_trap_nonpresent_pte);
1615                 kvm_flush_remote_tlbs(vcpu->kvm);
1616         }
1617 }
1618
1619 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1620                                          struct kvm_mmu_page *sp)
1621 {
1622         unsigned i;
1623         u64 *pt;
1624         u64 ent;
1625
1626         pt = sp->spt;
1627
1628         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1629                 ent = pt[i];
1630
1631                 if (is_shadow_present_pte(ent)) {
1632                         if (!is_last_spte(ent, sp->role.level)) {
1633                                 ent &= PT64_BASE_ADDR_MASK;
1634                                 mmu_page_remove_parent_pte(page_header(ent),
1635                                                            &pt[i]);
1636                         } else {
1637                                 if (is_large_pte(ent))
1638                                         --kvm->stat.lpages;
1639                                 drop_spte(kvm, &pt[i],
1640                                           shadow_trap_nonpresent_pte);
1641                         }
1642                 }
1643                 pt[i] = shadow_trap_nonpresent_pte;
1644         }
1645 }
1646
1647 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1648 {
1649         mmu_page_remove_parent_pte(sp, parent_pte);
1650 }
1651
1652 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1653 {
1654         int i;
1655         struct kvm_vcpu *vcpu;
1656
1657         kvm_for_each_vcpu(i, vcpu, kvm)
1658                 vcpu->arch.last_pte_updated = NULL;
1659 }
1660
1661 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1662 {
1663         u64 *parent_pte;
1664
1665         while (sp->multimapped || sp->parent_pte) {
1666                 if (!sp->multimapped)
1667                         parent_pte = sp->parent_pte;
1668                 else {
1669                         struct kvm_pte_chain *chain;
1670
1671                         chain = container_of(sp->parent_ptes.first,
1672                                              struct kvm_pte_chain, link);
1673                         parent_pte = chain->parent_ptes[0];
1674                 }
1675                 BUG_ON(!parent_pte);
1676                 kvm_mmu_put_page(sp, parent_pte);
1677                 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1678         }
1679 }
1680
1681 static int mmu_zap_unsync_children(struct kvm *kvm,
1682                                    struct kvm_mmu_page *parent,
1683                                    struct list_head *invalid_list)
1684 {
1685         int i, zapped = 0;
1686         struct mmu_page_path parents;
1687         struct kvm_mmu_pages pages;
1688
1689         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1690                 return 0;
1691
1692         kvm_mmu_pages_init(parent, &parents, &pages);
1693         while (mmu_unsync_walk(parent, &pages)) {
1694                 struct kvm_mmu_page *sp;
1695
1696                 for_each_sp(pages, sp, parents, i) {
1697                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1698                         mmu_pages_clear_parents(&parents);
1699                         zapped++;
1700                 }
1701                 kvm_mmu_pages_init(parent, &parents, &pages);
1702         }
1703
1704         return zapped;
1705 }
1706
1707 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1708                                     struct list_head *invalid_list)
1709 {
1710         int ret;
1711
1712         trace_kvm_mmu_prepare_zap_page(sp);
1713         ++kvm->stat.mmu_shadow_zapped;
1714         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1715         kvm_mmu_page_unlink_children(kvm, sp);
1716         kvm_mmu_unlink_parents(kvm, sp);
1717         if (!sp->role.invalid && !sp->role.direct)
1718                 unaccount_shadowed(kvm, sp->gfn);
1719         if (sp->unsync)
1720                 kvm_unlink_unsync_page(kvm, sp);
1721         if (!sp->root_count) {
1722                 /* Count self */
1723                 ret++;
1724                 list_move(&sp->link, invalid_list);
1725         } else {
1726                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1727                 kvm_reload_remote_mmus(kvm);
1728         }
1729
1730         sp->role.invalid = 1;
1731         kvm_mmu_reset_last_pte_updated(kvm);
1732         return ret;
1733 }
1734
1735 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1736                                     struct list_head *invalid_list)
1737 {
1738         struct kvm_mmu_page *sp;
1739
1740         if (list_empty(invalid_list))
1741                 return;
1742
1743         kvm_flush_remote_tlbs(kvm);
1744
1745         do {
1746                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1747                 WARN_ON(!sp->role.invalid || sp->root_count);
1748                 kvm_mmu_free_page(kvm, sp);
1749         } while (!list_empty(invalid_list));
1750
1751 }
1752
1753 /*
1754  * Changing the number of mmu pages allocated to the vm
1755  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1756  */
1757 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1758 {
1759         LIST_HEAD(invalid_list);
1760         /*
1761          * If we set the number of mmu pages to be smaller be than the
1762          * number of actived pages , we must to free some mmu pages before we
1763          * change the value
1764          */
1765
1766         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1767                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1768                         !list_empty(&kvm->arch.active_mmu_pages)) {
1769                         struct kvm_mmu_page *page;
1770
1771                         page = container_of(kvm->arch.active_mmu_pages.prev,
1772                                             struct kvm_mmu_page, link);
1773                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1774                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1775                 }
1776                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1777         }
1778
1779         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1780 }
1781
1782 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1783 {
1784         struct kvm_mmu_page *sp;
1785         struct hlist_node *node;
1786         LIST_HEAD(invalid_list);
1787         int r;
1788
1789         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1790         r = 0;
1791
1792         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1793                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1794                          sp->role.word);
1795                 r = 1;
1796                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1797         }
1798         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1799         return r;
1800 }
1801
1802 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1803 {
1804         struct kvm_mmu_page *sp;
1805         struct hlist_node *node;
1806         LIST_HEAD(invalid_list);
1807
1808         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1809                 pgprintk("%s: zap %llx %x\n",
1810                          __func__, gfn, sp->role.word);
1811                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1812         }
1813         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1814 }
1815
1816 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1817 {
1818         int slot = memslot_id(kvm, gfn);
1819         struct kvm_mmu_page *sp = page_header(__pa(pte));
1820
1821         __set_bit(slot, sp->slot_bitmap);
1822 }
1823
1824 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1825 {
1826         int i;
1827         u64 *pt = sp->spt;
1828
1829         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1830                 return;
1831
1832         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1833                 if (pt[i] == shadow_notrap_nonpresent_pte)
1834                         __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1835         }
1836 }
1837
1838 /*
1839  * The function is based on mtrr_type_lookup() in
1840  * arch/x86/kernel/cpu/mtrr/generic.c
1841  */
1842 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1843                          u64 start, u64 end)
1844 {
1845         int i;
1846         u64 base, mask;
1847         u8 prev_match, curr_match;
1848         int num_var_ranges = KVM_NR_VAR_MTRR;
1849
1850         if (!mtrr_state->enabled)
1851                 return 0xFF;
1852
1853         /* Make end inclusive end, instead of exclusive */
1854         end--;
1855
1856         /* Look in fixed ranges. Just return the type as per start */
1857         if (mtrr_state->have_fixed && (start < 0x100000)) {
1858                 int idx;
1859
1860                 if (start < 0x80000) {
1861                         idx = 0;
1862                         idx += (start >> 16);
1863                         return mtrr_state->fixed_ranges[idx];
1864                 } else if (start < 0xC0000) {
1865                         idx = 1 * 8;
1866                         idx += ((start - 0x80000) >> 14);
