Merge tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm...
[linux-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <asm/switch_to.h>
49 #include <linux/gfp.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 #include <linux/hugetlb.h>
53
54 /* #define EXIT_DEBUG */
55 /* #define EXIT_DEBUG_SIMPLE */
56 /* #define EXIT_DEBUG_INT */
57
58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
60
61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
62 {
63         local_paca->kvm_hstate.kvm_vcpu = vcpu;
64         local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
65 }
66
67 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
68 {
69 }
70
71 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
72 {
73         vcpu->arch.shregs.msr = msr;
74         kvmppc_end_cede(vcpu);
75 }
76
77 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
78 {
79         vcpu->arch.pvr = pvr;
80 }
81
82 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
83 {
84         int r;
85
86         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
87         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
88                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
89         for (r = 0; r < 16; ++r)
90                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
91                        r, kvmppc_get_gpr(vcpu, r),
92                        r+16, kvmppc_get_gpr(vcpu, r+16));
93         pr_err("ctr = %.16lx  lr  = %.16lx\n",
94                vcpu->arch.ctr, vcpu->arch.lr);
95         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
96                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
97         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
98                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
99         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
100                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
101         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
102                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
103         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
104         pr_err("fault dar = %.16lx dsisr = %.8x\n",
105                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
106         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
107         for (r = 0; r < vcpu->arch.slb_max; ++r)
108                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
109                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
110         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
111                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
112                vcpu->arch.last_inst);
113 }
114
115 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
116 {
117         int r;
118         struct kvm_vcpu *v, *ret = NULL;
119
120         mutex_lock(&kvm->lock);
121         kvm_for_each_vcpu(r, v, kvm) {
122                 if (v->vcpu_id == id) {
123                         ret = v;
124                         break;
125                 }
126         }
127         mutex_unlock(&kvm->lock);
128         return ret;
129 }
130
131 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
132 {
133         vpa->shared_proc = 1;
134         vpa->yield_count = 1;
135 }
136
137 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
138                                        unsigned long flags,
139                                        unsigned long vcpuid, unsigned long vpa)
140 {
141         struct kvm *kvm = vcpu->kvm;
142         unsigned long len, nb;
143         void *va;
144         struct kvm_vcpu *tvcpu;
145         int err = H_PARAMETER;
146
147         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
148         if (!tvcpu)
149                 return H_PARAMETER;
150
151         flags >>= 63 - 18;
152         flags &= 7;
153         if (flags == 0 || flags == 4)
154                 return H_PARAMETER;
155         if (flags < 4) {
156                 if (vpa & 0x7f)
157                         return H_PARAMETER;
158                 if (flags >= 2 && !tvcpu->arch.vpa)
159                         return H_RESOURCE;
160                 /* registering new area; convert logical addr to real */
161                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
162                 if (va == NULL)
163                         return H_PARAMETER;
164                 if (flags <= 1)
165                         len = *(unsigned short *)(va + 4);
166                 else
167                         len = *(unsigned int *)(va + 4);
168                 if (len > nb)
169                         goto out_unpin;
170                 switch (flags) {
171                 case 1:         /* register VPA */
172                         if (len < 640)
173                                 goto out_unpin;
174                         if (tvcpu->arch.vpa)
175                                 kvmppc_unpin_guest_page(kvm, vcpu->arch.vpa);
176                         tvcpu->arch.vpa = va;
177                         init_vpa(vcpu, va);
178                         break;
179                 case 2:         /* register DTL */
180                         if (len < 48)
