442286d83435d115403ac71af53b7a6ce81c88fa
[linux-2.6.git] / arch / sparc / kernel / smp_32.c
1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36
37 #include "irq.h"
38
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40 unsigned char boot_cpu_id = 0;
41 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
42
43 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
44
45 /* The only guaranteed locking primitive available on all Sparc
46  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
47  * places the current byte at the effective address into dest_reg and
48  * places 0xff there afterwards.  Pretty lame locking primitive
49  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
50  * instruction which is much better...
51  */
52
53 void __cpuinit smp_store_cpu_info(int id)
54 {
55         int cpu_node;
56         int mid;
57
58         cpu_data(id).udelay_val = loops_per_jiffy;
59
60         cpu_find_by_mid(id, &cpu_node);
61         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
62                                                      "clock-frequency", 0);
63         cpu_data(id).prom_node = cpu_node;
64         mid = cpu_get_hwmid(cpu_node);
65
66         if (mid < 0) {
67                 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
68                 mid = 0;
69         }
70         cpu_data(id).mid = mid;
71 }
72
73 void __init smp_cpus_done(unsigned int max_cpus)
74 {
75         extern void smp4m_smp_done(void);
76         extern void smp4d_smp_done(void);
77         unsigned long bogosum = 0;
78         int cpu, num = 0;
79
80         for_each_online_cpu(cpu) {
81                 num++;
82                 bogosum += cpu_data(cpu).udelay_val;
83         }
84
85         printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
86                 num, bogosum/(500000/HZ),
87                 (bogosum/(5000/HZ))%100);
88
89         switch(sparc_cpu_model) {
90         case sun4:
91                 printk("SUN4\n");
92                 BUG();
93                 break;
94         case sun4c:
95                 printk("SUN4C\n");
96                 BUG();
97                 break;
98         case sun4m:
99                 smp4m_smp_done();
100                 break;
101         case sun4d:
102                 smp4d_smp_done();
103                 break;
104         case sparc_leon:
105                 leon_smp_done();
106                 break;
107         case sun4e:
108                 printk("SUN4E\n");
109                 BUG();
110                 break;
111         case sun4u:
112                 printk("SUN4U\n");
113                 BUG();
114                 break;
115         default:
116                 printk("UNKNOWN!\n");
117                 BUG();
118                 break;
119         };
120 }
121
122 void cpu_panic(void)
123 {
124         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
125         panic("SMP bolixed\n");
126 }
127
128 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
129
130 void smp_send_reschedule(int cpu)
131 {
132         /*
133          * XXX missing reschedule IPI, see scheduler_ipi()
134          */
135 }
136
137 void smp_send_stop(void)
138 {
139 }
140
141 void smp_flush_cache_all(void)
142 {
143         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
144         local_flush_cache_all();
145 }
146
147 void smp_flush_tlb_all(void)
148 {
149         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
150         local_flush_tlb_all();
151 }
152
153 void smp_flush_cache_mm(struct mm_struct *mm)
154 {
155         if(mm->context != NO_CONTEXT) {
156                 cpumask_t cpu_mask = *mm_cpumask(mm);
157                 cpu_clear(smp_processor_id(), cpu_mask);
158                 if (!cpus_empty(cpu_mask))
159                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
160                 local_flush_cache_mm(mm);
161         }
162 }
163
164 void smp_flush_tlb_mm(struct mm_struct *mm)
165 {
166         if(mm->context != NO_CONTEXT) {
167                 cpumask_t cpu_mask = *mm_cpumask(mm);
168                 cpu_clear(smp_processor_id(), cpu_mask);
169                 if (!cpus_empty(cpu_mask)) {
170                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
171                         if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
172                                 cpumask_copy(mm_cpumask(mm),
173                                              cpumask_of(smp_processor_id()));
174                 }
175                 local_flush_tlb_mm(mm);
176         }
177 }
178
179 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
180                            unsigned long end)
181 {
182         struct mm_struct *mm = vma->vm_mm;
183
184         if (mm->context != NO_CONTEXT) {
185                 cpumask_t cpu_mask = *mm_cpumask(mm);
186                 cpu_clear(smp_processor_id(), cpu_mask);
187                 if (!cpus_empty(cpu_mask))
188                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
189                 local_flush_cache_range(vma, start, end);
190         }
191 }
192
193 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
194                          unsigned long end)
195 {
196         struct mm_struct *mm = vma->vm_mm;
197
198         if (mm->context != NO_CONTEXT) {
199                 cpumask_t cpu_mask = *mm_cpumask(mm);
200                 cpu_clear(smp_processor_id(), cpu_mask);
201                 if (!cpus_empty(cpu_mask))
202                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
203                 local_flush_tlb_range(vma, start, end);
204         }
205 }
206
207 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
208 {
209         struct mm_struct *mm = vma->vm_mm;
210
211         if(mm->context != NO_CONTEXT) {
212                 cpumask_t cpu_mask = *mm_cpumask(mm);
213                 cpu_clear(smp_processor_id(), cpu_mask);
214                 if (!cpus_empty(cpu_mask))
215                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
216                 local_flush_cache_page(vma, page);
217         }
218 }
219
220 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
221 {
222         struct mm_struct *mm = vma->vm_mm;
223
224         if(mm->context != NO_CONTEXT) {
225                 cpumask_t cpu_mask = *mm_cpumask(mm);
226                 cpu_clear(smp_processor_id(), cpu_mask);
227                 if (!cpus_empty(cpu_mask))
228                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
229                 local_flush_tlb_page(vma, page);
230         }
231 }
232
233 void smp_reschedule_irq(void)
234 {
235         set_need_resched();
236 }
237
238 void smp_flush_page_to_ram(unsigned long page)
239 {
240         /* Current theory is that those who call this are the one's
241          * who have just dirtied their cache with the pages contents
242          * in kernel space, therefore we only run this on local cpu.
