sparc: Remove unnecessary semicolons
[linux-2.6.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52
53 #include "init_64.h"
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS       32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75
76 static int cmp_p64(const void *a, const void *b)
77 {
78         const struct linux_prom64_registers *x = a, *y = b;
79
80         if (x->phys_addr > y->phys_addr)
81                 return 1;
82         if (x->phys_addr < y->phys_addr)
83                 return -1;
84         return 0;
85 }
86
87 static void __init read_obp_memory(const char *property,
88                                    struct linux_prom64_registers *regs,
89                                    int *num_ents)
90 {
91         phandle node = prom_finddevice("/memory");
92         int prop_size = prom_getproplen(node, property);
93         int ents, ret, i;
94
95         ents = prop_size / sizeof(struct linux_prom64_registers);
96         if (ents > MAX_BANKS) {
97                 prom_printf("The machine has more %s property entries than "
98                             "this kernel can support (%d).\n",
99                             property, MAX_BANKS);
100                 prom_halt();
101         }
102
103         ret = prom_getproperty(node, property, (char *) regs, prop_size);
104         if (ret == -1) {
105                 prom_printf("Couldn't get %s property from /memory.\n");
106                 prom_halt();
107         }
108
109         /* Sanitize what we got from the firmware, by page aligning
110          * everything.
111          */
112         for (i = 0; i < ents; i++) {
113                 unsigned long base, size;
114
115                 base = regs[i].phys_addr;
116                 size = regs[i].reg_size;
117
118                 size &= PAGE_MASK;
119                 if (base & ~PAGE_MASK) {
120                         unsigned long new_base = PAGE_ALIGN(base);
121
122                         size -= new_base - base;
123                         if ((long) size < 0L)
124                                 size = 0UL;
125                         base = new_base;
126                 }
127                 if (size == 0UL) {
128                         /* If it is empty, simply get rid of it.
129                          * This simplifies the logic of the other
130                          * functions that process these arrays.
131                          */
132                         memmove(&regs[i], &regs[i + 1],
133                                 (ents - i - 1) * sizeof(regs[0]));
134                         i--;
135                         ents--;
136                         continue;
137                 }
138                 regs[i].phys_addr = base;
139                 regs[i].reg_size = size;
140         }
141
142         *num_ents = ents;
143
144         sort(regs, ents, sizeof(struct linux_prom64_registers),
145              cmp_p64, NULL);
146 }
147
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149                                         sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
163
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169
170 int num_kernel_image_mappings;
171
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181         BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183         atomic_inc(&dcpage_flushes);
184 #endif
185
186 #ifdef DCACHE_ALIASING_POSSIBLE
187         __flush_dcache_page(page_address(page),
188                             ((tlb_type == spitfire) &&
189                              page_mapping(page) != NULL));
190 #else
191         if (page_mapping(page) != NULL &&
192             tlb_type == spitfire)
193                 __flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196
197 #define PG_dcache_dirty         PG_arch_1
198 #define PG_dcache_cpu_shift     32UL
199 #define PG_dcache_cpu_mask      \
200         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202 #define dcache_dirty_cpu(page) \
203         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207         unsigned long mask = this_cpu;
208         unsigned long non_cpu_bits;
209
210         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213         __asm__ __volatile__("1:\n\t"
214                              "ldx       [%2], %%g7\n\t"
215                              "and       %%g7, %1, %%g1\n\t"
216                              "or        %%g1, %0, %%g1\n\t"
217                              "casx      [%2], %%g7, %%g1\n\t"
218                              "cmp       %%g7, %%g1\n\t"
219                              "bne,pn    %%xcc, 1b\n\t"
220                              " nop"
221                              : /* no outputs */
222                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223                              : "g1", "g7");
224 }
225
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228         unsigned long mask = (1UL << PG_dcache_dirty);
229
230         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231                              "1:\n\t"
232                              "ldx       [%2], %%g7\n\t"
233                              "srlx      %%g7, %4, %%g1\n\t"
234                              "and       %%g1, %3, %%g1\n\t"
235                              "cmp       %%g1, %0\n\t"
236                              "bne,pn    %%icc, 2f\n\t"
237                              " andn     %%g7, %1, %%g1\n\t"
238                              "casx      [%2], %%g7, %%g1\n\t"
239                              "cmp       %%g7, %%g1\n\t"
240                              "bne,pn    %%xcc, 1b\n\t"
241                              " nop\n"
242                              "2:"
243                              : /* no outputs */
244                              : "r" (cpu), "r" (mask), "r" (&page->flags),
245                                "i" (PG_dcache_cpu_mask),
246                                "i" (PG_dcache_cpu_shift)
247                              : "g1", "g7");
248 }
249
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252         unsigned long tsb_addr = (unsigned long) ent;
253
254         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255                 tsb_addr = __pa(tsb_addr);
256
257         __tsb_insert(tsb_addr, tag, pte);
258 }
259
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262
263 static void flush_dcache(unsigned long pfn)
264 {
265         struct page *page;
266
267         page = pfn_to_page(pfn);
268         if (page) {
269                 unsigned long pg_flags;
270
271                 pg_flags = page->flags;
272                 if (pg_flags & (1UL << PG_dcache_dirty)) {
273                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274                                    PG_dcache_cpu_mask);
275                         int this_cpu = get_cpu();
276
277                         /* This is just to optimize away some function calls
278                          * in the SMP case.
279                          */
280                         if (cpu == this_cpu)
281                                 flush_dcache_page_impl(page);
282                         else
283                                 smp_flush_dcache_page_impl(page, cpu);
284
285                         clear_dcache_dirty_cpu(page, cpu);
286
287                         put_cpu();
288                 }
289         }
290 }
291
292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293 {
294         struct mm_struct *mm;
295         struct tsb *tsb;
296         unsigned long tag, flags;
297         unsigned long tsb_index, tsb_hash_shift;
298         pte_t pte = *ptep;
299
300         if (tlb_type != hypervisor) {
301                 unsigned long pfn = pte_pfn(pte);
302
303                 if (pfn_valid(pfn))
304                         flush_dcache(pfn);
305         }
306
307         mm = vma->vm_mm;
308
309         tsb_index = MM_TSB_BASE;
310         tsb_hash_shift = PAGE_SHIFT;
311
312         spin_lock_irqsave(&mm->context.lock, flags);
313
314 #ifdef CONFIG_HUGETLB_PAGE
315         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316                 if ((tlb_type == hypervisor &&
317                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318                     (tlb_type != hypervisor &&
319                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320                         tsb_index = MM_TSB_HUGE;
321                         tsb_hash_shift = HPAGE_SHIFT;
322                 }
323         }
324 #endif
325
326         tsb = mm->context.tsb_block[tsb_index].tsb;
327         tsb += ((address >> tsb_hash_shift) &
328                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329         tag = (address >> 22UL);
330         tsb_insert(tsb, tag, pte_val(pte));
331
332         spin_unlock_irqrestore(&mm->context.lock, flags);
333 }
334
335 void flush_dcache_page(struct page *page)
336 {
337         struct address_space *mapping;
338         int this_cpu;
339
340         if (tlb_type == hypervisor)
341                 return;
342
343         /* Do not bother with the expensive D-cache flush if it
344          * is merely the zero page.  The 'bigcore' testcase in GDB
345          * causes this case to run millions of times.
346          */
347         if (page == ZERO_PAGE(0))
348                 return;
349
350         this_cpu = get_cpu();
351
352         mapping = page_mapping(page);
353         if (mapping && !mapping_mapped(mapping)) {
354                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
355                 if (dirty) {
356                         int dirty_cpu = dcache_dirty_cpu(page);
357
358                         if (dirty_cpu == this_cpu)
359                                 goto out;
360                         smp_flush_dcache_page_impl(page, dirty_cpu);
361                 }
362                 set_dcache_dirty(page, this_cpu);
363         } else {
364                 /* We could delay the flush for the !page_mapping
365                  * case too.  But that case is for exec env/arg
366                  * pages and those are %99 certainly going to get
367                  * faulted into the tlb (and thus flushed) anyways.
368                  */
369                 flush_dcache_page_impl(page);
370         }
371
372 out:
373         put_cpu();
374 }
375 EXPORT_SYMBOL(flush_dcache_page);
376
377 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378 {
379         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380         if (tlb_type == spitfire) {
381                 unsigned long kaddr;
382
383                 /* This code only runs on Spitfire cpus so this is
384                  * why we can assume _PAGE_PADDR_4U.