181                                 goto out_unpin;
182                         len -= len % 48;
183                         if (tvcpu->arch.dtl)
184                                 kvmppc_unpin_guest_page(kvm, vcpu->arch.dtl);
185                         tvcpu->arch.dtl = va;
186                         tvcpu->arch.dtl_end = va + len;
187                         break;
188                 case 3:         /* register SLB shadow buffer */
189                         if (len < 16)
190                                 goto out_unpin;
191                         if (tvcpu->arch.slb_shadow)
192                                 kvmppc_unpin_guest_page(kvm, vcpu->arch.slb_shadow);
193                         tvcpu->arch.slb_shadow = va;
194                         break;
195                 }
196         } else {
197                 switch (flags) {
198                 case 5:         /* unregister VPA */
199                         if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
200                                 return H_RESOURCE;
201                         if (!tvcpu->arch.vpa)
202                                 break;
203                         kvmppc_unpin_guest_page(kvm, tvcpu->arch.vpa);
204                         tvcpu->arch.vpa = NULL;
205                         break;
206                 case 6:         /* unregister DTL */
207                         if (!tvcpu->arch.dtl)
208                                 break;
209                         kvmppc_unpin_guest_page(kvm, tvcpu->arch.dtl);
210                         tvcpu->arch.dtl = NULL;
211                         break;
212                 case 7:         /* unregister SLB shadow buffer */
213                         if (!tvcpu->arch.slb_shadow)
214                                 break;
215                         kvmppc_unpin_guest_page(kvm, tvcpu->arch.slb_shadow);
216                         tvcpu->arch.slb_shadow = NULL;
217                         break;
218                 }
219         }
220         return H_SUCCESS;
221
222  out_unpin:
223         kvmppc_unpin_guest_page(kvm, va);
224         return err;
225 }
226
227 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
228 {
229         unsigned long req = kvmppc_get_gpr(vcpu, 3);
230         unsigned long target, ret = H_SUCCESS;
231         struct kvm_vcpu *tvcpu;
232
233         switch (req) {
234         case H_ENTER:
235                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
236                                               kvmppc_get_gpr(vcpu, 5),
237                                               kvmppc_get_gpr(vcpu, 6),
238                                               kvmppc_get_gpr(vcpu, 7));
239                 break;
240         case H_CEDE:
241                 break;
242         case H_PROD:
243                 target = kvmppc_get_gpr(vcpu, 4);
244                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
245                 if (!tvcpu) {
246                         ret = H_PARAMETER;
247                         break;
248                 }
249                 tvcpu->arch.prodded = 1;
250                 smp_mb();
251                 if (vcpu->arch.ceded) {
252                         if (waitqueue_active(&vcpu->wq)) {
253                                 wake_up_interruptible(&vcpu->wq);
254                                 vcpu->stat.halt_wakeup++;
255                         }
256                 }
257                 break;
258         case H_CONFER:
259                 break;
260         case H_REGISTER_VPA:
261                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
262                                         kvmppc_get_gpr(vcpu, 5),
263                                         kvmppc_get_gpr(vcpu, 6));
264                 break;
265         default:
266                 return RESUME_HOST;
267         }
268         kvmppc_set_gpr(vcpu, 3, ret);
269         vcpu->arch.hcall_needed = 0;
270         return RESUME_GUEST;
271 }
272
273 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
274                               struct task_struct *tsk)
275 {
276         int r = RESUME_HOST;
277
278         vcpu->stat.sum_exits++;
279
280         run->exit_reason = KVM_EXIT_UNKNOWN;
281         run->ready_for_interrupt_injection = 1;
282         switch (vcpu->arch.trap) {
283         /* We're good on these - the host merely wanted to get our attention */
284         case BOOK3S_INTERRUPT_HV_DECREMENTER:
285                 vcpu->stat.dec_exits++;
286                 r = RESUME_GUEST;
287                 break;
288         case BOOK3S_INTERRUPT_EXTERNAL:
289                 vcpu->stat.ext_intr_exits++;
290                 r = RESUME_GUEST;
291                 break;
292         case BOOK3S_INTERRUPT_PERFMON:
293                 r = RESUME_GUEST;
294                 break;
295         case BOOK3S_INTERRUPT_PROGRAM:
296         {
297                 ulong flags;
298                 /*
299                  * Normally program interrupts are delivered directly
300                  * to the guest by the hardware, but we can get here
301                  * as a result of a hypervisor emulation interrupt
302                  * (e40) getting turned into a 700 by BML RTAS.
