sparc,sparc64: unify lib/
[linux-2.6.git] / arch / sparc / kernel / smp.c
1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35
36 #include "irq.h"
37
38 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
39 unsigned char boot_cpu_id = 0;
40 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
41
42 cpumask_t cpu_online_map = CPU_MASK_NONE;
43 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
44 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
45
46 /* The only guaranteed locking primitive available on all Sparc
47  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
48  * places the current byte at the effective address into dest_reg and
49  * places 0xff there afterwards.  Pretty lame locking primitive
50  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
51  * instruction which is much better...
52  */
53
54 void __cpuinit smp_store_cpu_info(int id)
55 {
56         int cpu_node;
57
58         cpu_data(id).udelay_val = loops_per_jiffy;
59
60         cpu_find_by_mid(id, &cpu_node);
61         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
62                                                      "clock-frequency", 0);
63         cpu_data(id).prom_node = cpu_node;
64         cpu_data(id).mid = cpu_get_hwmid(cpu_node);
65
66         if (cpu_data(id).mid < 0)
67                 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
68 }
69
70 void __init smp_cpus_done(unsigned int max_cpus)
71 {
72         extern void smp4m_smp_done(void);
73         extern void smp4d_smp_done(void);
74         unsigned long bogosum = 0;
75         int cpu, num;
76
77         for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
78                 if (cpu_online(cpu)) {
79                         num++;
80                         bogosum += cpu_data(cpu).udelay_val;
81                 }
82
83         printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
84                 num, bogosum/(500000/HZ),
85                 (bogosum/(5000/HZ))%100);
86
87         switch(sparc_cpu_model) {
88         case sun4:
89                 printk("SUN4\n");
90                 BUG();
91                 break;
92         case sun4c:
93                 printk("SUN4C\n");
94                 BUG();
95                 break;
96         case sun4m:
97                 smp4m_smp_done();
98                 break;
99         case sun4d:
100                 smp4d_smp_done();
101                 break;
102         case sun4e:
103                 printk("SUN4E\n");
104                 BUG();
105                 break;
106         case sun4u:
107                 printk("SUN4U\n");
108                 BUG();
109                 break;
110         default:
111                 printk("UNKNOWN!\n");
112                 BUG();
113                 break;
114         };
115 }
116
117 void cpu_panic(void)
118 {
119         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
120         panic("SMP bolixed\n");
121 }
122
123 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
124
125 void smp_send_reschedule(int cpu)
126 {
127         /* See sparc64 */
128 }
129
130 void smp_send_stop(void)
131 {
132 }
133
134 void smp_flush_cache_all(void)
135 {
136         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
137         local_flush_cache_all();
138 }
139
140 void smp_flush_tlb_all(void)
141 {
142         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
143         local_flush_tlb_all();
144 }
145
146 void smp_flush_cache_mm(struct mm_struct *mm)
147 {
148         if(mm->context != NO_CONTEXT) {
149                 cpumask_t cpu_mask = mm->cpu_vm_mask;
150                 cpu_clear(smp_processor_id(), cpu_mask);
151                 if (!cpus_empty(cpu_mask))
152                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
153                 local_flush_cache_mm(mm);
154         }
155 }
156
157 void smp_flush_tlb_mm(struct mm_struct *mm)
158 {
159         if(mm->context != NO_CONTEXT) {
160                 cpumask_t cpu_mask = mm->cpu_vm_mask;
161                 cpu_clear(smp_processor_id(), cpu_mask);
162                 if (!cpus_empty(cpu_mask)) {
163                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
164                         if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
165                                 mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
166                 }
167                 local_flush_tlb_mm(mm);
168         }
169 }
170
171 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
172                            unsigned long end)
173 {
174         struct mm_struct *mm = vma->vm_mm;
175
176         if (mm->context != NO_CONTEXT) {
177                 cpumask_t cpu_mask = mm->cpu_vm_mask;
178                 cpu_clear(smp_processor_id(), cpu_mask);
179                 if (!cpus_empty(cpu_mask))
180                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
181                 local_flush_cache_range(vma, start, end);
182         }
183 }
184
185 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
186                          unsigned long end)
187 {
188         struct mm_struct *mm = vma->vm_mm;
189
190         if (mm->context != NO_CONTEXT) {
191                 cpumask_t cpu_mask = mm->cpu_vm_mask;
192                 cpu_clear(smp_processor_id(), cpu_mask);
193                 if (!cpus_empty(cpu_mask))
194                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
195                 local_flush_tlb_range(vma, start, end);
196         }
197 }
198
199 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
200 {
201         struct mm_struct *mm = vma->vm_mm;
202
203         if(mm->context != NO_CONTEXT) {
204                 cpumask_t cpu_mask = mm->cpu_vm_mask;
205                 cpu_clear(smp_processor_id(), cpu_mask);
206                 if (!cpus_empty(cpu_mask))
207                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
208                 local_flush_cache_page(vma, page);
209         }
210 }
211
212 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
213 {
214         struct mm_struct *mm = vma->vm_mm;
215
216         if(mm->context != NO_CONTEXT) {
217                 cpumask_t cpu_mask = mm->cpu_vm_mask;
218                 cpu_clear(smp_processor_id(), cpu_mask);
219                 if (!cpus_empty(cpu_mask))
220                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
221                 local_flush_tlb_page(vma, page);
222         }
223 }
224
225 void smp_reschedule_irq(void)
226 {
227         set_need_resched();
228 }
229
230 void smp_flush_page_to_ram(unsigned long page)
231 {
232         /* Current theory is that those who call this are the one's
233          * who have just dirtied their cache with the pages contents
234          * in kernel space, therefore we only run this on local cpu.