1867                         return mtrr_state->fixed_ranges[idx];
1868                 } else if (start < 0x1000000) {
1869                         idx = 3 * 8;
1870                         idx += ((start - 0xC0000) >> 12);
1871                         return mtrr_state->fixed_ranges[idx];
1872                 }
1873         }
1874
1875         /*
1876          * Look in variable ranges
1877          * Look of multiple ranges matching this address and pick type
1878          * as per MTRR precedence
1879          */
1880         if (!(mtrr_state->enabled & 2))
1881                 return mtrr_state->def_type;
1882
1883         prev_match = 0xFF;
1884         for (i = 0; i < num_var_ranges; ++i) {
1885                 unsigned short start_state, end_state;
1886
1887                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1888                         continue;
1889
1890                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1891                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1892                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1893                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1894
1895                 start_state = ((start & mask) == (base & mask));
1896                 end_state = ((end & mask) == (base & mask));
1897                 if (start_state != end_state)
1898                         return 0xFE;
1899
1900                 if ((start & mask) != (base & mask))
1901                         continue;
1902
1903                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1904                 if (prev_match == 0xFF) {
1905                         prev_match = curr_match;
1906                         continue;
1907                 }
1908
1909                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1910                     curr_match == MTRR_TYPE_UNCACHABLE)
1911                         return MTRR_TYPE_UNCACHABLE;
1912
1913                 if ((prev_match == MTRR_TYPE_WRBACK &&
1914                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1915                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1916                      curr_match == MTRR_TYPE_WRBACK)) {
1917                         prev_match = MTRR_TYPE_WRTHROUGH;
1918                         curr_match = MTRR_TYPE_WRTHROUGH;
1919                 }
1920
1921                 if (prev_match != curr_match)
1922                         return MTRR_TYPE_UNCACHABLE;
1923         }
1924
1925         if (prev_match != 0xFF)
1926                 return prev_match;
1927
1928         return mtrr_state->def_type;
1929 }
1930
1931 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1932 {
1933         u8 mtrr;
1934
1935         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1936                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1937         if (mtrr == 0xfe || mtrr == 0xff)
1938                 mtrr = MTRR_TYPE_WRBACK;
1939         return mtrr;
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1942
1943 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1944 {
1945         trace_kvm_mmu_unsync_page(sp);
1946         ++vcpu->kvm->stat.mmu_unsync;
1947         sp->unsync = 1;
1948
1949         kvm_mmu_mark_parents_unsync(sp);
1950         mmu_convert_notrap(sp);
1951 }
1952
1953 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1954 {
1955         struct kvm_mmu_page *s;
1956         struct hlist_node *node;
1957
1958         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1959                 if (s->unsync)
1960                         continue;
1961                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1962                 __kvm_unsync_page(vcpu, s);
1963         }
1964 }
1965
1966 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1967                                   bool can_unsync)
1968 {
1969         struct kvm_mmu_page *s;
1970         struct hlist_node *node;
1971         bool need_unsync = false;
1972
1973         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1974                 if (!can_unsync)
1975                         return 1;
1976
1977                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1978                         return 1;
1979
1980                 if (!need_unsync && !s->unsync) {
1981                         if (!oos_shadow)
1982                                 return 1;
1983                         need_unsync = true;
1984                 }
1985         }
1986         if (need_unsync)
1987                 kvm_unsync_pages(vcpu, gfn);
1988         return 0;
1989 }
1990
1991 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1992                     unsigned pte_access, int user_fault,
1993                     int write_fault, int dirty, int level,
1994                     gfn_t gfn, pfn_t pfn, bool speculative,
1995                     bool can_unsync, bool host_writable)
1996 {
1997         u64 spte, entry = *sptep;
1998         int ret = 0;
1999
2000         /*
2001          * We don't set the accessed bit, since we sometimes want to see
2002          * whether the guest actually used the pte (in order to detect
2003          * demand paging).
2004          */
2005         spte = PT_PRESENT_MASK;
2006         if (!speculative)
2007                 spte |= shadow_accessed_mask;
2008         if (!dirty)
2009                 pte_access &= ~ACC_WRITE_MASK;
2010         if (pte_access & ACC_EXEC_MASK)
2011                 spte |= shadow_x_mask;
2012         else
2013                 spte |= shadow_nx_mask;
2014         if (pte_access & ACC_USER_MASK)
2015                 spte |= shadow_user_mask;
2016         if (level > PT_PAGE_TABLE_LEVEL)
2017                 spte |= PT_PAGE_SIZE_MASK;
2018         if (tdp_enabled)
2019                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2020                         kvm_is_mmio_pfn(pfn));
2021
2022         if (host_writable)
2023                 spte |= SPTE_HOST_WRITEABLE;
2024         else
2025                 pte_access &= ~ACC_WRITE_MASK;
2026
2027         spte |= (u64)pfn << PAGE_SHIFT;
2028
2029         if ((pte_access & ACC_WRITE_MASK)
2030             || (!vcpu->arch.mmu.direct_map && write_fault
2031                 && !is_write_protection(vcpu) && !user_fault)) {
2032
2033                 if (level > PT_PAGE_TABLE_LEVEL &&
2034                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2035                         ret = 1;
2036                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2037                         goto done;
2038                 }
2039
2040                 spte |= PT_WRITABLE_MASK;
2041
2042                 if (!vcpu->arch.mmu.direct_map
2043                     && !(pte_access & ACC_WRITE_MASK))
2044                         spte &= ~PT_USER_MASK;
2045
2046                 /*
2047                  * Optimization: for pte sync, if spte was writable the hash
2048                  * lookup is unnecessary (and expensive). Write protection
2049                  * is responsibility of mmu_get_page / kvm_sync_page.
2050                  * Same reasoning can be applied to dirty page accounting.
2051                  */
2052                 if (!can_unsync && is_writable_pte(*sptep))
2053                         goto set_pte;
2054
2055                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2056                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2057                                  __func__, gfn);
2058                         ret = 1;
2059                         pte_access &= ~ACC_WRITE_MASK;
2060                         if (is_writable_pte(spte))
2061                                 spte &= ~PT_WRITABLE_MASK;
2062                 }
2063         }
2064
2065         if (pte_access & ACC_WRITE_MASK)
2066                 mark_page_dirty(vcpu->kvm, gfn);
2067
2068 set_pte:
2069         update_spte(sptep, spte);
2070         /*
2071          * If we overwrite a writable spte with a read-only one we
2072          * should flush remote TLBs. Otherwise rmap_write_protect
2073          * will find a read-only spte, even though the writable spte
2074          * might be cached on a CPU's TLB.
2075          */
2076         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2077                 kvm_flush_remote_tlbs(vcpu->kvm);
2078 done:
2079         return ret;
2080 }
2081
2082 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2083                          unsigned pt_access, unsigned pte_access,
2084                          int user_fault, int write_fault, int dirty,
2085                          int *ptwrite, int level, gfn_t gfn,
2086                          pfn_t pfn, bool speculative,
2087                          bool host_writable)
2088 {
2089         int was_rmapped = 0;
2090         int rmap_count;
2091
2092         pgprintk("%s: spte %llx access %x write_fault %d"
2093                  " user_fault %d gfn %llx\n",
2094                  __func__, *sptep, pt_access,
2095                  write_fault, user_fault, gfn);
2096
2097         if (is_rmap_spte(*sptep)) {
2098                 /*
2099                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2100                  * the parent of the now unreachable PTE.