303                  */
304                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
305                 kvmppc_core_queue_program(vcpu, flags);
306                 r = RESUME_GUEST;
307                 break;
308         }
309         case BOOK3S_INTERRUPT_SYSCALL:
310         {
311                 /* hcall - punt to userspace */
312                 int i;
313
314                 if (vcpu->arch.shregs.msr & MSR_PR) {
315                         /* sc 1 from userspace - reflect to guest syscall */
316                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
317                         r = RESUME_GUEST;
318                         break;
319                 }
320                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
321                 for (i = 0; i < 9; ++i)
322                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
323                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
324                 vcpu->arch.hcall_needed = 1;
325                 r = RESUME_HOST;
326                 break;
327         }
328         /*
329          * We get these next two if the guest accesses a page which it thinks
330          * it has mapped but which is not actually present, either because
331          * it is for an emulated I/O device or because the corresonding
332          * host page has been paged out.  Any other HDSI/HISI interrupts
333          * have been handled already.
334          */
335         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
336                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
337                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
338                 break;
339         case BOOK3S_INTERRUPT_H_INST_STORAGE:
340                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
341                                 kvmppc_get_pc(vcpu), 0);
342                 break;
343         /*
344          * This occurs if the guest executes an illegal instruction.
345          * We just generate a program interrupt to the guest, since
346          * we don't emulate any guest instructions at this stage.
347          */
348         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
349                 kvmppc_core_queue_program(vcpu, 0x80000);
350                 r = RESUME_GUEST;
351                 break;
352         default:
353                 kvmppc_dump_regs(vcpu);
354                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
355                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
356                         vcpu->arch.shregs.msr);
357                 r = RESUME_HOST;
358                 BUG();
359                 break;
360         }
361
362         return r;
363 }
364
365 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
366                                   struct kvm_sregs *sregs)
367 {
368         int i;
369
370         sregs->pvr = vcpu->arch.pvr;
371
372         memset(sregs, 0, sizeof(struct kvm_sregs));
373         for (i = 0; i < vcpu->arch.slb_max; i++) {
374                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
375                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
376         }
377
378         return 0;
379 }
380
381 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
382                                   struct kvm_sregs *sregs)
383 {
384         int i, j;
385
386         kvmppc_set_pvr(vcpu, sregs->pvr);
387
388         j = 0;
389         for (i = 0; i < vcpu->arch.slb_nr; i++) {
390                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
391                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
392                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
393                         ++j;
394                 }
395         }
396         vcpu->arch.slb_max = j;
397
398         return 0;
399 }
400
401 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
402 {
403         int r = -EINVAL;
404
405         switch (reg->id) {
406         case KVM_REG_PPC_HIOR:
407                 r = put_user(0, (u64 __user *)reg->addr);
408                 break;
409         default:
410                 break;
411         }
412
413         return r;
414 }
415
416 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
417 {
418         int r = -EINVAL;
419
420         switch (reg->id) {
421         case KVM_REG_PPC_HIOR:
422         {
423                 u64 hior;
424                 /* Only allow this to be set to zero */
425                 r = get_user(hior, (u64 __user *)reg->addr);
426                 if (!r && (hior != 0))
427                         r = -EINVAL;
428                 break;
429         }
430         default:
431                 break;
432         }
433
434         return r;
435 }
436
437 int kvmppc_core_check_processor_compat(void)
438 {
439         if (cpu_has_feature(CPU_FTR_HVMODE))
440                 return 0;
441         return -EIO;
442 }
443
444 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
445 {
446         struct kvm_vcpu *vcpu;
447         int err = -EINVAL;
448         int core;
449         struct kvmppc_vcore *vcore;
450
451         core = id / threads_per_core;
452         if (core >= KVM_MAX_VCORES)
453                 goto out;
454
455         err = -ENOMEM;
456         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
457         if (!vcpu)
458                 goto out;
459
460         err = kvm_vcpu_init(vcpu, kvm, id);
461         if (err)
462                 goto free_vcpu;
463
464         vcpu->arch.shared = &vcpu->arch.shregs;
465         vcpu->arch.last_cpu = -1;
466         vcpu->arch.mmcr[0] = MMCR0_FC;
467         vcpu->arch.ctrl = CTRL_RUNLATCH;
468         /* default to host PVR, since we can't spoof it */
469         vcpu->arch.pvr = mfspr(SPRN_PVR);
470         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
471
472         kvmppc_mmu_book3s_hv_init(vcpu);
473
474         /*
475          * We consider the vcpu stopped until we see the first run ioctl for it.