385                  */
386                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387                         unsigned long paddr, mask = _PAGE_PADDR_4U;
388
389                         if (kaddr >= PAGE_OFFSET)
390                                 paddr = kaddr & mask;
391                         else {
392                                 pgd_t *pgdp = pgd_offset_k(kaddr);
393                                 pud_t *pudp = pud_offset(pgdp, kaddr);
394                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
395                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396
397                                 paddr = pte_val(*ptep) & mask;
398                         }
399                         __flush_icache_page(paddr);
400                 }
401         }
402 }
403 EXPORT_SYMBOL(flush_icache_range);
404
405 void mmu_info(struct seq_file *m)
406 {
407         if (tlb_type == cheetah)
408                 seq_printf(m, "MMU Type\t: Cheetah\n");
409         else if (tlb_type == cheetah_plus)
410                 seq_printf(m, "MMU Type\t: Cheetah+\n");
411         else if (tlb_type == spitfire)
412                 seq_printf(m, "MMU Type\t: Spitfire\n");
413         else if (tlb_type == hypervisor)
414                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415         else
416                 seq_printf(m, "MMU Type\t: ???\n");
417
418 #ifdef CONFIG_DEBUG_DCFLUSH
419         seq_printf(m, "DCPageFlushes\t: %d\n",
420                    atomic_read(&dcpage_flushes));
421 #ifdef CONFIG_SMP
422         seq_printf(m, "DCPageFlushesXC\t: %d\n",
423                    atomic_read(&dcpage_flushes_xcall));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
426 }
427
428 struct linux_prom_translation prom_trans[512] __read_mostly;
429 unsigned int prom_trans_ents __read_mostly;
430
431 unsigned long kern_locked_tte_data;
432
433 /* The obp translations are saved based on 8k pagesize, since obp can
434  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435  * HI_OBP_ADDRESS range are handled in ktlb.S.
436  */
437 static inline int in_obp_range(unsigned long vaddr)
438 {
439         return (vaddr >= LOW_OBP_ADDRESS &&
440                 vaddr < HI_OBP_ADDRESS);
441 }
442
443 static int cmp_ptrans(const void *a, const void *b)
444 {
445         const struct linux_prom_translation *x = a, *y = b;
446
447         if (x->virt > y->virt)
448                 return 1;
449         if (x->virt < y->virt)
450                 return -1;
451         return 0;
452 }
453
454 /* Read OBP translations property into 'prom_trans[]'.  */
455 static void __init read_obp_translations(void)
456 {
457         int n, node, ents, first, last, i;
458
459         node = prom_finddevice("/virtual-memory");
460         n = prom_getproplen(node, "translations");
461         if (unlikely(n == 0 || n == -1)) {
462                 prom_printf("prom_mappings: Couldn't get size.\n");
463                 prom_halt();
464         }
465         if (unlikely(n > sizeof(prom_trans))) {
466                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467                 prom_halt();
468         }
469
470         if ((n = prom_getproperty(node, "translations",
471                                   (char *)&prom_trans[0],
472                                   sizeof(prom_trans))) == -1) {
473                 prom_printf("prom_mappings: Couldn't get property.\n");
474                 prom_halt();
475         }
476
477         n = n / sizeof(struct linux_prom_translation);
478
479         ents = n;
480
481         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482              cmp_ptrans, NULL);
483
484         /* Now kick out all the non-OBP entries.  */
485         for (i = 0; i < ents; i++) {
486                 if (in_obp_range(prom_trans[i].virt))
487                         break;
488         }
489         first = i;
490         for (; i < ents; i++) {
491                 if (!in_obp_range(prom_trans[i].virt))
492                         break;
493         }
494         last = i;
495
496         for (i = 0; i < (last - first); i++) {
497                 struct linux_prom_translation *src = &prom_trans[i + first];
498                 struct linux_prom_translation *dest = &prom_trans[i];
499
500                 *dest = *src;
501         }
502         for (; i < ents; i++) {
503                 struct linux_prom_translation *dest = &prom_trans[i];
504                 dest->virt = dest->size = dest->data = 0x0UL;
505         }
506
507         prom_trans_ents = last - first;
508
509         if (tlb_type == spitfire) {
510                 /* Clear diag TTE bits. */
511                 for (i = 0; i < prom_trans_ents; i++)
512                         prom_trans[i].data &= ~0x0003fe0000000000UL;
513         }
514 }
515
516 static void __init hypervisor_tlb_lock(unsigned long vaddr,
517                                        unsigned long pte,
518                                        unsigned long mmu)
519 {
520         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
521
522         if (ret != 0) {
523                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
524                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
525                 prom_halt();
526         }
527 }
528
529 static unsigned long kern_large_tte(unsigned long paddr);
530
531 static void __init remap_kernel(void)
532 {
533         unsigned long phys_page, tte_vaddr, tte_data;
534         int i, tlb_ent = sparc64_highest_locked_tlbent();
535
536         tte_vaddr = (unsigned long) KERNBASE;
537         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
538         tte_data = kern_large_tte(phys_page);
539
540         kern_locked_tte_data = tte_data;
541
542         /* Now lock us into the TLBs via Hypervisor or OBP. */
543         if (tlb_type == hypervisor) {
544                 for (i = 0; i < num_kernel_image_mappings; i++) {
545                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
546                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
547                         tte_vaddr += 0x400000;
548                         tte_data += 0x400000;
549                 }
550         } else {
551                 for (i = 0; i < num_kernel_image_mappings; i++) {
552                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
553                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
554                         tte_vaddr += 0x400000;
555                         tte_data += 0x400000;
556                 }
557                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
558         }
559         if (tlb_type == cheetah_plus) {
560                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
561                                             CTX_CHEETAH_PLUS_NUC);
562                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
563                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
564         }
565 }
566
567
568 static void __init inherit_prom_mappings(void)
569 {
570         /* Now fixup OBP's idea about where we really are mapped. */
571         printk("Remapping the kernel... ");
572         remap_kernel();
573         printk("done.\n");
574 }
575
576 void prom_world(int enter)
577 {
578         if (!enter)
579                 set_fs((mm_segment_t) { get_thread_current_ds() });
580
581         __asm__ __volatile__("flushw");
582 }
583
584 void __flush_dcache_range(unsigned long start, unsigned long end)
585 {
586         unsigned long va;
587
588         if (tlb_type == spitfire) {
589                 int n = 0;
590
591                 for (va = start; va < end; va += 32) {
592                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
593                         if (++n >= 512)
594                                 break;
595                 }
596         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
597                 start = __pa(start);
598                 end = __pa(end);
599                 for (va = start; va < end; va += 32)
600                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
601                                              "membar #Sync"
602                                              : /* no outputs */
603                                              : "r" (va),
604                                                "i" (ASI_DCACHE_INVALIDATE));
605         }
606 }
607 EXPORT_SYMBOL(__flush_dcache_range);
608
609 /* get_new_mmu_context() uses "cache + 1".  */
610 DEFINE_SPINLOCK(ctx_alloc_lock);
611 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
612 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
613 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
614 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
615
616 /* Caller does TLB context flushing on local CPU if necessary.
617  * The caller also ensures that CTX_VALID(mm->context) is false.
618  *
619  * We must be careful about boundary cases so that we never
620  * let the user have CTX 0 (nucleus) or we ever use a CTX
621  * version of zero (and thus NO_CONTEXT would not be caught
622  * by version mis-match tests in mmu_context.h).
623  *
624  * Always invoked with interrupts disabled.
625  */
626 void get_new_mmu_context(struct mm_struct *mm)
627 {
628         unsigned long ctx, new_ctx;
629         unsigned long orig_pgsz_bits;
630         unsigned long flags;
631         int new_version;
632
633         spin_lock_irqsave(&ctx_alloc_lock, flags);
634         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
635         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
636         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
637         new_version = 0;
638         if (new_ctx >= (1 << CTX_NR_BITS)) {
639                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
640                 if (new_ctx >= ctx) {
641                         int i;
642                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
643                                 CTX_FIRST_VERSION;
644                         if (new_ctx == 1)
645                                 new_ctx = CTX_FIRST_VERSION;
646
647                         /* Don't call memset, for 16 entries that's just
648                          * plain silly...