2101                  */
2102                 if (level > PT_PAGE_TABLE_LEVEL &&
2103                     !is_large_pte(*sptep)) {
2104                         struct kvm_mmu_page *child;
2105                         u64 pte = *sptep;
2106
2107                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2108                         mmu_page_remove_parent_pte(child, sptep);
2109                         __set_spte(sptep, shadow_trap_nonpresent_pte);
2110                         kvm_flush_remote_tlbs(vcpu->kvm);
2111                 } else if (pfn != spte_to_pfn(*sptep)) {
2112                         pgprintk("hfn old %llx new %llx\n",
2113                                  spte_to_pfn(*sptep), pfn);
2114                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2115                         kvm_flush_remote_tlbs(vcpu->kvm);
2116                 } else
2117                         was_rmapped = 1;
2118         }
2119
2120         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2121                       dirty, level, gfn, pfn, speculative, true,
2122                       host_writable)) {
2123                 if (write_fault)
2124                         *ptwrite = 1;
2125                 kvm_mmu_flush_tlb(vcpu);
2126         }
2127
2128         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2129         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2130                  is_large_pte(*sptep)? "2MB" : "4kB",
2131                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2132                  *sptep, sptep);
2133         if (!was_rmapped && is_large_pte(*sptep))
2134                 ++vcpu->kvm->stat.lpages;
2135
2136         page_header_update_slot(vcpu->kvm, sptep, gfn);
2137         if (!was_rmapped) {
2138                 rmap_count = rmap_add(vcpu, sptep, gfn);
2139                 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2140                         rmap_recycle(vcpu, sptep, gfn);
2141         }
2142         kvm_release_pfn_clean(pfn);
2143         if (speculative) {
2144                 vcpu->arch.last_pte_updated = sptep;
2145                 vcpu->arch.last_pte_gfn = gfn;
2146         }
2147 }
2148
2149 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2150 {
2151 }
2152
2153 static struct kvm_memory_slot *
2154 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2155 {
2156         struct kvm_memory_slot *slot;
2157
2158         slot = gfn_to_memslot(vcpu->kvm, gfn);
2159         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2160               (no_dirty_log && slot->dirty_bitmap))
2161                 slot = NULL;
2162
2163         return slot;
2164 }
2165
2166 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2167                                      bool no_dirty_log)
2168 {
2169         struct kvm_memory_slot *slot;
2170         unsigned long hva;
2171
2172         slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2173         if (!slot) {
2174                 get_page(bad_page);
2175                 return page_to_pfn(bad_page);
2176         }
2177
2178         hva = gfn_to_hva_memslot(slot, gfn);
2179
2180         return hva_to_pfn_atomic(vcpu->kvm, hva);
2181 }
2182
2183 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2184                                     struct kvm_mmu_page *sp,
2185                                     u64 *start, u64 *end)
2186 {
2187         struct page *pages[PTE_PREFETCH_NUM];
2188         unsigned access = sp->role.access;
2189         int i, ret;
2190         gfn_t gfn;
2191
2192         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2193         if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2194                 return -1;
2195
2196         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2197         if (ret <= 0)
2198                 return -1;
2199
2200         for (i = 0; i < ret; i++, gfn++, start++)
2201                 mmu_set_spte(vcpu, start, ACC_ALL,
2202                              access, 0, 0, 1, NULL,
2203                              sp->role.level, gfn,
2204                              page_to_pfn(pages[i]), true, true);
2205
2206         return 0;
2207 }
2208
2209 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2210                                   struct kvm_mmu_page *sp, u64 *sptep)
2211 {
2212         u64 *spte, *start = NULL;
2213         int i;
2214
2215         WARN_ON(!sp->role.direct);
2216
2217         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2218         spte = sp->spt + i;
2219
2220         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2221                 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2222                         if (!start)
2223                                 continue;
2224                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2225                                 break;
2226                         start = NULL;
2227                 } else if (!start)
2228                         start = spte;
2229         }
2230 }
2231
2232 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2233 {
2234         struct kvm_mmu_page *sp;
2235
2236         /*
2237          * Since it's no accessed bit on EPT, it's no way to
2238          * distinguish between actually accessed translations
2239          * and prefetched, so disable pte prefetch if EPT is
2240          * enabled.
2241          */
2242         if (!shadow_accessed_mask)
2243                 return;
2244
2245         sp = page_header(__pa(sptep));
2246         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2247                 return;
2248
2249         __direct_pte_prefetch(vcpu, sp, sptep);
2250 }
2251
2252 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2253                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2254                         bool prefault)
2255 {
2256         struct kvm_shadow_walk_iterator iterator;
2257         struct kvm_mmu_page *sp;
2258         int pt_write = 0;
2259         gfn_t pseudo_gfn;
2260
2261         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2262                 if (iterator.level == level) {
2263                         unsigned pte_access = ACC_ALL;
2264
2265                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2266                                      0, write, 1, &pt_write,
2267                                      level, gfn, pfn, prefault, map_writable);
2268                         direct_pte_prefetch(vcpu, iterator.sptep);
2269                         ++vcpu->stat.pf_fixed;
2270                         break;
2271                 }
2272
2273                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2274                         u64 base_addr = iterator.addr;
2275
2276                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2277                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2278                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2279                                               iterator.level - 1,
2280                                               1, ACC_ALL, iterator.sptep);
2281                         if (!sp) {
2282                                 pgprintk("nonpaging_map: ENOMEM\n");
2283                                 kvm_release_pfn_clean(pfn);
2284                                 return -ENOMEM;
2285                         }
2286
2287                         __set_spte(iterator.sptep,
2288                                    __pa(sp->spt)
2289                                    | PT_PRESENT_MASK | PT_WRITABLE_MASK
2290                                    | shadow_user_mask | shadow_x_mask
2291                                    | shadow_accessed_mask);
2292                 }
2293         }
2294         return pt_write;
2295 }
2296
2297 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2298 {
2299         siginfo_t info;
2300
2301         info.si_signo   = SIGBUS;
2302         info.si_errno   = 0;
2303         info.si_code    = BUS_MCEERR_AR;
2304         info.si_addr    = (void __user *)address;
2305         info.si_addr_lsb = PAGE_SHIFT;
2306
2307         send_sig_info(SIGBUS, &info, tsk);
2308 }
2309
2310 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2311 {
2312         kvm_release_pfn_clean(pfn);
2313         if (is_hwpoison_pfn(pfn)) {
2314                 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2315                 return 0;
2316         } else if (is_fault_pfn(pfn))
2317                 return -EFAULT;
2318
2319         return 1;
2320 }
2321
2322 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2323                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2324 {
2325         pfn_t pfn = *pfnp;
2326         gfn_t gfn = *gfnp;
2327         int level = *levelp;
2328
2329         /*
2330          * Check if it's a transparent hugepage. If this would be an
2331          * hugetlbfs page, level wouldn't be set to
2332          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2333          * here.
2334          */
2335         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2336             level == PT_PAGE_TABLE_LEVEL &&
2337             PageTransCompound(pfn_to_page(pfn)) &&
2338             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2339                 unsigned long mask;
2340                 /*
2341                  * mmu_notifier_retry was successful and we hold the
2342                  * mmu_lock here, so the pmd can't become splitting
2343                  * from under us, and in turn
2344                  * __split_huge_page_refcount() can't run from under
2345                  * us and we can safely transfer the refcount from
2346                  * PG_tail to PG_head as we switch the pfn to tail to
2347                  * head.
2348                  */
2349                 *levelp = level = PT_DIRECTORY_LEVEL;
2350                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2351                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2352                 if (pfn & mask) {
2353                         gfn &= ~mask;
2354                         *gfnp = gfn;
2355                         kvm_release_pfn_clean(pfn);
2356                         pfn &= ~mask;
2357                         if (!get_page_unless_zero(pfn_to_page(pfn)))
2358                                 BUG();
2359                         *pfnp = pfn;
2360                 }
2361         }
2362 }
2363
2364 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2365                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2366
2367 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2368                          bool prefault)
2369 {
2370         int r;
2371         int level;
2372         int force_pt_level;
2373         pfn_t pfn;
2374         unsigned long mmu_seq;
2375         bool map_writable;
2376
2377         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2378         if (likely(!force_pt_level)) {
2379                 level = mapping_level(vcpu, gfn);
2380                 /*
2381                  * This path builds a PAE pagetable - so we can map
2382                  * 2mb pages at maximum. Therefore check if the level
2383                  * is larger than that.