476          */
477         vcpu->arch.state = KVMPPC_VCPU_STOPPED;
478
479         init_waitqueue_head(&vcpu->arch.cpu_run);
480
481         mutex_lock(&kvm->lock);
482         vcore = kvm->arch.vcores[core];
483         if (!vcore) {
484                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
485                 if (vcore) {
486                         INIT_LIST_HEAD(&vcore->runnable_threads);
487                         spin_lock_init(&vcore->lock);
488                         init_waitqueue_head(&vcore->wq);
489                 }
490                 kvm->arch.vcores[core] = vcore;
491         }
492         mutex_unlock(&kvm->lock);
493
494         if (!vcore)
495                 goto free_vcpu;
496
497         spin_lock(&vcore->lock);
498         ++vcore->num_threads;
499         spin_unlock(&vcore->lock);
500         vcpu->arch.vcore = vcore;
501
502         vcpu->arch.cpu_type = KVM_CPU_3S_64;
503         kvmppc_sanity_check(vcpu);
504
505         return vcpu;
506
507 free_vcpu:
508         kmem_cache_free(kvm_vcpu_cache, vcpu);
509 out:
510         return ERR_PTR(err);
511 }
512
513 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
514 {
515         if (vcpu->arch.dtl)
516                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl);
517         if (vcpu->arch.slb_shadow)
518                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow);
519         if (vcpu->arch.vpa)
520                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa);
521         kvm_vcpu_uninit(vcpu);
522         kmem_cache_free(kvm_vcpu_cache, vcpu);
523 }
524
525 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
526 {
527         unsigned long dec_nsec, now;
528
529         now = get_tb();
530         if (now > vcpu->arch.dec_expires) {
531                 /* decrementer has already gone negative */
532                 kvmppc_core_queue_dec(vcpu);
533                 kvmppc_core_prepare_to_enter(vcpu);
534                 return;
535         }
536         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
537                    / tb_ticks_per_sec;
538         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
539                       HRTIMER_MODE_REL);
540         vcpu->arch.timer_running = 1;
541 }
542
543 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
544 {
545         vcpu->arch.ceded = 0;
546         if (vcpu->arch.timer_running) {
547                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
548                 vcpu->arch.timer_running = 0;
549         }
550 }
551
552 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
553 extern void xics_wake_cpu(int cpu);
554
555 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
556                                    struct kvm_vcpu *vcpu)
557 {
558         struct kvm_vcpu *v;
559
560         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
561                 return;
562         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
563         --vc->n_runnable;
564         ++vc->n_busy;
565         /* decrement the physical thread id of each following vcpu */
566         v = vcpu;
567         list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
568                 --v->arch.ptid;
569         list_del(&vcpu->arch.run_list);
570 }
571
572 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
573 {
574         int cpu;
575         struct paca_struct *tpaca;
576         struct kvmppc_vcore *vc = vcpu->arch.vcore;
577
578         if (vcpu->arch.timer_running) {
579                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
580                 vcpu->arch.timer_running = 0;
581         }
582         cpu = vc->pcpu + vcpu->arch.ptid;
583         tpaca = &paca[cpu];
584         tpaca->kvm_hstate.kvm_vcpu = vcpu;
585         tpaca->kvm_hstate.kvm_vcore = vc;
586         tpaca->kvm_hstate.napping = 0;
587         vcpu->cpu = vc->pcpu;
588         smp_wmb();
589 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
590         if (vcpu->arch.ptid) {
591                 tpaca->cpu_start = 0x80;
592                 wmb();
593                 xics_wake_cpu(cpu);
594                 ++vc->n_woken;
595         }
596 #endif
597 }
598
599 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
600 {
601         int i;
602
603         HMT_low();
604         i = 0;
605         while (vc->nap_count < vc->n_woken) {
606                 if (++i >= 1000000) {
607                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
608                                vc->nap_count, vc->n_woken);
609                         break;
610                 }
611                 cpu_relax();
612         }
613         HMT_medium();
614 }
615
616 /*
617  * Check that we are on thread 0 and that any other threads in
618  * this core are off-line.