649                          */
650                         mmu_context_bmap[0] = 3;
651                         mmu_context_bmap[1] = 0;
652                         mmu_context_bmap[2] = 0;
653                         mmu_context_bmap[3] = 0;
654                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
655                                 mmu_context_bmap[i + 0] = 0;
656                                 mmu_context_bmap[i + 1] = 0;
657                                 mmu_context_bmap[i + 2] = 0;
658                                 mmu_context_bmap[i + 3] = 0;
659                         }
660                         new_version = 1;
661                         goto out;
662                 }
663         }
664         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
665         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
666 out:
667         tlb_context_cache = new_ctx;
668         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
669         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
670
671         if (unlikely(new_version))
672                 smp_new_mmu_context_version();
673 }
674
675 static int numa_enabled = 1;
676 static int numa_debug;
677
678 static int __init early_numa(char *p)
679 {
680         if (!p)
681                 return 0;
682
683         if (strstr(p, "off"))
684                 numa_enabled = 0;
685
686         if (strstr(p, "debug"))
687                 numa_debug = 1;
688
689         return 0;
690 }
691 early_param("numa", early_numa);
692
693 #define numadbg(f, a...) \
694 do {    if (numa_debug) \
695                 printk(KERN_INFO f, ## a); \
696 } while (0)
697
698 static void __init find_ramdisk(unsigned long phys_base)
699 {
700 #ifdef CONFIG_BLK_DEV_INITRD
701         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
702                 unsigned long ramdisk_image;
703
704                 /* Older versions of the bootloader only supported a
705                  * 32-bit physical address for the ramdisk image
706                  * location, stored at sparc_ramdisk_image.  Newer
707                  * SILO versions set sparc_ramdisk_image to zero and
708                  * provide a full 64-bit physical address at
709                  * sparc_ramdisk_image64.
710                  */
711                 ramdisk_image = sparc_ramdisk_image;
712                 if (!ramdisk_image)
713                         ramdisk_image = sparc_ramdisk_image64;
714
715                 /* Another bootloader quirk.  The bootloader normalizes
716                  * the physical address to KERNBASE, so we have to
717                  * factor that back out and add in the lowest valid
718                  * physical page address to get the true physical address.
719                  */
720                 ramdisk_image -= KERNBASE;
721                 ramdisk_image += phys_base;
722
723                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
724                         ramdisk_image, sparc_ramdisk_size);
725
726                 initrd_start = ramdisk_image;
727                 initrd_end = ramdisk_image + sparc_ramdisk_size;
728
729                 memblock_reserve(initrd_start, sparc_ramdisk_size);
730
731                 initrd_start += PAGE_OFFSET;
732                 initrd_end += PAGE_OFFSET;
733         }
734 #endif
735 }
736
737 struct node_mem_mask {
738         unsigned long mask;
739         unsigned long val;
740         unsigned long bootmem_paddr;
741 };
742 static struct node_mem_mask node_masks[MAX_NUMNODES];
743 static int num_node_masks;
744
745 int numa_cpu_lookup_table[NR_CPUS];
746 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
747
748 #ifdef CONFIG_NEED_MULTIPLE_NODES
749
750 struct mdesc_mblock {
751         u64     base;
752         u64     size;
753         u64     offset; /* RA-to-PA */
754 };
755 static struct mdesc_mblock *mblocks;
756 static int num_mblocks;
757
758 static unsigned long ra_to_pa(unsigned long addr)
759 {
760         int i;
761
762         for (i = 0; i < num_mblocks; i++) {
763                 struct mdesc_mblock *m = &mblocks[i];
764
765                 if (addr >= m->base &&
766                     addr < (m->base + m->size)) {
767                         addr += m->offset;
768                         break;
769                 }
770         }
771         return addr;
772 }
773
774 static int find_node(unsigned long addr)
775 {
776         int i;
777
778         addr = ra_to_pa(addr);
779         for (i = 0; i < num_node_masks; i++) {
780                 struct node_mem_mask *p = &node_masks[i];
781
782                 if ((addr & p->mask) == p->val)
783                         return i;
784         }
785         return -1;
786 }
787
788 u64 memblock_nid_range(u64 start, u64 end, int *nid)
789 {
790         *nid = find_node(start);
791         start += PAGE_SIZE;
792         while (start < end) {
793                 int n = find_node(start);
794
795                 if (n != *nid)
796                         break;
797                 start += PAGE_SIZE;
798         }
799
800         if (start > end)
801                 start = end;
802
803         return start;
804 }
805 #else
806 u64 memblock_nid_range(u64 start, u64 end, int *nid)
807 {
808         *nid = 0;
809         return end;
810 }
811 #endif
812
813 /* This must be invoked after performing all of the necessary
814  * add_active_range() calls for 'nid'.  We need to be able to get
815  * correct data from get_pfn_range_for_nid().
816  */
817 static void __init allocate_node_data(int nid)
818 {
819         unsigned long paddr, num_pages, start_pfn, end_pfn;
820         struct pglist_data *p;
821
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
824         if (!paddr) {
825                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
826                 prom_halt();
827         }
828         NODE_DATA(nid) = __va(paddr);
829         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
830
831         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
832 #endif
833
834         p = NODE_DATA(nid);
835
836         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
837         p->node_start_pfn = start_pfn;
838         p->node_spanned_pages = end_pfn - start_pfn;
839
840         if (p->node_spanned_pages) {
841                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
842
843                 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
844                 if (!paddr) {
845                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
846                                   nid);
847                         prom_halt();
848                 }
849                 node_masks[nid].bootmem_paddr = paddr;
850         }
851 }
852
853 static void init_node_masks_nonnuma(void)
854 {
855         int i;
856
857         numadbg("Initializing tables for non-numa.\n");
858
859         node_masks[0].mask = node_masks[0].val = 0;
860         num_node_masks = 1;
861
862         for (i = 0; i < NR_CPUS; i++)
863                 numa_cpu_lookup_table[i] = 0;
864
865         cpumask_setall(&numa_cpumask_lookup_table[0]);
866 }
867
868 #ifdef CONFIG_NEED_MULTIPLE_NODES
869 struct pglist_data *node_data[MAX_NUMNODES];
870
871 EXPORT_SYMBOL(numa_cpu_lookup_table);
872 EXPORT_SYMBOL(numa_cpumask_lookup_table);
873 EXPORT_SYMBOL(node_data);
874
875 struct mdesc_mlgroup {
876         u64     node;
877         u64     latency;
878         u64     match;
879         u64     mask;
880 };
881 static struct mdesc_mlgroup *mlgroups;
882 static int num_mlgroups;
883
884 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
885                                    u32 cfg_handle)
886 {
887         u64 arc;
888
889         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
890                 u64 target = mdesc_arc_target(md, arc);
891                 const u64 *val;
892
893                 val = mdesc_get_property(md, target,
894                                          "cfg-handle", NULL);
895                 if (val && *val == cfg_handle)
896                         return 0;
897         }
898         return -ENODEV;
899 }
900
901 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
902                                     u32 cfg_handle)
903 {
904         u64 arc, candidate, best_latency = ~(u64)0;
905
906         candidate = MDESC_NODE_NULL;
907         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
908                 u64 target = mdesc_arc_target(md, arc);
909                 const char *name = mdesc_node_name(md, target);
910                 const u64 *val;
911
912                 if (strcmp(name, "pio-latency-group"))
913                         continue;
914
915                 val = mdesc_get_property(md, target, "latency", NULL);
916                 if (!val)
917                         continue;
918
919                 if (*val < best_latency) {
920                         candidate = target;
921                         best_latency = *val;
922                 }
923         }
924
925         if (candidate == MDESC_NODE_NULL)
926                 return -ENODEV;
927
928         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
929 }
930
931 int of_node_to_nid(struct device_node *dp)
932 {
933         const struct linux_prom64_registers *regs;
934         struct mdesc_handle *md;
935         u32 cfg_handle;
936         int count, nid;
937         u64 grp;
938
939         /* This is the right thing to do on currently supported
940          * SUN4U NUMA platforms as well, as the PCI controller does
941          * not sit behind any particular memory controller.