235          *
236          * XXX This experiment failed, research further... -DaveM
237          */
238 #if 1
239         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
240 #endif
241         local_flush_page_to_ram(page);
242 }
243
244 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
245 {
246         cpumask_t cpu_mask = mm->cpu_vm_mask;
247         cpu_clear(smp_processor_id(), cpu_mask);
248         if (!cpus_empty(cpu_mask))
249                 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
250         local_flush_sig_insns(mm, insn_addr);
251 }
252
253 extern unsigned int lvl14_resolution;
254
255 /* /proc/profile writes can call this, don't __init it please. */
256 static DEFINE_SPINLOCK(prof_setup_lock);
257
258 int setup_profiling_timer(unsigned int multiplier)
259 {
260         int i;
261         unsigned long flags;
262
263         /* Prevent level14 ticker IRQ flooding. */
264         if((!multiplier) || (lvl14_resolution / multiplier) < 500)
265                 return -EINVAL;
266
267         spin_lock_irqsave(&prof_setup_lock, flags);
268         for_each_possible_cpu(i) {
269                 load_profile_irq(i, lvl14_resolution / multiplier);
270                 prof_multiplier(i) = multiplier;
271         }
272         spin_unlock_irqrestore(&prof_setup_lock, flags);
273
274         return 0;
275 }
276
277 void __init smp_prepare_cpus(unsigned int max_cpus)
278 {
279         extern void __init smp4m_boot_cpus(void);
280         extern void __init smp4d_boot_cpus(void);
281         int i, cpuid, extra;
282
283         printk("Entering SMP Mode...\n");
284
285         extra = 0;
286         for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
287                 if (cpuid >= NR_CPUS)
288                         extra++;
289         }
290         /* i = number of cpus */
291         if (extra && max_cpus > i - extra)
292                 printk("Warning: NR_CPUS is too low to start all cpus\n");
293
294         smp_store_cpu_info(boot_cpu_id);
295
296         switch(sparc_cpu_model) {
297         case sun4:
298                 printk("SUN4\n");
299                 BUG();
300                 break;
301         case sun4c:
302                 printk("SUN4C\n");
303                 BUG();
304                 break;
305         case sun4m:
306                 smp4m_boot_cpus();
307                 break;
308         case sun4d:
309                 smp4d_boot_cpus();
310                 break;
311         case sun4e:
312                 printk("SUN4E\n");
313                 BUG();
314                 break;
315         case sun4u:
316                 printk("SUN4U\n");
317                 BUG();
318                 break;
319         default:
320                 printk("UNKNOWN!\n");
321                 BUG();
322                 break;
323         };
324 }
325
326 /* Set this up early so that things like the scheduler can init
327  * properly.  We use the same cpu mask for both the present and
328  * possible cpu map.
329  */
330 void __init smp_setup_cpu_possible_map(void)
331 {
332         int instance, mid;
333
334         instance = 0;
335         while (!cpu_find_by_instance(instance, NULL, &mid)) {
336                 if (mid < NR_CPUS) {
337                         cpu_set(mid, phys_cpu_present_map);
338                         cpu_set(mid, cpu_present_map);
339                 }
340                 instance++;
341         }
342 }
343
344 void __init smp_prepare_boot_cpu(void)
345 {
346         int cpuid = hard_smp_processor_id();
347
348         if (cpuid >= NR_CPUS) {
349                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
350                 prom_halt();
351         }
352         if (cpuid != 0)
353                 printk("boot cpu id != 0, this could work but is untested\n");
354
355         current_thread_info()->cpu = cpuid;
356         cpu_set(cpuid, cpu_online_map);
357         cpu_set(cpuid, phys_cpu_present_map);
358 }
359
360 int __cpuinit __cpu_up(unsigned int cpu)
361 {
362         extern int __cpuinit smp4m_boot_one_cpu(int);
363         extern int __cpuinit smp4d_boot_one_cpu(int);
364         int ret=0;
365
366         switch(sparc_cpu_model) {
367         case sun4:
368                 printk("SUN4\n");
369                 BUG();
370                 break;
371         case sun4c:
372                 printk("SUN4C\n");
373                 BUG();
374                 break;
375         case sun4m:
376                 ret = smp4m_boot_one_cpu(cpu);
377                 break;
378         case sun4d:
379                 ret = smp4d_boot_one_cpu(cpu);
380                 break;
381         case sun4e:
382                 printk("SUN4E\n");
383                 BUG();
384                 break;
385         case sun4u:
386                 printk("SUN4U\n");
387                 BUG();
388                 break;
389         default:
390                 printk("UNKNOWN!\n");
391                 BUG();
392                 break;
393         };
394
395         if (!ret) {
396                 cpu_set(cpu, smp_commenced_mask);
397                 while (!cpu_online(cpu))
398                         mb();
399         }
400         return ret;
401 }
402
403 void smp_bogo(struct seq_file *m)
404 {
405         int i;
406         
407         for_each_online_cpu(i) {
408                 seq_printf(m,
409                            "Cpu%dBogo\t: %lu.%02lu\n",
410                            i,
411                            cpu_data(i).udelay_val/(500000/HZ),
412                            (cpu_data(i).udelay_val/(5000/HZ))%100);
413         }
414 }
415
416 void smp_info(struct seq_file *m)
417 {
418         int i;
419
420         seq_printf(m, "State:\n");
421         for_each_online_cpu(i)
422                 seq_printf(m, "CPU%d\t\t: online\n", i);
423 }