2384                  */
2385                 if (level > PT_DIRECTORY_LEVEL)
2386                         level = PT_DIRECTORY_LEVEL;
2387
2388                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2389         } else
2390                 level = PT_PAGE_TABLE_LEVEL;
2391
2392         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2393         smp_rmb();
2394
2395         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2396                 return 0;
2397
2398         /* mmio */
2399         if (is_error_pfn(pfn))
2400                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2401
2402         spin_lock(&vcpu->kvm->mmu_lock);
2403         if (mmu_notifier_retry(vcpu, mmu_seq))
2404                 goto out_unlock;
2405         kvm_mmu_free_some_pages(vcpu);
2406         if (likely(!force_pt_level))
2407                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2408         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2409                          prefault);
2410         spin_unlock(&vcpu->kvm->mmu_lock);
2411
2412
2413         return r;
2414
2415 out_unlock:
2416         spin_unlock(&vcpu->kvm->mmu_lock);
2417         kvm_release_pfn_clean(pfn);
2418         return 0;
2419 }
2420
2421
2422 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2423 {
2424         int i;
2425         struct kvm_mmu_page *sp;
2426         LIST_HEAD(invalid_list);
2427
2428         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2429                 return;
2430         spin_lock(&vcpu->kvm->mmu_lock);
2431         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2432             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2433              vcpu->arch.mmu.direct_map)) {
2434                 hpa_t root = vcpu->arch.mmu.root_hpa;
2435
2436                 sp = page_header(root);
2437                 --sp->root_count;
2438                 if (!sp->root_count && sp->role.invalid) {
2439                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2440                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2441                 }
2442                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2443                 spin_unlock(&vcpu->kvm->mmu_lock);
2444                 return;
2445         }
2446         for (i = 0; i < 4; ++i) {
2447                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2448
2449                 if (root) {
2450                         root &= PT64_BASE_ADDR_MASK;
2451                         sp = page_header(root);
2452                         --sp->root_count;
2453                         if (!sp->root_count && sp->role.invalid)
2454                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2455                                                          &invalid_list);
2456                 }
2457                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2458         }
2459         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2460         spin_unlock(&vcpu->kvm->mmu_lock);
2461         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2462 }
2463
2464 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2465 {
2466         int ret = 0;
2467
2468         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2469                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2470                 ret = 1;
2471         }
2472
2473         return ret;
2474 }
2475
2476 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2477 {
2478         struct kvm_mmu_page *sp;
2479         unsigned i;
2480
2481         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2482                 spin_lock(&vcpu->kvm->mmu_lock);
2483                 kvm_mmu_free_some_pages(vcpu);
2484                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2485                                       1, ACC_ALL, NULL);
2486                 ++sp->root_count;
2487                 spin_unlock(&vcpu->kvm->mmu_lock);
2488                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2489         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2490                 for (i = 0; i < 4; ++i) {
2491                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2492
2493                         ASSERT(!VALID_PAGE(root));
2494                         spin_lock(&vcpu->kvm->mmu_lock);
2495                         kvm_mmu_free_some_pages(vcpu);
2496                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2497                                               i << 30,
2498                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2499                                               NULL);
2500                         root = __pa(sp->spt);
2501                         ++sp->root_count;
2502                         spin_unlock(&vcpu->kvm->mmu_lock);
2503                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2504                 }
2505                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2506         } else
2507                 BUG();
2508
2509         return 0;
2510 }
2511
2512 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2513 {
2514         struct kvm_mmu_page *sp;
2515         u64 pdptr, pm_mask;
2516         gfn_t root_gfn;
2517         int i;
2518
2519         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2520
2521         if (mmu_check_root(vcpu, root_gfn))
2522                 return 1;
2523
2524         /*
2525          * Do we shadow a long mode page table? If so we need to
2526          * write-protect the guests page table root.
2527          */
2528         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2529                 hpa_t root = vcpu->arch.mmu.root_hpa;
2530
2531                 ASSERT(!VALID_PAGE(root));
2532
2533                 spin_lock(&vcpu->kvm->mmu_lock);
2534                 kvm_mmu_free_some_pages(vcpu);
2535                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2536                                       0, ACC_ALL, NULL);
2537                 root = __pa(sp->spt);
2538                 ++sp->root_count;
2539                 spin_unlock(&vcpu->kvm->mmu_lock);
2540                 vcpu->arch.mmu.root_hpa = root;
2541                 return 0;
2542         }
2543
2544         /*
2545          * We shadow a 32 bit page table. This may be a legacy 2-level
2546          * or a PAE 3-level page table. In either case we need to be aware that
2547          * the shadow page table may be a PAE or a long mode page table.
2548          */
2549         pm_mask = PT_PRESENT_MASK;
2550         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2551                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2552
2553         for (i = 0; i < 4; ++i) {
2554                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2555
2556                 ASSERT(!VALID_PAGE(root));
2557                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2558                         pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2559                         if (!is_present_gpte(pdptr)) {
2560                                 vcpu->arch.mmu.pae_root[i] = 0;
2561                                 continue;
2562                         }
2563                         root_gfn = pdptr >> PAGE_SHIFT;
2564                         if (mmu_check_root(vcpu, root_gfn))
2565                                 return 1;
2566                 }
2567                 spin_lock(&vcpu->kvm->mmu_lock);
2568                 kvm_mmu_free_some_pages(vcpu);
2569                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2570                                       PT32_ROOT_LEVEL, 0,
2571                                       ACC_ALL, NULL);
2572                 root = __pa(sp->spt);
2573                 ++sp->root_count;
2574                 spin_unlock(&vcpu->kvm->mmu_lock);
2575
2576                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2577         }
2578         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2579
2580         /*
2581          * If we shadow a 32 bit page table with a long mode page
2582          * table we enter this path.
2583          */
2584         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2585                 if (vcpu->arch.mmu.lm_root == NULL) {
2586                         /*
2587                          * The additional page necessary for this is only
2588                          * allocated on demand.
2589                          */
2590
2591                         u64 *lm_root;
2592
2593                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2594                         if (lm_root == NULL)
2595                                 return 1;
2596
2597                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2598
2599                         vcpu->arch.mmu.lm_root = lm_root;
2600                 }
2601
2602                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2603         }
2604
2605         return 0;
2606 }
2607
2608 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2609 {
2610         if (vcpu->arch.mmu.direct_map)
2611                 return mmu_alloc_direct_roots(vcpu);
2612         else
2613                 return mmu_alloc_shadow_roots(vcpu);
2614 }
2615
2616 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2617 {
2618         int i;
2619         struct kvm_mmu_page *sp;
2620
2621         if (vcpu->arch.mmu.direct_map)
2622                 return;
2623
2624         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2625                 return;
2626
2627         trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2628         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2629                 hpa_t root = vcpu->arch.mmu.root_hpa;
2630                 sp = page_header(root);
2631                 mmu_sync_children(vcpu, sp);
2632                 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2633                 return;
2634         }
2635         for (i = 0; i < 4; ++i) {
2636                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2637
2638                 if (root && VALID_PAGE(root)) {
2639                         root &= PT64_BASE_ADDR_MASK;
2640                         sp = page_header(root);
2641                         mmu_sync_children(vcpu, sp);
2642                 }
2643         }
2644         trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2645 }
2646
2647 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2648 {
2649         spin_lock(&vcpu->kvm->mmu_lock);
2650         mmu_sync_roots(vcpu);
2651         spin_unlock(&vcpu->kvm->mmu_lock);
2652 }
2653
2654 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2655                                   u32 access, struct x86_exception *exception)
2656 {
2657         if (exception)
2658                 exception->error_code = 0;
2659         return vaddr;
2660 }
2661
2662 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2663                                          u32 access,
2664                                          struct x86_exception *exception)
2665 {
2666         if (exception)
2667                 exception->error_code = 0;
2668         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2669 }
2670
2671 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2672                                 u32 error_code, bool prefault)
2673 {
2674         gfn_t gfn;
2675         int r;
2676
2677         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2678         r = mmu_topup_memory_caches(vcpu);
2679         if (r)
2680                 return r;
2681
2682         ASSERT(vcpu);
2683         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2684
2685         gfn = gva >> PAGE_SHIFT;
2686
2687         return nonpaging_map(vcpu, gva & PAGE_MASK,
2688                              error_code & PFERR_WRITE_MASK, gfn, prefault);
2689 }
2690
2691 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2692 {
2693         struct kvm_arch_async_pf arch;
2694
2695         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2696         arch.gfn = gfn;
2697         arch.direct_map = vcpu->arch.mmu.direct_map;
2698         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2699
2700         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2701 }
2702
2703 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2704 {
2705         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2706                      kvm_event_needs_reinjection(vcpu)))
2707                 return false;
2708
2709         return kvm_x86_ops->interrupt_allowed(vcpu);
2710 }
2711
2712 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2713                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
2714 {
2715         bool async;
2716
2717         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2718
2719         if (!async)
2720                 return false; /* *pfn has correct page already */
2721
2722         put_page(pfn_to_page(*pfn));
2723
2724         if (!prefault && can_do_async_pf(vcpu)) {
2725                 trace_kvm_try_async_get_page(gva, gfn);
2726                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2727                         trace_kvm_async_pf_doublefault(gva, gfn);