942          */
943         if (!mlgroups)
944                 return -1;
945
946         regs = of_get_property(dp, "reg", NULL);
947         if (!regs)
948                 return -1;
949
950         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
951
952         md = mdesc_grab();
953
954         count = 0;
955         nid = -1;
956         mdesc_for_each_node_by_name(md, grp, "group") {
957                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
958                         nid = count;
959                         break;
960                 }
961                 count++;
962         }
963
964         mdesc_release(md);
965
966         return nid;
967 }
968
969 static void __init add_node_ranges(void)
970 {
971         struct memblock_region *reg;
972
973         for_each_memblock(memory, reg) {
974                 unsigned long size = reg->size;
975                 unsigned long start, end;
976
977                 start = reg->base;
978                 end = start + size;
979                 while (start < end) {
980                         unsigned long this_end;
981                         int nid;
982
983                         this_end = memblock_nid_range(start, end, &nid);
984
985                         numadbg("Adding active range nid[%d] "
986                                 "start[%lx] end[%lx]\n",
987                                 nid, start, this_end);
988
989                         add_active_range(nid,
990                                          start >> PAGE_SHIFT,
991                                          this_end >> PAGE_SHIFT);
992
993                         start = this_end;
994                 }
995         }
996 }
997
998 static int __init grab_mlgroups(struct mdesc_handle *md)
999 {
1000         unsigned long paddr;
1001         int count = 0;
1002         u64 node;
1003
1004         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1005                 count++;
1006         if (!count)
1007                 return -ENOENT;
1008
1009         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1010                           SMP_CACHE_BYTES);
1011         if (!paddr)
1012                 return -ENOMEM;
1013
1014         mlgroups = __va(paddr);
1015         num_mlgroups = count;
1016
1017         count = 0;
1018         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1019                 struct mdesc_mlgroup *m = &mlgroups[count++];
1020                 const u64 *val;
1021
1022                 m->node = node;
1023
1024                 val = mdesc_get_property(md, node, "latency", NULL);
1025                 m->latency = *val;
1026                 val = mdesc_get_property(md, node, "address-match", NULL);
1027                 m->match = *val;
1028                 val = mdesc_get_property(md, node, "address-mask", NULL);
1029                 m->mask = *val;
1030
1031                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1032                         "match[%llx] mask[%llx]\n",
1033                         count - 1, m->node, m->latency, m->match, m->mask);
1034         }
1035
1036         return 0;
1037 }
1038
1039 static int __init grab_mblocks(struct mdesc_handle *md)
1040 {
1041         unsigned long paddr;
1042         int count = 0;
1043         u64 node;
1044
1045         mdesc_for_each_node_by_name(md, node, "mblock")
1046                 count++;
1047         if (!count)
1048                 return -ENOENT;
1049
1050         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1051                           SMP_CACHE_BYTES);
1052         if (!paddr)
1053                 return -ENOMEM;
1054
1055         mblocks = __va(paddr);
1056         num_mblocks = count;
1057
1058         count = 0;
1059         mdesc_for_each_node_by_name(md, node, "mblock") {
1060                 struct mdesc_mblock *m = &mblocks[count++];
1061                 const u64 *val;
1062
1063                 val = mdesc_get_property(md, node, "base", NULL);
1064                 m->base = *val;
1065                 val = mdesc_get_property(md, node, "size", NULL);
1066                 m->size = *val;
1067                 val = mdesc_get_property(md, node,
1068                                          "address-congruence-offset", NULL);
1069                 m->offset = *val;
1070
1071                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1072                         count - 1, m->base, m->size, m->offset);
1073         }
1074
1075         return 0;
1076 }
1077
1078 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1079                                                u64 grp, cpumask_t *mask)
1080 {
1081         u64 arc;
1082
1083         cpumask_clear(mask);
1084
1085         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1086                 u64 target = mdesc_arc_target(md, arc);
1087                 const char *name = mdesc_node_name(md, target);
1088                 const u64 *id;
1089
1090                 if (strcmp(name, "cpu"))
1091                         continue;
1092                 id = mdesc_get_property(md, target, "id", NULL);
1093                 if (*id < nr_cpu_ids)
1094                         cpumask_set_cpu(*id, mask);
1095         }
1096 }
1097
1098 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1099 {
1100         int i;
1101
1102         for (i = 0; i < num_mlgroups; i++) {
1103                 struct mdesc_mlgroup *m = &mlgroups[i];
1104                 if (m->node == node)
1105                         return m;
1106         }
1107         return NULL;
1108 }
1109
1110 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1111                                       int index)
1112 {
1113         struct mdesc_mlgroup *candidate = NULL;
1114         u64 arc, best_latency = ~(u64)0;
1115         struct node_mem_mask *n;
1116
1117         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1118                 u64 target = mdesc_arc_target(md, arc);
1119                 struct mdesc_mlgroup *m = find_mlgroup(target);
1120                 if (!m)
1121                         continue;
1122                 if (m->latency < best_latency) {
1123                         candidate = m;
1124                         best_latency = m->latency;
1125                 }
1126         }
1127         if (!candidate)
1128                 return -ENOENT;
1129
1130         if (num_node_masks != index) {
1131                 printk(KERN_ERR "Inconsistent NUMA state, "
1132                        "index[%d] != num_node_masks[%d]\n",
1133                        index, num_node_masks);
1134                 return -EINVAL;
1135         }
1136
1137         n = &node_masks[num_node_masks++];
1138
1139         n->mask = candidate->mask;
1140         n->val = candidate->match;
1141
1142         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1143                 index, n->mask, n->val, candidate->latency);
1144
1145         return 0;
1146 }
1147
1148 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1149                                          int index)
1150 {
1151         cpumask_t mask;
1152         int cpu;
1153
1154         numa_parse_mdesc_group_cpus(md, grp, &mask);
1155
1156         for_each_cpu(cpu, &mask)
1157                 numa_cpu_lookup_table[cpu] = index;
1158         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1159
1160         if (numa_debug) {
1161                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1162                 for_each_cpu(cpu, &mask)
1163                         printk("%d ", cpu);
1164                 printk("]\n");
1165         }
1166
1167         return numa_attach_mlgroup(md, grp, index);
1168 }
1169
1170 static int __init numa_parse_mdesc(void)
1171 {
1172         struct mdesc_handle *md = mdesc_grab();
1173         int i, err, count;
1174         u64 node;
1175
1176         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1177         if (node == MDESC_NODE_NULL) {
1178                 mdesc_release(md);
1179                 return -ENOENT;
1180         }
1181
1182         err = grab_mblocks(md);
1183         if (err < 0)
1184                 goto out;
1185
1186         err = grab_mlgroups(md);
1187         if (err < 0)
1188                 goto out;
1189
1190         count = 0;
1191         mdesc_for_each_node_by_name(md, node, "group") {
1192                 err = numa_parse_mdesc_group(md, node, count);
1193                 if (err < 0)
1194                         break;
1195                 count++;
1196         }
1197
1198         add_node_ranges();
1199
1200         for (i = 0; i < num_node_masks; i++) {
1201                 allocate_node_data(i);
1202                 node_set_online(i);
1203         }
1204
1205         err = 0;
1206 out:
1207         mdesc_release(md);
1208         return err;
1209 }
1210
1211 static int __init numa_parse_jbus(void)
1212 {
1213         unsigned long cpu, index;
1214
1215         /* NUMA node id is encoded in bits 36 and higher, and there is
1216          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1217          */
1218         index = 0;
1219         for_each_present_cpu(cpu) {
1220                 numa_cpu_lookup_table[cpu] = index;
1221                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1222                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1223                 node_masks[index].val = cpu << 36UL;
1224
1225                 index++;
1226         }
1227         num_node_masks = index;
1228
1229         add_node_ranges();
1230
1231         for (index = 0; index < num_node_masks; index++) {
1232                 allocate_node_data(index);
1233                 node_set_online(index);
1234         }
1235
1236         return 0;
1237 }
1238
1239 static int __init numa_parse_sun4u(void)
1240 {
1241         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1242                 unsigned long ver;
1243
1244                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1245                 if ((ver >> 32UL) == __JALAPENO_ID ||