619  */
620 static int on_primary_thread(void)
621 {
622         int cpu = smp_processor_id();
623         int thr = cpu_thread_in_core(cpu);
624
625         if (thr)
626                 return 0;
627         while (++thr < threads_per_core)
628                 if (cpu_online(cpu + thr))
629                         return 0;
630         return 1;
631 }
632
633 /*
634  * Run a set of guest threads on a physical core.
635  * Called with vc->lock held.
636  */
637 static int kvmppc_run_core(struct kvmppc_vcore *vc)
638 {
639         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
640         long ret;
641         u64 now;
642         int ptid;
643
644         /* don't start if any threads have a signal pending */
645         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
646                 if (signal_pending(vcpu->arch.run_task))
647                         return 0;
648
649         /*
650          * Make sure we are running on thread 0, and that
651          * secondary threads are offline.
652          * XXX we should also block attempts to bring any
653          * secondary threads online.
654          */
655         if (threads_per_core > 1 && !on_primary_thread()) {
656                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
657                         vcpu->arch.ret = -EBUSY;
658                 goto out;
659         }
660
661         /*
662          * Assign physical thread IDs, first to non-ceded vcpus
663          * and then to ceded ones.
664          */
665         ptid = 0;
666         vcpu0 = NULL;
667         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
668                 if (!vcpu->arch.ceded) {
669                         if (!ptid)
670                                 vcpu0 = vcpu;
671                         vcpu->arch.ptid = ptid++;
672                 }
673         }
674         if (!vcpu0)
675                 return 0;               /* nothing to run */
676         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
677                 if (vcpu->arch.ceded)
678                         vcpu->arch.ptid = ptid++;
679
680         vc->n_woken = 0;
681         vc->nap_count = 0;
682         vc->entry_exit_count = 0;
683         vc->vcore_state = VCORE_RUNNING;
684         vc->in_guest = 0;
685         vc->pcpu = smp_processor_id();
686         vc->napping_threads = 0;
687         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
688                 kvmppc_start_thread(vcpu);
689
690         preempt_disable();
691         spin_unlock(&vc->lock);
692
693         kvm_guest_enter();
694         __kvmppc_vcore_entry(NULL, vcpu0);
695
696         spin_lock(&vc->lock);
697         /* disable sending of IPIs on virtual external irqs */
698         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
699                 vcpu->cpu = -1;
700         /* wait for secondary threads to finish writing their state to memory */
701         if (vc->nap_count < vc->n_woken)
702                 kvmppc_wait_for_nap(vc);
703         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
704         vc->vcore_state = VCORE_EXITING;
705         spin_unlock(&vc->lock);
706
707         /* make sure updates to secondary vcpu structs are visible now */
708         smp_mb();
709         kvm_guest_exit();
710
711         preempt_enable();
712         kvm_resched(vcpu);
713
714         now = get_tb();
715         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
716                 /* cancel pending dec exception if dec is positive */
717                 if (now < vcpu->arch.dec_expires &&