2728                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2729                         return true;
2730                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2731                         return true;
2732         }
2733
2734         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2735
2736         return false;
2737 }
2738
2739 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2740                           bool prefault)
2741 {
2742         pfn_t pfn;
2743         int r;
2744         int level;
2745         int force_pt_level;
2746         gfn_t gfn = gpa >> PAGE_SHIFT;
2747         unsigned long mmu_seq;
2748         int write = error_code & PFERR_WRITE_MASK;
2749         bool map_writable;
2750
2751         ASSERT(vcpu);
2752         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2753
2754         r = mmu_topup_memory_caches(vcpu);
2755         if (r)
2756                 return r;
2757
2758         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2759         if (likely(!force_pt_level)) {
2760                 level = mapping_level(vcpu, gfn);
2761                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2762         } else
2763                 level = PT_PAGE_TABLE_LEVEL;
2764
2765         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2766         smp_rmb();
2767
2768         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2769                 return 0;
2770
2771         /* mmio */
2772         if (is_error_pfn(pfn))
2773                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2774         spin_lock(&vcpu->kvm->mmu_lock);
2775         if (mmu_notifier_retry(vcpu, mmu_seq))
2776                 goto out_unlock;
2777         kvm_mmu_free_some_pages(vcpu);
2778         if (likely(!force_pt_level))
2779                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2780         r = __direct_map(vcpu, gpa, write, map_writable,
2781                          level, gfn, pfn, prefault);
2782         spin_unlock(&vcpu->kvm->mmu_lock);
2783
2784         return r;
2785
2786 out_unlock:
2787         spin_unlock(&vcpu->kvm->mmu_lock);
2788         kvm_release_pfn_clean(pfn);
2789         return 0;
2790 }
2791
2792 static void nonpaging_free(struct kvm_vcpu *vcpu)
2793 {
2794         mmu_free_roots(vcpu);
2795 }
2796
2797 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2798                                   struct kvm_mmu *context)
2799 {
2800         context->new_cr3 = nonpaging_new_cr3;
2801         context->page_fault = nonpaging_page_fault;
2802         context->gva_to_gpa = nonpaging_gva_to_gpa;
2803         context->free = nonpaging_free;
2804         context->prefetch_page = nonpaging_prefetch_page;
2805         context->sync_page = nonpaging_sync_page;
2806         context->invlpg = nonpaging_invlpg;
2807         context->root_level = 0;
2808         context->shadow_root_level = PT32E_ROOT_LEVEL;
2809         context->root_hpa = INVALID_PAGE;
2810         context->direct_map = true;
2811         context->nx = false;
2812         return 0;
2813 }
2814
2815 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2816 {
2817         ++vcpu->stat.tlb_flush;
2818         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2819 }
2820
2821 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2822 {
2823         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2824         mmu_free_roots(vcpu);
2825 }
2826
2827 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2828 {
2829         return kvm_read_cr3(vcpu);
2830 }
2831
2832 static void inject_page_fault(struct kvm_vcpu *vcpu,
2833                               struct x86_exception *fault)
2834 {
2835         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2836 }
2837
2838 static void paging_free(struct kvm_vcpu *vcpu)
2839 {
2840         nonpaging_free(vcpu);
2841 }
2842
2843 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2844 {
2845         int bit7;
2846
2847         bit7 = (gpte >> 7) & 1;
2848         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2849 }
2850
2851 #define PTTYPE 64
2852 #include "paging_tmpl.h"
2853 #undef PTTYPE
2854
2855 #define PTTYPE 32
2856 #include "paging_tmpl.h"
2857 #undef PTTYPE
2858
2859 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2860                                   struct kvm_mmu *context,
2861                                   int level)
2862 {
2863         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2864         u64 exb_bit_rsvd = 0;
2865
2866         if (!context->nx)
2867                 exb_bit_rsvd = rsvd_bits(63, 63);
2868         switch (level) {
2869         case PT32_ROOT_LEVEL:
2870                 /* no rsvd bits for 2 level 4K page table entries */
2871                 context->rsvd_bits_mask[0][1] = 0;
2872                 context->rsvd_bits_mask[0][0] = 0;
2873                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2874
2875                 if (!is_pse(vcpu)) {
2876                         context->rsvd_bits_mask[1][1] = 0;
2877                         break;
2878                 }
2879
2880                 if (is_cpuid_PSE36())
2881                         /* 36bits PSE 4MB page */
2882                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2883                 else
2884                         /* 32 bits PSE 4MB page */
2885                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2886                 break;
2887         case PT32E_ROOT_LEVEL:
2888                 context->rsvd_bits_mask[0][2] =
2889                         rsvd_bits(maxphyaddr, 63) |
2890                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
2891                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2892                         rsvd_bits(maxphyaddr, 62);      /* PDE */
2893                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2894                         rsvd_bits(maxphyaddr, 62);      /* PTE */
2895                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2896                         rsvd_bits(maxphyaddr, 62) |
2897                         rsvd_bits(13, 20);              /* large page */
2898                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2899                 break;
2900         case PT64_ROOT_LEVEL:
2901                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2902                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2903                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2904                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2905                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2906                         rsvd_bits(maxphyaddr, 51);
2907                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2908                         rsvd_bits(maxphyaddr, 51);
2909                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2910                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2911                         rsvd_bits(maxphyaddr, 51) |
2912                         rsvd_bits(13, 29);
2913                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2914                         rsvd_bits(maxphyaddr, 51) |
2915                         rsvd_bits(13, 20);              /* large page */
2916                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2917                 break;
2918         }
2919 }
2920
2921 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2922                                         struct kvm_mmu *context,
2923                                         int level)
2924 {
2925         context->nx = is_nx(vcpu);
2926
2927         reset_rsvds_bits_mask(vcpu, context, level);
2928
2929         ASSERT(is_pae(vcpu));
2930         context->new_cr3 = paging_new_cr3;
2931         context->page_fault = paging64_page_fault;
2932         context->gva_to_gpa = paging64_gva_to_gpa;
2933         context->prefetch_page = paging64_prefetch_page;
2934         context->sync_page = paging64_sync_page;
2935         context->invlpg = paging64_invlpg;
2936         context->free = paging_free;
2937         context->root_level = level;
2938         context->shadow_root_level = level;
2939         context->root_hpa = INVALID_PAGE;
2940         context->direct_map = false;
2941         return 0;
2942 }
2943
2944 static int paging64_init_context(struct kvm_vcpu *vcpu,
2945                                  struct kvm_mmu *context)
2946 {
2947         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2948 }
2949
2950 static int paging32_init_context(struct kvm_vcpu *vcpu,
2951                                  struct kvm_mmu *context)
2952 {
2953         context->nx = false;
2954
2955         reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2956
2957         context->new_cr3 = paging_new_cr3;
2958         context->page_fault = paging32_page_fault;
2959         context->gva_to_gpa = paging32_gva_to_gpa;
2960         context->free = paging_free;
2961         context->prefetch_page = paging32_prefetch_page;
2962         context->sync_page = paging32_sync_page;
2963         context->invlpg = paging32_invlpg;
2964         context->root_level = PT32_ROOT_LEVEL;
2965         context->shadow_root_level = PT32E_ROOT_LEVEL;
2966         context->root_hpa = INVALID_PAGE;
2967         context->direct_map = false;
2968         return 0;
2969 }
2970
2971 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2972                                   struct kvm_mmu *context)
2973 {
2974         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2975 }
2976
2977 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2978 {
2979         struct kvm_mmu *context = vcpu->arch.walk_mmu;
2980
2981         context->base_role.word = 0;
2982         context->new_cr3 = nonpaging_new_cr3;
2983         context->page_fault = tdp_page_fault;
2984         context->free = nonpaging_free;
2985         context->prefetch_page = nonpaging_prefetch_page;
2986         context->sync_page = nonpaging_sync_page;
2987         context->invlpg = nonpaging_invlpg;
2988         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2989         context->root_hpa = INVALID_PAGE;
2990         context->direct_map = true;
2991         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2992         context->get_cr3 = get_cr3;
2993         context->inject_page_fault = kvm_inject_page_fault;
2994         context->nx = is_nx(vcpu);
2995
2996         if (!is_paging(vcpu)) {
2997                 context->nx = false;
2998                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2999                 context->root_level = 0;
3000         } else if (is_long_mode(vcpu)) {
3001                 context->nx = is_nx(vcpu);
3002                 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3003                 context->gva_to_gpa = paging64_gva_to_gpa;
3004                 context->root_level = PT64_ROOT_LEVEL;
3005         } else if (is_pae(vcpu)) {
3006                 context->nx = is_nx(vcpu);
3007                 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3008                 context->gva_to_gpa = paging64_gva_to_gpa;
3009                 context->root_level = PT32E_ROOT_LEVEL;
3010         } else {
3011                 context->nx = false;
3012                 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3013                 context->gva_to_gpa = paging32_gva_to_gpa;
3014                 context->root_level = PT32_ROOT_LEVEL;
3015         }
3016
3017         return 0;
3018 }
3019
3020 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3021 {
3022         int r;
3023         ASSERT(vcpu);
3024         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3025
3026         if (!is_paging(vcpu))
3027                 r = nonpaging_init_context(vcpu, context);
3028         else if (is_long_mode(vcpu))
3029                 r = paging64_init_context(vcpu, context);
3030         else if (is_pae(vcpu))
3031                 r = paging32E_init_context(vcpu, context);
3032         else
3033                 r = paging32_init_context(vcpu, context);
3034
3035         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3036         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3037
3038         return r;
3039 }
3040 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3041
3042 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3043 {
3044         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3045
3046         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3047         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3048         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3049
3050         return r;
3051 }
3052
3053 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3054 {
3055         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3056
3057         g_context->get_cr3           = get_cr3;
3058         g_context->inject_page_fault = kvm_inject_page_fault;
3059
3060         /*
3061          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3062          * translation of l2_gpa to l1_gpa addresses is done using the
3063          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3064          * functions between mmu and nested_mmu are swapped.