1246                     (ver >> 32UL) == __SERRANO_ID)
1247                         return numa_parse_jbus();
1248         }
1249         return -1;
1250 }
1251
1252 static int __init bootmem_init_numa(void)
1253 {
1254         int err = -1;
1255
1256         numadbg("bootmem_init_numa()\n");
1257
1258         if (numa_enabled) {
1259                 if (tlb_type == hypervisor)
1260                         err = numa_parse_mdesc();
1261                 else
1262                         err = numa_parse_sun4u();
1263         }
1264         return err;
1265 }
1266
1267 #else
1268
1269 static int bootmem_init_numa(void)
1270 {
1271         return -1;
1272 }
1273
1274 #endif
1275
1276 static void __init bootmem_init_nonnuma(void)
1277 {
1278         unsigned long top_of_ram = memblock_end_of_DRAM();
1279         unsigned long total_ram = memblock_phys_mem_size();
1280         struct memblock_region *reg;
1281
1282         numadbg("bootmem_init_nonnuma()\n");
1283
1284         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1285                top_of_ram, total_ram);
1286         printk(KERN_INFO "Memory hole size: %ldMB\n",
1287                (top_of_ram - total_ram) >> 20);
1288
1289         init_node_masks_nonnuma();
1290
1291         for_each_memblock(memory, reg) {
1292                 unsigned long start_pfn, end_pfn;
1293
1294                 if (!reg->size)
1295                         continue;
1296
1297                 start_pfn = memblock_region_memory_base_pfn(reg);
1298                 end_pfn = memblock_region_memory_end_pfn(reg);
1299                 add_active_range(0, start_pfn, end_pfn);
1300         }
1301
1302         allocate_node_data(0);
1303
1304         node_set_online(0);
1305 }
1306
1307 static void __init reserve_range_in_node(int nid, unsigned long start,
1308                                          unsigned long end)
1309 {
1310         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1311                 nid, start, end);
1312         while (start < end) {
1313                 unsigned long this_end;
1314                 int n;
1315
1316                 this_end = memblock_nid_range(start, end, &n);
1317                 if (n == nid) {
1318                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1319                                 start, this_end);
1320                         reserve_bootmem_node(NODE_DATA(nid), start,
1321                                              (this_end - start), BOOTMEM_DEFAULT);
1322                 } else
1323                         numadbg("      NO MATCH, advancing start to %lx\n",
1324                                 this_end);
1325
1326                 start = this_end;
1327         }
1328 }
1329
1330 static void __init trim_reserved_in_node(int nid)
1331 {
1332         struct memblock_region *reg;
1333
1334         numadbg("  trim_reserved_in_node(%d)\n", nid);
1335
1336         for_each_memblock(reserved, reg)
1337                 reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1338 }
1339
1340 static void __init bootmem_init_one_node(int nid)
1341 {
1342         struct pglist_data *p;
1343
1344         numadbg("bootmem_init_one_node(%d)\n", nid);
1345
1346         p = NODE_DATA(nid);
1347
1348         if (p->node_spanned_pages) {
1349                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1350                 unsigned long end_pfn;
1351
1352                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1353
1354                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1355                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1356
1357                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1358                                   p->node_start_pfn, end_pfn);
1359
1360                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1361                         nid, end_pfn);
1362                 free_bootmem_with_active_regions(nid, end_pfn);
1363
1364                 trim_reserved_in_node(nid);
1365
1366                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1367                         nid);
1368                 sparse_memory_present_with_active_regions(nid);
1369         }
1370 }
1371
1372 static unsigned long __init bootmem_init(unsigned long phys_base)
1373 {
1374         unsigned long end_pfn;
1375         int nid;
1376
1377         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1378         max_pfn = max_low_pfn = end_pfn;
1379         min_low_pfn = (phys_base >> PAGE_SHIFT);
1380
1381         if (bootmem_init_numa() < 0)
1382                 bootmem_init_nonnuma();
1383
1384         /* XXX cpu notifier XXX */
1385
1386         for_each_online_node(nid)
1387                 bootmem_init_one_node(nid);
1388
1389         sparse_init();
1390
1391         return end_pfn;
1392 }
1393
1394 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1395 static int pall_ents __initdata;
1396
1397 #ifdef CONFIG_DEBUG_PAGEALLOC
1398 static unsigned long __ref kernel_map_range(unsigned long pstart,
1399                                             unsigned long pend, pgprot_t prot)
1400 {
1401         unsigned long vstart = PAGE_OFFSET + pstart;
1402         unsigned long vend = PAGE_OFFSET + pend;
1403         unsigned long alloc_bytes = 0UL;
1404
1405         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1406                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1407                             vstart, vend);
1408                 prom_halt();
1409         }
1410
1411         while (vstart < vend) {
1412                 unsigned long this_end, paddr = __pa(vstart);
1413                 pgd_t *pgd = pgd_offset_k(vstart);
1414                 pud_t *pud;
1415                 pmd_t *pmd;
1416                 pte_t *pte;
1417
1418                 pud = pud_offset(pgd, vstart);
1419                 if (pud_none(*pud)) {
1420                         pmd_t *new;
1421
1422                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1423                         alloc_bytes += PAGE_SIZE;
1424                         pud_populate(&init_mm, pud, new);
1425                 }
1426
1427                 pmd = pmd_offset(pud, vstart);
1428                 if (!pmd_present(*pmd)) {
1429                         pte_t *new;
1430
1431                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1432                         alloc_bytes += PAGE_SIZE;
1433                         pmd_populate_kernel(&init_mm, pmd, new);
1434                 }
1435
1436                 pte = pte_offset_kernel(pmd, vstart);
1437                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1438                 if (this_end > vend)
1439                         this_end = vend;
1440
1441                 while (vstart < this_end) {
1442                         pte_val(*pte) = (paddr | pgprot_val(prot));
1443
1444                         vstart += PAGE_SIZE;
1445                         paddr += PAGE_SIZE;
1446                         pte++;
1447                 }
1448         }
1449
1450         return alloc_bytes;
1451 }
1452
1453 extern unsigned int kvmap_linear_patch[1];
1454 #endif /* CONFIG_DEBUG_PAGEALLOC */
1455
1456 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1457 {
1458         const unsigned long shift_256MB = 28;
1459         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1460         const unsigned long size_256MB = (1UL << shift_256MB);
1461
1462         while (start < end) {
1463                 long remains;
1464
1465                 remains = end - start;
1466                 if (remains < size_256MB)
1467                         break;
1468
1469                 if (start & mask_256MB) {
1470                         start = (start + size_256MB) & ~mask_256MB;
1471                         continue;
1472                 }
1473
1474                 while (remains >= size_256MB) {
1475                         unsigned long index = start >> shift_256MB;
1476
1477                         __set_bit(index, kpte_linear_bitmap);
1478
1479                         start += size_256MB;
1480                         remains -= size_256MB;
1481                 }
1482         }
1483 }
1484
1485 static void __init init_kpte_bitmap(void)
1486 {
1487         unsigned long i;
1488
1489         for (i = 0; i < pall_ents; i++) {
1490                 unsigned long phys_start, phys_end;
1491
1492                 phys_start = pall[i].phys_addr;
1493                 phys_end = phys_start + pall[i].reg_size;
1494
1495                 mark_kpte_bitmap(phys_start, phys_end);
1496         }
1497 }
1498
1499 static void __init kernel_physical_mapping_init(void)
1500 {
1501 #ifdef CONFIG_DEBUG_PAGEALLOC
1502         unsigned long i, mem_alloced = 0UL;
1503
1504         for (i = 0; i < pall_ents; i++) {
1505                 unsigned long phys_start, phys_end;
1506
1507                 phys_start = pall[i].phys_addr;
1508                 phys_end = phys_start + pall[i].reg_size;
1509
1510                 mem_alloced += kernel_map_range(phys_start, phys_end,
1511                                                 PAGE_KERNEL);
1512         }
1513
1514         printk("Allocated %ld bytes for kernel page tables.\n",
1515                mem_alloced);
1516
1517         kvmap_linear_patch[0] = 0x01000000; /* nop */
1518         flushi(&kvmap_linear_patch[0]);
1519
1520         __flush_tlb_all();
1521 #endif
1522 }
1523
1524 #ifdef CONFIG_DEBUG_PAGEALLOC
1525 void kernel_map_pages(struct page *page, int numpages, int enable)
1526 {
1527         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1528         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1529
1530         kernel_map_range(phys_start, phys_end,
1531                          (enable ? PAGE_KERNEL : __pgprot(0)));
1532
1533         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1534                                PAGE_OFFSET + phys_end);
1535
1536         /* we should perform an IPI and flush all tlbs,
1537          * but that can deadlock->flush only current cpu.