718                     kvmppc_core_pending_dec(vcpu))
719                         kvmppc_core_dequeue_dec(vcpu);
720
721                 ret = RESUME_GUEST;
722                 if (vcpu->arch.trap)
723                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
724                                                  vcpu->arch.run_task);
725
726                 vcpu->arch.ret = ret;
727                 vcpu->arch.trap = 0;
728
729                 if (vcpu->arch.ceded) {
730                         if (ret != RESUME_GUEST)
731                                 kvmppc_end_cede(vcpu);
732                         else
733                                 kvmppc_set_timer(vcpu);
734                 }
735         }
736
737         spin_lock(&vc->lock);
738  out:
739         vc->vcore_state = VCORE_INACTIVE;
740         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
741                                  arch.run_list) {
742                 if (vcpu->arch.ret != RESUME_GUEST) {
743                         kvmppc_remove_runnable(vc, vcpu);
744                         wake_up(&vcpu->arch.cpu_run);
745                 }
746         }
747
748         return 1;
749 }
750
751 /*
752  * Wait for some other vcpu thread to execute us, and
753  * wake us up when we need to handle something in the host.
754  */
755 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
756 {
757         DEFINE_WAIT(wait);
758
759         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
760         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
761                 schedule();
762         finish_wait(&vcpu->arch.cpu_run, &wait);
763 }
764
765 /*
766  * All the vcpus in this vcore are idle, so wait for a decrementer
767  * or external interrupt to one of the vcpus.  vc->lock is held.
768  */
769 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
770 {
771         DEFINE_WAIT(wait);
772         struct kvm_vcpu *v;
773         int all_idle = 1;
774
775         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
776         vc->vcore_state = VCORE_SLEEPING;
777         spin_unlock(&vc->lock);
778         list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
779                 if (!v->arch.ceded || v->arch.pending_exceptions) {
780                         all_idle = 0;
781                         break;
782                 }
783         }
784         if (all_idle)
785                 schedule();
786         finish_wait(&vc->wq, &wait);
787         spin_lock(&vc->lock);
788         vc->vcore_state = VCORE_INACTIVE;
789 }
790
791 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
792 {
793         int n_ceded;
794         int prev_state;
795         struct kvmppc_vcore *vc;
796         struct kvm_vcpu *v, *vn;
797
798         kvm_run->exit_reason = 0;
799         vcpu->arch.ret = RESUME_GUEST;
800         vcpu->arch.trap = 0;
801
802         /*
803          * Synchronize with other threads in this virtual core
804          */
805         vc = vcpu->arch.vcore;
806         spin_lock(&vc->lock);
807         vcpu->arch.ceded = 0;
808         vcpu->arch.run_task = current;
809         vcpu->arch.kvm_run = kvm_run;
810         prev_state = vcpu->arch.state;
811         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
812         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
813         ++vc->n_runnable;
814
815         /*
816          * This happens the first time this is called for a vcpu.
817          * If the vcore is already running, we may be able to start
818          * this thread straight away and have it join in.