3065          */
3066         if (!is_paging(vcpu)) {
3067                 g_context->nx = false;
3068                 g_context->root_level = 0;
3069                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3070         } else if (is_long_mode(vcpu)) {
3071                 g_context->nx = is_nx(vcpu);
3072                 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3073                 g_context->root_level = PT64_ROOT_LEVEL;
3074                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3075         } else if (is_pae(vcpu)) {
3076                 g_context->nx = is_nx(vcpu);
3077                 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3078                 g_context->root_level = PT32E_ROOT_LEVEL;
3079                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3080         } else {
3081                 g_context->nx = false;
3082                 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3083                 g_context->root_level = PT32_ROOT_LEVEL;
3084                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3085         }
3086
3087         return 0;
3088 }
3089
3090 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3091 {
3092         vcpu->arch.update_pte.pfn = bad_pfn;
3093
3094         if (mmu_is_nested(vcpu))
3095                 return init_kvm_nested_mmu(vcpu);
3096         else if (tdp_enabled)
3097                 return init_kvm_tdp_mmu(vcpu);
3098         else
3099                 return init_kvm_softmmu(vcpu);
3100 }
3101
3102 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3103 {
3104         ASSERT(vcpu);
3105         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3106                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3107                 vcpu->arch.mmu.free(vcpu);
3108 }
3109
3110 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3111 {
3112         destroy_kvm_mmu(vcpu);
3113         return init_kvm_mmu(vcpu);
3114 }
3115 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3116
3117 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3118 {
3119         int r;
3120
3121         r = mmu_topup_memory_caches(vcpu);
3122         if (r)
3123                 goto out;
3124         r = mmu_alloc_roots(vcpu);
3125         spin_lock(&vcpu->kvm->mmu_lock);
3126         mmu_sync_roots(vcpu);
3127         spin_unlock(&vcpu->kvm->mmu_lock);
3128         if (r)
3129                 goto out;
3130         /* set_cr3() should ensure TLB has been flushed */
3131         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3132 out:
3133         return r;
3134 }
3135 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3136
3137 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3138 {
3139         mmu_free_roots(vcpu);
3140 }
3141 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3142
3143 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
3144                                   struct kvm_mmu_page *sp,
3145                                   u64 *spte)
3146 {
3147         u64 pte;
3148         struct kvm_mmu_page *child;
3149
3150         pte = *spte;
3151         if (is_shadow_present_pte(pte)) {
3152                 if (is_last_spte(pte, sp->role.level))
3153                         drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
3154                 else {
3155                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3156                         mmu_page_remove_parent_pte(child, spte);
3157                 }
3158         }
3159         __set_spte(spte, shadow_trap_nonpresent_pte);
3160         if (is_large_pte(pte))
3161                 --vcpu->kvm->stat.lpages;
3162 }
3163
3164 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3165                                   struct kvm_mmu_page *sp,
3166                                   u64 *spte,
3167                                   const void *new)
3168 {
3169         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3170                 ++vcpu->kvm->stat.mmu_pde_zapped;
3171                 return;
3172         }
3173
3174         ++vcpu->kvm->stat.mmu_pte_updated;
3175         if (!sp->role.cr4_pae)
3176                 paging32_update_pte(vcpu, sp, spte, new);
3177         else
3178                 paging64_update_pte(vcpu, sp, spte, new);
3179 }
3180
3181 static bool need_remote_flush(u64 old, u64 new)
3182 {
3183         if (!is_shadow_present_pte(old))
3184                 return false;
3185         if (!is_shadow_present_pte(new))
3186                 return true;
3187         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3188                 return true;
3189         old ^= PT64_NX_MASK;
3190         new ^= PT64_NX_MASK;
3191         return (old & ~new & PT64_PERM_MASK) != 0;
3192 }
3193
3194 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3195                                     bool remote_flush, bool local_flush)
3196 {
3197         if (zap_page)
3198                 return;
3199
3200         if (remote_flush)
3201                 kvm_flush_remote_tlbs(vcpu->kvm);
3202         else if (local_flush)
3203                 kvm_mmu_flush_tlb(vcpu);
3204 }
3205
3206 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3207 {
3208         u64 *spte = vcpu->arch.last_pte_updated;
3209
3210         return !!(spte && (*spte & shadow_accessed_mask));
3211 }
3212
3213 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3214                                           u64 gpte)
3215 {
3216         gfn_t gfn;
3217         pfn_t pfn;
3218
3219         if (!is_present_gpte(gpte))
3220                 return;
3221         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3222
3223         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3224         smp_rmb();
3225         pfn = gfn_to_pfn(vcpu->kvm, gfn);
3226
3227         if (is_error_pfn(pfn)) {
3228                 kvm_release_pfn_clean(pfn);
3229                 return;
3230         }
3231         vcpu->arch.update_pte.gfn = gfn;
3232         vcpu->arch.update_pte.pfn = pfn;
3233 }
3234
3235 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3236 {
3237         u64 *spte = vcpu->arch.last_pte_updated;
3238
3239         if (spte
3240             && vcpu->arch.last_pte_gfn == gfn
3241             && shadow_accessed_mask
3242             && !(*spte & shadow_accessed_mask)
3243             && is_shadow_present_pte(*spte))
3244                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3245 }
3246
3247 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3248                        const u8 *new, int bytes,
3249                        bool guest_initiated)
3250 {
3251         gfn_t gfn = gpa >> PAGE_SHIFT;
3252         union kvm_mmu_page_role mask = { .word = 0 };
3253         struct kvm_mmu_page *sp;
3254         struct hlist_node *node;
3255         LIST_HEAD(invalid_list);
3256         u64 entry, gentry;
3257         u64 *spte;
3258         unsigned offset = offset_in_page(gpa);
3259         unsigned pte_size;
3260         unsigned page_offset;
3261         unsigned misaligned;
3262         unsigned quadrant;
3263         int level;
3264         int flooded = 0;
3265         int npte;
3266         int r;
3267         int invlpg_counter;
3268         bool remote_flush, local_flush, zap_page;
3269
3270         zap_page = remote_flush = local_flush = false;
3271
3272         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3273
3274         invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3275
3276         /*
3277          * Assume that the pte write on a page table of the same type
3278          * as the current vcpu paging mode.  This is nearly always true
3279          * (might be false while changing modes).  Note it is verified later
3280          * by update_pte().