1538          */
1539         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1540                                  PAGE_OFFSET + phys_end);
1541 }
1542 #endif
1543
1544 unsigned long __init find_ecache_flush_span(unsigned long size)
1545 {
1546         int i;
1547
1548         for (i = 0; i < pavail_ents; i++) {
1549                 if (pavail[i].reg_size >= size)
1550                         return pavail[i].phys_addr;
1551         }
1552
1553         return ~0UL;
1554 }
1555
1556 static void __init tsb_phys_patch(void)
1557 {
1558         struct tsb_ldquad_phys_patch_entry *pquad;
1559         struct tsb_phys_patch_entry *p;
1560
1561         pquad = &__tsb_ldquad_phys_patch;
1562         while (pquad < &__tsb_ldquad_phys_patch_end) {
1563                 unsigned long addr = pquad->addr;
1564
1565                 if (tlb_type == hypervisor)
1566                         *(unsigned int *) addr = pquad->sun4v_insn;
1567                 else
1568                         *(unsigned int *) addr = pquad->sun4u_insn;
1569                 wmb();
1570                 __asm__ __volatile__("flush     %0"
1571                                      : /* no outputs */
1572                                      : "r" (addr));
1573
1574                 pquad++;
1575         }
1576
1577         p = &__tsb_phys_patch;
1578         while (p < &__tsb_phys_patch_end) {
1579                 unsigned long addr = p->addr;
1580
1581                 *(unsigned int *) addr = p->insn;
1582                 wmb();
1583                 __asm__ __volatile__("flush     %0"
1584                                      : /* no outputs */
1585                                      : "r" (addr));
1586
1587                 p++;
1588         }
1589 }
1590
1591 /* Don't mark as init, we give this to the Hypervisor.  */
1592 #ifndef CONFIG_DEBUG_PAGEALLOC
1593 #define NUM_KTSB_DESCR  2
1594 #else
1595 #define NUM_KTSB_DESCR  1
1596 #endif
1597 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1598 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1599
1600 static void __init sun4v_ktsb_init(void)
1601 {
1602         unsigned long ktsb_pa;
1603
1604         /* First KTSB for PAGE_SIZE mappings.  */
1605         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1606
1607         switch (PAGE_SIZE) {
1608         case 8 * 1024:
1609         default:
1610                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1611                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1612                 break;
1613
1614         case 64 * 1024:
1615                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1616                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1617                 break;
1618
1619         case 512 * 1024:
1620                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1621                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1622                 break;
1623
1624         case 4 * 1024 * 1024:
1625                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1626                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1627                 break;
1628         }
1629
1630         ktsb_descr[0].assoc = 1;
1631         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1632         ktsb_descr[0].ctx_idx = 0;
1633         ktsb_descr[0].tsb_base = ktsb_pa;
1634         ktsb_descr[0].resv = 0;
1635
1636 #ifndef CONFIG_DEBUG_PAGEALLOC
1637         /* Second KTSB for 4MB/256MB mappings.  */
1638         ktsb_pa = (kern_base +
1639                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1640
1641         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1642         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1643                                    HV_PGSZ_MASK_256MB);
1644         ktsb_descr[1].assoc = 1;
1645         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1646         ktsb_descr[1].ctx_idx = 0;
1647         ktsb_descr[1].tsb_base = ktsb_pa;
1648         ktsb_descr[1].resv = 0;
1649 #endif
1650 }
1651
1652 void __cpuinit sun4v_ktsb_register(void)
1653 {
1654         unsigned long pa, ret;
1655
1656         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1657
1658         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1659         if (ret != 0) {
1660                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1661                             "errors with %lx\n", pa, ret);
1662                 prom_halt();
1663         }
1664 }
1665
1666 /* paging_init() sets up the page tables */
1667
1668 static unsigned long last_valid_pfn;
1669 pgd_t swapper_pg_dir[2048];
1670
1671 static void sun4u_pgprot_init(void);
1672 static void sun4v_pgprot_init(void);
1673
1674 void __init paging_init(void)
1675 {
1676         unsigned long end_pfn, shift, phys_base;
1677         unsigned long real_end, i;
1678
1679         /* These build time checkes make sure that the dcache_dirty_cpu()
1680          * page->flags usage will work.
1681          *
1682          * When a page gets marked as dcache-dirty, we store the
1683          * cpu number starting at bit 32 in the page->flags.  Also,
1684          * functions like clear_dcache_dirty_cpu use the cpu mask
1685          * in 13-bit signed-immediate instruction fields.
1686          */
1687
1688         /*
1689          * Page flags must not reach into upper 32 bits that are used
1690          * for the cpu number
1691          */
1692         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1693
1694         /*
1695          * The bit fields placed in the high range must not reach below
1696          * the 32 bit boundary. Otherwise we cannot place the cpu field
1697          * at the 32 bit boundary.
1698          */
1699         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1700                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1701
1702         BUILD_BUG_ON(NR_CPUS > 4096);
1703
1704         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1705         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1706
1707         /* Invalidate both kernel TSBs.  */
1708         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1709 #ifndef CONFIG_DEBUG_PAGEALLOC
1710         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1711 #endif
1712
1713         if (tlb_type == hypervisor)
1714                 sun4v_pgprot_init();
1715         else
1716                 sun4u_pgprot_init();
1717
1718         if (tlb_type == cheetah_plus ||
1719             tlb_type == hypervisor)
1720                 tsb_phys_patch();
1721
1722         if (tlb_type == hypervisor) {
1723                 sun4v_patch_tlb_handlers();
1724                 sun4v_ktsb_init();
1725         }
1726
1727         memblock_init();
1728
1729         /* Find available physical memory...
1730          *
1731          * Read it twice in order to work around a bug in openfirmware.
1732          * The call to grab this table itself can cause openfirmware to
1733          * allocate memory, which in turn can take away some space from
1734          * the list of available memory.  Reading it twice makes sure
1735          * we really do get the final value.
1736          */
1737         read_obp_translations();
1738         read_obp_memory("reg", &pall[0], &pall_ents);
1739         read_obp_memory("available", &pavail[0], &pavail_ents);
1740         read_obp_memory("available", &pavail[0], &pavail_ents);
1741
1742         phys_base = 0xffffffffffffffffUL;
1743         for (i = 0; i < pavail_ents; i++) {
1744                 phys_base = min(phys_base, pavail[i].phys_addr);
1745                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1746         }
1747
1748         memblock_reserve(kern_base, kern_size);
1749
1750         find_ramdisk(phys_base);
1751
1752         memblock_enforce_memory_limit(cmdline_memory_size);
1753
1754         memblock_analyze();
1755         memblock_dump_all();
1756
1757         set_bit(0, mmu_context_bmap);
1758
1759         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1760
1761         real_end = (unsigned long)_end;
1762         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1763         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1764                num_kernel_image_mappings);
1765
1766         /* Set kernel pgd to upper alias so physical page computations
1767          * work.
1768          */
1769         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1770         
1771         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1772
1773         /* Now can init the kernel/bad page tables. */
1774         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1775                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1776         
1777         inherit_prom_mappings();
1778         
1779         init_kpte_bitmap();
1780
1781         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1782         setup_tba();
1783
1784         __flush_tlb_all();
1785
1786         if (tlb_type == hypervisor)
1787                 sun4v_ktsb_register();
1788
1789         prom_build_devicetree();
1790         of_populate_present_mask();
1791 #ifndef CONFIG_SMP
1792         of_fill_in_cpu_data();
1793 #endif
1794
1795         if (tlb_type == hypervisor) {
1796                 sun4v_mdesc_init();
1797                 mdesc_populate_present_mask(cpu_all_mask);
1798 #ifndef CONFIG_SMP
1799                 mdesc_fill_in_cpu_data(cpu_all_mask);
1800 #endif
1801         }
1802
1803         /* Once the OF device tree and MDESC have been setup, we know
1804          * the list of possible cpus.  Therefore we can allocate the
1805          * IRQ stacks.