819          */
820         if (prev_state == KVMPPC_VCPU_STOPPED) {
821                 if (vc->vcore_state == VCORE_RUNNING &&
822                     VCORE_EXIT_COUNT(vc) == 0) {
823                         vcpu->arch.ptid = vc->n_runnable - 1;
824                         kvmppc_start_thread(vcpu);
825                 }
826
827         } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
828                 --vc->n_busy;
829
830         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
831                !signal_pending(current)) {
832                 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
833                         spin_unlock(&vc->lock);
834                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
835                         spin_lock(&vc->lock);
836                         continue;
837                 }
838                 n_ceded = 0;
839                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
840                         n_ceded += v->arch.ceded;
841                 if (n_ceded == vc->n_runnable)
842                         kvmppc_vcore_blocked(vc);
843                 else
844                         kvmppc_run_core(vc);
845
846                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
847                                          arch.run_list) {
848                         kvmppc_core_prepare_to_enter(v);
849                         if (signal_pending(v->arch.run_task)) {
850                                 kvmppc_remove_runnable(vc, v);
851                                 v->stat.signal_exits++;
852                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
853                                 v->arch.ret = -EINTR;
854                                 wake_up(&v->arch.cpu_run);
855                         }
856                 }
857         }
858
859         if (signal_pending(current)) {
860                 if (vc->vcore_state == VCORE_RUNNING ||
861                     vc->vcore_state == VCORE_EXITING) {
862                         spin_unlock(&vc->lock);
863                         kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
864                         spin_lock(&vc->lock);
865                 }
866                 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
867                         kvmppc_remove_runnable(vc, vcpu);
868                         vcpu->stat.signal_exits++;
869                         kvm_run->exit_reason = KVM_EXIT_INTR;
870                         vcpu->arch.ret = -EINTR;
871                 }
872         }
873
874         spin_unlock(&vc->lock);
875         return vcpu->arch.ret;
876 }
877
878 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
879 {
880         int r;
881
882         if (!vcpu->arch.sane) {
883                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
884                 return -EINVAL;
885         }
886
887         kvmppc_core_prepare_to_enter(vcpu);
888
889         /* No need to go into the guest when all we'll do is come back out */
890         if (signal_pending(current)) {
891                 run->exit_reason = KVM_EXIT_INTR;
892                 return -EINTR;
893         }
894
895         /* On the first time here, set up VRMA or RMA */
896         if (!vcpu->kvm->arch.rma_setup_done) {
897                 r = kvmppc_hv_setup_rma(vcpu);
898                 if (r)
899                         return r;
900         }
901
902         flush_fp_to_thread(current);
903         flush_altivec_to_thread(current);
904         flush_vsx_to_thread(current);
905         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
906         vcpu->arch.pgdir = current->mm->pgd;
907
908         do {
909                 r = kvmppc_run_vcpu(run, vcpu);
910
911                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
912                     !(vcpu->arch.shregs.msr & MSR_PR)) {
913                         r = kvmppc_pseries_do_hcall(vcpu);
914                         kvmppc_core_prepare_to_enter(vcpu);
915                 }
916         } while (r == RESUME_GUEST);
917         return r;
918 }
919
920 static long kvmppc_stt_npages(unsigned long window_size)
921 {
922         return ALIGN((window_size >> SPAPR_TCE_SHIFT)
923                      * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
924 }
925
926 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
927 {
928         struct kvm *kvm = stt->kvm;
929         int i;
930
931         mutex_lock(&kvm->lock);
932         list_del(&stt->list);
933         for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
934                 __free_page(stt->pages[i]);
935         kfree(stt);
936         mutex_unlock(&kvm->lock);
937
938         kvm_put_kvm(kvm);
939 }
940
941 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
942 {
943         struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
944         struct page *page;
945
946         if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
947                 return VM_FAULT_SIGBUS;
948
949         page = stt->pages[vmf->pgoff];
950         get_page(page);
951         vmf->page = page;
952         return 0;
953 }
954