3281          */
3282         if ((is_pae(vcpu) && bytes == 4) || !new) {
3283                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3284                 if (is_pae(vcpu)) {
3285                         gpa &= ~(gpa_t)7;
3286                         bytes = 8;
3287                 }
3288                 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3289                 if (r)
3290                         gentry = 0;
3291                 new = (const u8 *)&gentry;
3292         }
3293
3294         switch (bytes) {
3295         case 4:
3296                 gentry = *(const u32 *)new;
3297                 break;
3298         case 8:
3299                 gentry = *(const u64 *)new;
3300                 break;
3301         default:
3302                 gentry = 0;
3303                 break;
3304         }
3305
3306         mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3307         spin_lock(&vcpu->kvm->mmu_lock);
3308         if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3309                 gentry = 0;
3310         kvm_mmu_access_page(vcpu, gfn);
3311         kvm_mmu_free_some_pages(vcpu);
3312         ++vcpu->kvm->stat.mmu_pte_write;
3313         trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3314         if (guest_initiated) {
3315                 if (gfn == vcpu->arch.last_pt_write_gfn
3316                     && !last_updated_pte_accessed(vcpu)) {
3317                         ++vcpu->arch.last_pt_write_count;
3318                         if (vcpu->arch.last_pt_write_count >= 3)
3319                                 flooded = 1;
3320                 } else {
3321                         vcpu->arch.last_pt_write_gfn = gfn;
3322                         vcpu->arch.last_pt_write_count = 1;
3323                         vcpu->arch.last_pte_updated = NULL;
3324                 }
3325         }
3326
3327         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3328         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3329                 pte_size = sp->role.cr4_pae ? 8 : 4;
3330                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3331                 misaligned |= bytes < 4;
3332                 if (misaligned || flooded) {
3333                         /*
3334                          * Misaligned accesses are too much trouble to fix
3335                          * up; also, they usually indicate a page is not used
3336                          * as a page table.
3337                          *
3338                          * If we're seeing too many writes to a page,
3339                          * it may no longer be a page table, or we may be
3340                          * forking, in which case it is better to unmap the
3341                          * page.
3342                          */
3343                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3344                                  gpa, bytes, sp->role.word);
3345                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3346                                                      &invalid_list);
3347                         ++vcpu->kvm->stat.mmu_flooded;
3348                         continue;
3349                 }
3350                 page_offset = offset;
3351                 level = sp->role.level;
3352                 npte = 1;
3353                 if (!sp->role.cr4_pae) {
3354                         page_offset <<= 1;      /* 32->64 */
3355                         /*
3356                          * A 32-bit pde maps 4MB while the shadow pdes map
3357                          * only 2MB.  So we need to double the offset again
3358                          * and zap two pdes instead of one.
3359                          */
3360                         if (level == PT32_ROOT_LEVEL) {
3361                                 page_offset &= ~7; /* kill rounding error */
3362                                 page_offset <<= 1;
3363                                 npte = 2;
3364                         }
3365                         quadrant = page_offset >> PAGE_SHIFT;
3366                         page_offset &= ~PAGE_MASK;
3367                         if (quadrant != sp->role.quadrant)
3368                                 continue;
3369                 }
3370                 local_flush = true;
3371                 spte = &sp->spt[page_offset / sizeof(*spte)];
3372                 while (npte--) {
3373                         entry = *spte;
3374                         mmu_pte_write_zap_pte(vcpu, sp, spte);
3375                         if (gentry &&
3376                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3377                               & mask.word))
3378                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3379                         if (!remote_flush && need_remote_flush(entry, *spte))
3380                                 remote_flush = true;
3381                         ++spte;
3382                 }
3383         }
3384         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3385         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3386         trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3387         spin_unlock(&vcpu->kvm->mmu_lock);
3388         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3389                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3390                 vcpu->arch.update_pte.pfn = bad_pfn;
3391         }
3392 }
3393
3394 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3395 {
3396         gpa_t gpa;
3397         int r;
3398
3399         if (vcpu->arch.mmu.direct_map)
3400                 return 0;
3401
3402         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3403
3404         spin_lock(&vcpu->kvm->mmu_lock);
3405         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3406         spin_unlock(&vcpu->kvm->mmu_lock);
3407         return r;
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3410
3411 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3412 {
3413         LIST_HEAD(invalid_list);
3414
3415         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3416                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3417                 struct kvm_mmu_page *sp;
3418
3419                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3420                                   struct kvm_mmu_page, link);
3421                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3422                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3423                 ++vcpu->kvm->stat.mmu_recycled;
3424         }
3425 }
3426
3427 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3428                        void *insn, int insn_len)
3429 {
3430         int r;
3431         enum emulation_result er;
3432
3433         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3434         if (r < 0)
3435                 goto out;
3436
3437         if (!r) {
3438                 r = 1;
3439                 goto out;
3440         }
3441
3442         r = mmu_topup_memory_caches(vcpu);
3443         if (r)
3444                 goto out;
3445
3446         er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3447
3448         switch (er) {
3449         case EMULATE_DONE:
3450                 return 1;
3451         case EMULATE_DO_MMIO:
3452                 ++vcpu->stat.mmio_exits;
3453                 /* fall through */
3454         case EMULATE_FAIL:
3455                 return 0;
3456         default:
3457                 BUG();
3458         }
3459 out:
3460         return r;
3461 }
3462 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3463
3464 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3465 {
3466         vcpu->arch.mmu.invlpg(vcpu, gva);
3467         kvm_mmu_flush_tlb(vcpu);
3468         ++vcpu->stat.invlpg;
3469 }
3470 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3471
3472 void kvm_enable_tdp(void)
3473 {
3474         tdp_enabled = true;
3475 }
3476 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3477
3478 void kvm_disable_tdp(void)
3479 {
3480         tdp_enabled = false;
3481 }
3482 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3483
3484 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3485 {
3486         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3487         if (vcpu->arch.mmu.lm_root != NULL)
3488                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3489 }
3490
3491 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3492 {
3493         struct page *page;
3494         int i;
3495
3496         ASSERT(vcpu);
3497
3498         /*
3499          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3500          * Therefore we need to allocate shadow page tables in the first
3501          * 4GB of memory, which happens to fit the DMA32 zone.