1806          */
1807         for_each_possible_cpu(i) {
1808                 /* XXX Use node local allocations... XXX */
1809                 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1810                 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1811         }
1812
1813         /* Setup bootmem... */
1814         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1815
1816 #ifndef CONFIG_NEED_MULTIPLE_NODES
1817         max_mapnr = last_valid_pfn;
1818 #endif
1819         kernel_physical_mapping_init();
1820
1821         {
1822                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1823
1824                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1825
1826                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1827
1828                 free_area_init_nodes(max_zone_pfns);
1829         }
1830
1831         printk("Booting Linux...\n");
1832 }
1833
1834 int __devinit page_in_phys_avail(unsigned long paddr)
1835 {
1836         int i;
1837
1838         paddr &= PAGE_MASK;
1839
1840         for (i = 0; i < pavail_ents; i++) {
1841                 unsigned long start, end;
1842
1843                 start = pavail[i].phys_addr;
1844                 end = start + pavail[i].reg_size;
1845
1846                 if (paddr >= start && paddr < end)
1847                         return 1;
1848         }
1849         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1850                 return 1;
1851 #ifdef CONFIG_BLK_DEV_INITRD
1852         if (paddr >= __pa(initrd_start) &&
1853             paddr < __pa(PAGE_ALIGN(initrd_end)))
1854                 return 1;
1855 #endif
1856
1857         return 0;
1858 }
1859
1860 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1861 static int pavail_rescan_ents __initdata;
1862
1863 /* Certain OBP calls, such as fetching "available" properties, can
1864  * claim physical memory.  So, along with initializing the valid
1865  * address bitmap, what we do here is refetch the physical available
1866  * memory list again, and make sure it provides at least as much
1867  * memory as 'pavail' does.
1868  */
1869 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1870 {
1871         int i;
1872
1873         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1874
1875         for (i = 0; i < pavail_ents; i++) {
1876                 unsigned long old_start, old_end;
1877
1878                 old_start = pavail[i].phys_addr;
1879                 old_end = old_start + pavail[i].reg_size;
1880                 while (old_start < old_end) {
1881                         int n;
1882
1883                         for (n = 0; n < pavail_rescan_ents; n++) {
1884                                 unsigned long new_start, new_end;
1885
1886                                 new_start = pavail_rescan[n].phys_addr;
1887                                 new_end = new_start +
1888                                         pavail_rescan[n].reg_size;
1889
1890                                 if (new_start <= old_start &&
1891                                     new_end >= (old_start + PAGE_SIZE)) {
1892                                         set_bit(old_start >> 22, bitmap);
1893                                         goto do_next_page;
1894                                 }
1895                         }
1896
1897                         prom_printf("mem_init: Lost memory in pavail\n");
1898                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1899                                     pavail[i].phys_addr,
1900                                     pavail[i].reg_size);
1901                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1902                                     pavail_rescan[i].phys_addr,
1903                                     pavail_rescan[i].reg_size);
1904                         prom_printf("mem_init: Cannot continue, aborting.\n");
1905                         prom_halt();
1906
1907                 do_next_page:
1908                         old_start += PAGE_SIZE;
1909                 }
1910         }
1911 }
1912
1913 static void __init patch_tlb_miss_handler_bitmap(void)
1914 {
1915         extern unsigned int valid_addr_bitmap_insn[];
1916         extern unsigned int valid_addr_bitmap_patch[];
1917
1918         valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1919         mb();
1920         valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1921         flushi(&valid_addr_bitmap_insn[0]);
1922 }
1923
1924 void __init mem_init(void)
1925 {
1926         unsigned long codepages, datapages, initpages;
1927         unsigned long addr, last;
1928
1929         addr = PAGE_OFFSET + kern_base;
1930         last = PAGE_ALIGN(kern_size) + addr;
1931         while (addr < last) {
1932                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1933                 addr += PAGE_SIZE;
1934         }
1935
1936         setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1937         patch_tlb_miss_handler_bitmap();
1938
1939         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1940
1941 #ifdef CONFIG_NEED_MULTIPLE_NODES
1942         {
1943                 int i;
1944                 for_each_online_node(i) {
1945                         if (NODE_DATA(i)->node_spanned_pages != 0) {
1946                                 totalram_pages +=
1947                                         free_all_bootmem_node(NODE_DATA(i));
1948                         }
1949                 }
1950         }
1951 #else
1952         totalram_pages = free_all_bootmem();
1953 #endif
1954
1955         /* We subtract one to account for the mem_map_zero page
1956          * allocated below.
1957          */
1958         totalram_pages -= 1;
1959         num_physpages = totalram_pages;
1960
1961         /*
1962          * Set up the zero page, mark it reserved, so that page count
1963          * is not manipulated when freeing the page from user ptes.
1964          */
1965         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1966         if (mem_map_zero == NULL) {
1967                 prom_printf("paging_init: Cannot alloc zero page.\n");
1968                 prom_halt();
1969         }
1970         SetPageReserved(mem_map_zero);
1971
1972         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1973         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1974         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1975         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1976         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1977         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1978
1979         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1980                nr_free_pages() << (PAGE_SHIFT-10),
1981                codepages << (PAGE_SHIFT-10),
1982                datapages << (PAGE_SHIFT-10), 
1983                initpages << (PAGE_SHIFT-10), 
1984                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1985
1986         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1987                 cheetah_ecache_flush_init();
1988 }
1989
1990 void free_initmem(void)
1991 {
1992         unsigned long addr, initend;
1993         int do_free = 1;
1994
1995         /* If the physical memory maps were trimmed by kernel command
1996          * line options, don't even try freeing this initmem stuff up.
1997          * The kernel image could have been in the trimmed out region
1998          * and if so the freeing below will free invalid page structs.
1999          */
2000         if (cmdline_memory_size)
2001                 do_free = 0;
2002
2003         /*
2004          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2005          */
2006         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2007         initend = (unsigned long)(__init_end) & PAGE_MASK;
2008         for (; addr < initend; addr += PAGE_SIZE) {
2009                 unsigned long page;
2010                 struct page *p;
2011
2012                 page = (addr +
2013                         ((unsigned long) __va(kern_base)) -
2014                         ((unsigned long) KERNBASE));
2015                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2016
2017                 if (do_free) {
2018                         p = virt_to_page(page);
2019
2020                         ClearPageReserved(p);
2021                         init_page_count(p);
2022                         __free_page(p);
2023                         num_physpages++;
2024                         totalram_pages++;
2025                 }
2026         }
2027 }
2028
2029 #ifdef CONFIG_BLK_DEV_INITRD
2030 void free_initrd_mem(unsigned long start, unsigned long end)
2031 {
2032         if (start < end)
2033                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2034         for (; start < end; start += PAGE_SIZE) {
2035                 struct page *p = virt_to_page(start);
2036
2037                 ClearPageReserved(p);
2038                 init_page_count(p);
2039                 __free_page(p);
2040                 num_physpages++;
2041                 totalram_pages++;
2042         }
2043 }
2044 #endif
2045
2046 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2047 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2048 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2049 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2050 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2051 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2052
2053 pgprot_t PAGE_KERNEL __read_mostly;
2054 EXPORT_SYMBOL(PAGE_KERNEL);
2055
2056 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2057 pgprot_t PAGE_COPY __read_mostly;
2058
2059 pgprot_t PAGE_SHARED __read_mostly;
2060 EXPORT_SYMBOL(PAGE_SHARED);
2061
2062 unsigned long pg_iobits __read_mostly;
2063
2064 unsigned long _PAGE_IE __read_mostly;
2065 EXPORT_SYMBOL(_PAGE_IE);
2066
2067 unsigned long _PAGE_E __read_mostly;
2068 EXPORT_SYMBOL(_PAGE_E);
2069
2070 unsigned long _PAGE_CACHE __read_mostly;
2071 EXPORT_SYMBOL(_PAGE_CACHE);
2072
2073 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2074 unsigned long vmemmap_table[VMEMMAP_SIZE];
2075
2076 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2077 {
2078         unsigned long vstart = (unsigned long) start;
2079         unsigned long vend = (unsigned long) (start + nr);
2080         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2081         unsigned long phys_end = (vend - VMEMMAP_BASE);
2082         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2083         unsigned long end = VMEMMAP_ALIGN(phys_end);
2084         unsigned long pte_base;
2085
2086         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2087                     _PAGE_CP_4U | _PAGE_CV_4U |
2088                     _PAGE_P_4U | _PAGE_W_4U);
2089         if (tlb_type == hypervisor)
2090                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2091                             _PAGE_CP_4V | _PAGE_CV_4V |
2092                             _PAGE_P_4V | _PAGE_W_4V);
2093
2094         for (; addr < end; addr += VMEMMAP_CHUNK) {
2095                 unsigned long *vmem_pp =
2096                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2097                 void *block;
2098
2099                 if (!(*vmem_pp & _PAGE_VALID)) {
2100                         block = vmemmap_alloc_block(1UL << 22, node);
2101                         if (!block)
2102                                 return -ENOMEM;
2103
2104                         *vmem_pp = pte_base | __pa(block);
2105
2106                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2107                                "node=%d entry=%lu/%lu\n", start, block, nr,