243          *
244          * XXX This experiment failed, research further... -DaveM
245          */
246 #if 1
247         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
248 #endif
249         local_flush_page_to_ram(page);
250 }
251
252 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
253 {
254         cpumask_t cpu_mask = *mm_cpumask(mm);
255         cpu_clear(smp_processor_id(), cpu_mask);
256         if (!cpus_empty(cpu_mask))
257                 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
258         local_flush_sig_insns(mm, insn_addr);
259 }
260
261 extern unsigned int lvl14_resolution;
262
263 /* /proc/profile writes can call this, don't __init it please. */
264 static DEFINE_SPINLOCK(prof_setup_lock);
265
266 int setup_profiling_timer(unsigned int multiplier)
267 {
268         int i;
269         unsigned long flags;
270
271         /* Prevent level14 ticker IRQ flooding. */
272         if((!multiplier) || (lvl14_resolution / multiplier) < 500)
273                 return -EINVAL;
274
275         spin_lock_irqsave(&prof_setup_lock, flags);
276         for_each_possible_cpu(i) {
277                 load_profile_irq(i, lvl14_resolution / multiplier);
278                 prof_multiplier(i) = multiplier;
279         }
280         spin_unlock_irqrestore(&prof_setup_lock, flags);
281
282         return 0;
283 }
284
285 void __init smp_prepare_cpus(unsigned int max_cpus)
286 {
287         extern void __init smp4m_boot_cpus(void);
288         extern void __init smp4d_boot_cpus(void);
289         int i, cpuid, extra;
290
291         printk("Entering SMP Mode...\n");
292
293         extra = 0;
294         for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
295                 if (cpuid >= NR_CPUS)
296                         extra++;
297         }
298         /* i = number of cpus */
299         if (extra && max_cpus > i - extra)
300                 printk("Warning: NR_CPUS is too low to start all cpus\n");
301
302         smp_store_cpu_info(boot_cpu_id);
303
304         switch(sparc_cpu_model) {
305         case sun4:
306                 printk("SUN4\n");
307                 BUG();
308                 break;
309         case sun4c:
310                 printk("SUN4C\n");
311                 BUG();
312                 break;
313         case sun4m:
314                 smp4m_boot_cpus();
315                 break;
316         case sun4d:
317                 smp4d_boot_cpus();
318                 break;
319         case sparc_leon:
320                 leon_boot_cpus();
321                 break;
322         case sun4e:
323                 printk("SUN4E\n");
324                 BUG();
325                 break;
326         case sun4u:
327                 printk("SUN4U\n");
328                 BUG();
329                 break;
330         default:
331                 printk("UNKNOWN!\n");
332                 BUG();
333                 break;
334         };
335 }
336
337 /* Set this up early so that things like the scheduler can init
338  * properly.  We use the same cpu mask for both the present and
339  * possible cpu map.
340  */
341 void __init smp_setup_cpu_possible_map(void)
342 {
343         int instance, mid;
344
345         instance = 0;
346         while (!cpu_find_by_instance(instance, NULL, &mid)) {
347                 if (mid < NR_CPUS) {
348                         set_cpu_possible(mid, true);
349                         set_cpu_present(mid, true);
350                 }
351                 instance++;
352         }
353 }
354
355 void __init smp_prepare_boot_cpu(void)
356 {
357         int cpuid = hard_smp_processor_id();
358
359         if (cpuid >= NR_CPUS) {
360                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
361                 prom_halt();
362         }
363         if (cpuid != 0)
364                 printk("boot cpu id != 0, this could work but is untested\n");
365
366         current_thread_info()->cpu = cpuid;
367         set_cpu_online(cpuid, true);
368         set_cpu_possible(cpuid, true);
369 }
370
371 int __cpuinit __cpu_up(unsigned int cpu)
372 {
373         extern int __cpuinit smp4m_boot_one_cpu(int);
374         extern int __cpuinit smp4d_boot_one_cpu(int);
375         int ret=0;
376
377         switch(sparc_cpu_model) {
378         case sun4:
379                 printk("SUN4\n");
380                 BUG();
381                 break;
382         case sun4c:
383                 printk("SUN4C\n");
384                 BUG();
385                 break;
386         case sun4m:
387                 ret = smp4m_boot_one_cpu(cpu);
388                 break;
389         case sun4d:
390                 ret = smp4d_boot_one_cpu(cpu);
391                 break;
392         case sparc_leon:
393                 ret = leon_boot_one_cpu(cpu);
394                 break;
395         case sun4e:
396                 printk("SUN4E\n");
397                 BUG();
398                 break;
399         case sun4u:
400                 printk("SUN4U\n");
401                 BUG();
402                 break;
403         default:
404                 printk("UNKNOWN!\n");
405                 BUG();
406                 break;
407         };
408
409         if (!ret) {
410                 cpu_set(cpu, smp_commenced_mask);
411                 while (!cpu_online(cpu))
412                         mb();
413         }
414         return ret;
415 }
416
417 void smp_bogo(struct seq_file *m)
418 {
419         int i;
420         
421         for_each_online_cpu(i) {
422                 seq_printf(m,
423                            "Cpu%dBogo\t: %lu.%02lu\n",
424                            i,
425                            cpu_data(i).udelay_val/(500000/HZ),
426                            (cpu_data(i).udelay_val/(5000/HZ))%100);
427         }
428 }
429
430 void smp_info(struct seq_file *m)
431 {
432         int i;
433
434         seq_printf(m, "State:\n");
435         for_each_online_cpu(i)
436                 seq_printf(m, "CPU%d\t\t: online\n", i);
437 }