3502          */
3503         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3504         if (!page)
3505                 return -ENOMEM;
3506
3507         vcpu->arch.mmu.pae_root = page_address(page);
3508         for (i = 0; i < 4; ++i)
3509                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3510
3511         return 0;
3512 }
3513
3514 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3515 {
3516         ASSERT(vcpu);
3517         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3518
3519         return alloc_mmu_pages(vcpu);
3520 }
3521
3522 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3523 {
3524         ASSERT(vcpu);
3525         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3526
3527         return init_kvm_mmu(vcpu);
3528 }
3529
3530 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3531 {
3532         struct kvm_mmu_page *sp;
3533
3534         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3535                 int i;
3536                 u64 *pt;
3537
3538                 if (!test_bit(slot, sp->slot_bitmap))
3539                         continue;
3540
3541                 pt = sp->spt;
3542                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3543                         if (sp->role.level != PT_PAGE_TABLE_LEVEL
3544                             && is_large_pte(pt[i])) {
3545                                 drop_spte(kvm, &pt[i],
3546                                           shadow_trap_nonpresent_pte);
3547                                 --kvm->stat.lpages;
3548                         }
3549                         /* avoid RMW */
3550                         if (is_writable_pte(pt[i]))
3551                                 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3552                 }
3553         }
3554         kvm_flush_remote_tlbs(kvm);
3555 }
3556
3557 void kvm_mmu_zap_all(struct kvm *kvm)
3558 {
3559         struct kvm_mmu_page *sp, *node;
3560         LIST_HEAD(invalid_list);
3561
3562         spin_lock(&kvm->mmu_lock);
3563 restart:
3564         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3565                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3566                         goto restart;
3567
3568         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3569         spin_unlock(&kvm->mmu_lock);
3570 }
3571
3572 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3573                                                struct list_head *invalid_list)
3574 {
3575         struct kvm_mmu_page *page;
3576
3577         page = container_of(kvm->arch.active_mmu_pages.prev,
3578                             struct kvm_mmu_page, link);
3579         return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3580 }
3581
3582 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3583 {
3584         struct kvm *kvm;
3585         struct kvm *kvm_freed = NULL;
3586
3587         if (nr_to_scan == 0)
3588                 goto out;
3589
3590         spin_lock(&kvm_lock);
3591
3592         list_for_each_entry(kvm, &vm_list, vm_list) {
3593                 int idx, freed_pages;
3594                 LIST_HEAD(invalid_list);
3595
3596                 idx = srcu_read_lock(&kvm->srcu);
3597                 spin_lock(&kvm->mmu_lock);
3598                 if (!kvm_freed && nr_to_scan > 0 &&
3599                     kvm->arch.n_used_mmu_pages > 0) {
3600                         freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3601                                                           &invalid_list);
3602                         kvm_freed = kvm;
3603                 }
3604                 nr_to_scan--;
3605
3606                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3607                 spin_unlock(&kvm->mmu_lock);
3608                 srcu_read_unlock(&kvm->srcu, idx);
3609         }
3610         if (kvm_freed)
3611                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3612
3613         spin_unlock(&kvm_lock);
3614
3615 out:
3616         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3617 }
3618
3619 static struct shrinker mmu_shrinker = {
3620         .shrink = mmu_shrink,
3621         .seeks = DEFAULT_SEEKS * 10,
3622 };
3623
3624 static void mmu_destroy_caches(void)
3625 {
3626         if (pte_chain_cache)
3627                 kmem_cache_destroy(pte_chain_cache);
3628         if (rmap_desc_cache)
3629                 kmem_cache_destroy(rmap_desc_cache);
3630         if (mmu_page_header_cache)
3631                 kmem_cache_destroy(mmu_page_header_cache);
3632 }
3633
3634 int kvm_mmu_module_init(void)
3635 {
3636         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3637                                             sizeof(struct kvm_pte_chain),
3638                                             0, 0, NULL);
3639         if (!pte_chain_cache)
3640                 goto nomem;
3641         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3642                                             sizeof(struct kvm_rmap_desc),
3643                                             0, 0, NULL);
3644         if (!rmap_desc_cache)
3645                 goto nomem;
3646
3647         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3648                                                   sizeof(struct kvm_mmu_page),
3649                                                   0, 0, NULL);
3650         if (!mmu_page_header_cache)
3651                 goto nomem;
3652
3653         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3654                 goto nomem;
3655
3656         register_shrinker(&mmu_shrinker);
3657
3658         return 0;
3659
3660 nomem:
3661         mmu_destroy_caches();
3662         return -ENOMEM;
3663 }
3664
3665 /*
3666  * Caculate mmu pages needed for kvm.
3667  */
3668 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3669 {
3670         int i;
3671         unsigned int nr_mmu_pages;
3672         unsigned int  nr_pages = 0;
3673         struct kvm_memslots *slots;
3674
3675         slots = kvm_memslots(kvm);
3676
3677         for (i = 0; i < slots->nmemslots; i++)
3678                 nr_pages += slots->memslots[i].npages;
3679
3680         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3681         nr_mmu_pages = max(nr_mmu_pages,
3682                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3683
3684         return nr_mmu_pages;
3685 }
3686
3687 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3688                                 unsigned len)
3689 {
3690         if (len > buffer->len)
3691                 return NULL;
3692         return buffer->ptr;
3693 }
3694
3695 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3696                                 unsigned len)
3697 {
3698         void *ret;
3699
3700         ret = pv_mmu_peek_buffer(buffer, len);
3701         if (!ret)
3702                 return ret;
3703         buffer->ptr += len;
3704         buffer->len -= len;
3705         buffer->processed += len;
3706         return ret;
3707 }
3708
3709 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3710                              gpa_t addr, gpa_t value)
3711 {
3712         int bytes = 8;
3713         int r;
3714
3715         if (!is_long_mode(vcpu) && !is_pae(vcpu))
3716                 bytes = 4;
3717
3718         r = mmu_topup_memory_caches(vcpu);
3719         if (r)
3720                 return r;
3721
3722         if (!emulator_write_phys(vcpu, addr, &value, bytes))
3723                 return -EFAULT;
3724
3725         return 1;
3726 }
3727
3728 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3729 {
3730         (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3731         return 1;
3732 }
3733
3734 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3735 {
3736         spin_lock(&vcpu->kvm->mmu_lock);
3737         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3738         spin_unlock(&vcpu->kvm->mmu_lock);
3739         return 1;
3740 }
3741
3742 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3743                              struct kvm_pv_mmu_op_buffer *buffer)
3744 {
3745         struct kvm_mmu_op_header *header;
3746
3747         header = pv_mmu_peek_buffer(buffer, sizeof *header);
3748         if (!header)
3749                 return 0;
3750         switch (header->op) {
3751         case KVM_MMU_OP_WRITE_PTE: {
3752                 struct kvm_mmu_op_write_pte *wpte;
3753
3754                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3755                 if (!wpte)
3756                         return 0;
3757                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3758                                         wpte->pte_val);
3759         }
3760         case KVM_MMU_OP_FLUSH_TLB: {
3761                 struct kvm_mmu_op_flush_tlb *ftlb;
3762
3763                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3764                 if (!ftlb)
3765                         return 0;
3766                 return kvm_pv_mmu_flush_tlb(vcpu);
3767         }
3768         case KVM_MMU_OP_RELEASE_PT: {
3769                 struct kvm_mmu_op_release_pt *rpt;
3770
3771                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3772                 if (!rpt)
3773                         return 0;
3774                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3775         }
3776         default: return 0;
3777         }
3778 }
3779
3780 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3781                   gpa_t addr, unsigned long *ret)
3782 {
3783         int r;
3784         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3785
3786         buffer->ptr = buffer->buf;
3787         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3788         buffer->processed = 0;
3789
3790         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3791         if (r)
3792                 goto out;
3793
3794         while (buffer->len) {
3795                 r = kvm_pv_mmu_op_one(vcpu, buffer);
3796                 if (r < 0)
3797                         goto out;
3798                 if (r == 0)
3799                         break;
3800         }
3801
3802         r = 1;
3803 out:
3804         *ret = buffer->processed;
3805         return r;
3806 }
3807
3808 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3809 {
3810         struct kvm_shadow_walk_iterator iterator;
3811         int nr_sptes = 0;
3812
3813         spin_lock(&vcpu->kvm->mmu_lock);
3814         for_each_shadow_entry(vcpu, addr, iterator) {
3815                 sptes[iterator.level-1] = *iterator.sptep;
3816                 nr_sptes++;
3817                 if (!is_shadow_present_pte(*iterator.sptep))
3818                         break;
3819         }
3820         spin_unlock(&vcpu->kvm->mmu_lock);
3821
3822         return nr_sptes;
3823 }
3824 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3825
3826 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3827 {
3828         ASSERT(vcpu);
3829
3830         destroy_kvm_mmu(vcpu);
3831         free_mmu_pages(vcpu);
3832         mmu_free_memory_caches(vcpu);
3833 }
3834
3835 #ifdef CONFIG_KVM_MMU_AUDIT
3836 #include "mmu_audit.c"
3837 #else
3838 static void mmu_audit_disable(void) { }
3839 #endif
3840
3841 void kvm_mmu_module_exit(void)
3842 {
3843         mmu_destroy_caches();
3844         percpu_counter_destroy(&kvm_total_used_mmu_pages);
3845         unregister_shrinker(&mmu_shrinker);
3846         mmu_audit_disable();
3847 }