2108                                node,
2109                                addr >> VMEMMAP_CHUNK_SHIFT,
2110                                VMEMMAP_SIZE);
2111                 }
2112         }
2113         return 0;
2114 }
2115 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2116
2117 static void prot_init_common(unsigned long page_none,
2118                              unsigned long page_shared,
2119                              unsigned long page_copy,
2120                              unsigned long page_readonly,
2121                              unsigned long page_exec_bit)
2122 {
2123         PAGE_COPY = __pgprot(page_copy);
2124         PAGE_SHARED = __pgprot(page_shared);
2125
2126         protection_map[0x0] = __pgprot(page_none);
2127         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2128         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2129         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2130         protection_map[0x4] = __pgprot(page_readonly);
2131         protection_map[0x5] = __pgprot(page_readonly);
2132         protection_map[0x6] = __pgprot(page_copy);
2133         protection_map[0x7] = __pgprot(page_copy);
2134         protection_map[0x8] = __pgprot(page_none);
2135         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2136         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2137         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2138         protection_map[0xc] = __pgprot(page_readonly);
2139         protection_map[0xd] = __pgprot(page_readonly);
2140         protection_map[0xe] = __pgprot(page_shared);
2141         protection_map[0xf] = __pgprot(page_shared);
2142 }
2143
2144 static void __init sun4u_pgprot_init(void)
2145 {
2146         unsigned long page_none, page_shared, page_copy, page_readonly;
2147         unsigned long page_exec_bit;
2148
2149         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2150                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2151                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2152                                 _PAGE_EXEC_4U);
2153         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2154                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2155                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2156                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2157
2158         _PAGE_IE = _PAGE_IE_4U;
2159         _PAGE_E = _PAGE_E_4U;
2160         _PAGE_CACHE = _PAGE_CACHE_4U;
2161
2162         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2163                      __ACCESS_BITS_4U | _PAGE_E_4U);
2164
2165 #ifdef CONFIG_DEBUG_PAGEALLOC
2166         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2167                 0xfffff80000000000UL;
2168 #else
2169         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2170                 0xfffff80000000000UL;
2171 #endif
2172         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2173                                    _PAGE_P_4U | _PAGE_W_4U);
2174
2175         /* XXX Should use 256MB on Panther. XXX */
2176         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2177
2178         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2179         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2180                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2181                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2182
2183
2184         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2185         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2186                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2187         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2188                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2189         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2190                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2191
2192         page_exec_bit = _PAGE_EXEC_4U;
2193
2194         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2195                          page_exec_bit);
2196 }
2197
2198 static void __init sun4v_pgprot_init(void)
2199 {
2200         unsigned long page_none, page_shared, page_copy, page_readonly;
2201         unsigned long page_exec_bit;
2202
2203         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2204                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2205                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2206                                 _PAGE_EXEC_4V);
2207         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2208
2209         _PAGE_IE = _PAGE_IE_4V;
2210         _PAGE_E = _PAGE_E_4V;
2211         _PAGE_CACHE = _PAGE_CACHE_4V;
2212
2213 #ifdef CONFIG_DEBUG_PAGEALLOC
2214         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2215                 0xfffff80000000000UL;
2216 #else
2217         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2218                 0xfffff80000000000UL;
2219 #endif
2220         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2221                                    _PAGE_P_4V | _PAGE_W_4V);
2222
2223 #ifdef CONFIG_DEBUG_PAGEALLOC
2224         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2225                 0xfffff80000000000UL;
2226 #else
2227         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2228                 0xfffff80000000000UL;
2229 #endif
2230         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2231                                    _PAGE_P_4V | _PAGE_W_4V);
2232
2233         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2234                      __ACCESS_BITS_4V | _PAGE_E_4V);
2235
2236         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2237         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2238                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2239                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2240                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2241
2242         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2243         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2244                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2245         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2246                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2247         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2248                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2249
2250         page_exec_bit = _PAGE_EXEC_4V;
2251
2252         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2253                          page_exec_bit);
2254 }
2255
2256 unsigned long pte_sz_bits(unsigned long sz)
2257 {
2258         if (tlb_type == hypervisor) {
2259                 switch (sz) {
2260                 case 8 * 1024:
2261                 default:
2262                         return _PAGE_SZ8K_4V;
2263                 case 64 * 1024:
2264                         return _PAGE_SZ64K_4V;
2265                 case 512 * 1024:
2266                         return _PAGE_SZ512K_4V;
2267                 case 4 * 1024 * 1024:
2268                         return _PAGE_SZ4MB_4V;
2269                 }
2270         } else {
2271                 switch (sz) {
2272                 case 8 * 1024:
2273                 default:
2274                         return _PAGE_SZ8K_4U;
2275                 case 64 * 1024:
2276                         return _PAGE_SZ64K_4U;
2277                 case 512 * 1024:
2278                         return _PAGE_SZ512K_4U;
2279                 case 4 * 1024 * 1024:
2280                         return _PAGE_SZ4MB_4U;
2281                 }
2282         }
2283 }
2284
2285 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2286 {
2287         pte_t pte;
2288
2289         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2290         pte_val(pte) |= (((unsigned long)space) << 32);
2291         pte_val(pte) |= pte_sz_bits(page_size);
2292
2293         return pte;
2294 }
2295
2296 static unsigned long kern_large_tte(unsigned long paddr)
2297 {
2298         unsigned long val;
2299
2300         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2301                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2302                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2303         if (tlb_type == hypervisor)
2304                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2305                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2306                        _PAGE_EXEC_4V | _PAGE_W_4V);
2307
2308         return val | paddr;
2309 }
2310
2311 /* If not locked, zap it. */
2312 void __flush_tlb_all(void)
2313 {
2314         unsigned long pstate;
2315         int i;
2316
2317         __asm__ __volatile__("flushw\n\t"
2318                              "rdpr      %%pstate, %0\n\t"
2319                              "wrpr      %0, %1, %%pstate"
2320                              : "=r" (pstate)
2321                              : "i" (PSTATE_IE));
2322         if (tlb_type == hypervisor) {
2323                 sun4v_mmu_demap_all();
2324         } else if (tlb_type == spitfire) {
2325                 for (i = 0; i < 64; i++) {
2326                         /* Spitfire Errata #32 workaround */
2327                         /* NOTE: Always runs on spitfire, so no
2328                          *       cheetah+ page size encodings.
2329                          */
2330                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2331                                              "flush     %%g6"
2332                                              : /* No outputs */
2333                                              : "r" (0),
2334                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2335
2336                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2337                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2338                                                      "membar #Sync"
2339                                                      : /* no outputs */
2340                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2341                                 spitfire_put_dtlb_data(i, 0x0UL);
2342                         }
2343
2344                         /* Spitfire Errata #32 workaround */
2345                         /* NOTE: Always runs on spitfire, so no
2346                          *       cheetah+ page size encodings.
2347                          */
2348                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2349                                              "flush     %%g6"
2350                                              : /* No outputs */
2351                                              : "r" (0),
2352                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2353
2354                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2355                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2356                                                      "membar #Sync"
2357                                                      : /* no outputs */
2358                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2359                                 spitfire_put_itlb_data(i, 0x0UL);
2360                         }
2361                 }
2362         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2363                 cheetah_flush_dtlb_all();
2364                 cheetah_flush_itlb_all();
2365         }
2366         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2367                              : : "r" (pstate));
2368 }