955 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
956         .fault = kvm_spapr_tce_fault,
957 };
958
959 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
960 {
961         vma->vm_ops = &kvm_spapr_tce_vm_ops;
962         return 0;
963 }
964
965 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
966 {
967         struct kvmppc_spapr_tce_table *stt = filp->private_data;
968
969         release_spapr_tce_table(stt);
970         return 0;
971 }
972
973 static struct file_operations kvm_spapr_tce_fops = {
974         .mmap           = kvm_spapr_tce_mmap,
975         .release        = kvm_spapr_tce_release,
976 };
977
978 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
979                                    struct kvm_create_spapr_tce *args)
980 {
981         struct kvmppc_spapr_tce_table *stt = NULL;
982         long npages;
983         int ret = -ENOMEM;
984         int i;
985
986         /* Check this LIOBN hasn't been previously allocated */
987         list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
988                 if (stt->liobn == args->liobn)
989                         return -EBUSY;
990         }
991
992         npages = kvmppc_stt_npages(args->window_size);
993
994         stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
995                       GFP_KERNEL);
996         if (!stt)
997                 goto fail;
998
999         stt->liobn = args->liobn;
1000         stt->window_size = args->window_size;
1001         stt->kvm = kvm;
1002
1003         for (i = 0; i < npages; i++) {
1004                 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
1005                 if (!stt->pages[i])
1006                         goto fail;
1007         }
1008
1009         kvm_get_kvm(kvm);
1010
1011         mutex_lock(&kvm->lock);
1012         list_add(&stt->list, &kvm->arch.spapr_tce_tables);
1013
1014         mutex_unlock(&kvm->lock);
1015
1016         return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
1017                                 stt, O_RDWR);
1018
1019 fail:
1020         if (stt) {
1021                 for (i = 0; i < npages; i++)
1022                         if (stt->pages[i])
1023                                 __free_page(stt->pages[i]);
1024
1025                 kfree(stt);
1026         }
1027         return ret;
1028 }
1029
1030 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1031    Assumes POWER7 or PPC970. */
1032 static inline int lpcr_rmls(unsigned long rma_size)
1033 {
1034         switch (rma_size) {
1035         case 32ul << 20:        /* 32 MB */
1036                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1037                         return 8;       /* only supported on POWER7 */
1038                 return -1;
1039         case 64ul << 20:        /* 64 MB */
1040                 return 3;
1041         case 128ul << 20:       /* 128 MB */
1042                 return 7;
1043         case 256ul << 20:       /* 256 MB */
1044                 return 4;
1045         case 1ul << 30:         /* 1 GB */
1046                 return 2;
1047         case 16ul << 30:        /* 16 GB */
1048                 return 1;
1049         case 256ul << 30:       /* 256 GB */
1050                 return 0;
1051         default:
1052                 return -1;
1053         }
1054 }
1055
1056 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1057 {
1058         struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1059         struct page *page;
1060
1061         if (vmf->pgoff >= ri->npages)
1062                 return VM_FAULT_SIGBUS;
1063
1064         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1065         get_page(page);
1066         vmf->page = page;
1067         return 0;
1068 }
1069
1070 static const struct vm_operations_struct kvm_rma_vm_ops = {
1071         .fault = kvm_rma_fault,
1072 };
1073
1074 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1075 {
1076         vma->vm_flags |= VM_RESERVED;
1077         vma->vm_ops = &kvm_rma_vm_ops;
1078         return 0;
1079 }
1080
1081 static int kvm_rma_release(struct inode *inode, struct file *filp)
1082 {
1083         struct kvmppc_linear_info *ri = filp->private_data;
1084
1085         kvm_release_rma(ri);
1086         return 0;
1087 }
1088
1089 static struct file_operations kvm_rma_fops = {
1090         .mmap           = kvm_rma_mmap,
1091         .release        = kvm_rma_release,
1092 };
1093
1094 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1095 {
1096         struct kvmppc_linear_info *ri;
1097         long fd;
1098
1099         ri = kvm_alloc_rma();
1100         if (!ri)
1101                 return -ENOMEM;
1102
1103         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1104         if (fd < 0)
1105                 kvm_release_rma(ri);
1106
1107         ret->rma_size = ri->npages << PAGE_SHIFT;
1108         return fd;
1109 }
1110
1111 /*
1112  * Get (and clear) the dirty memory log for a memory slot.
1113  */
1114 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1115 {
1116         struct kvm_memory_slot *memslot;
1117         int r;
1118         unsigned long n;
1119
1120         mutex_lock(&kvm->slots_lock);
1121
1122         r = -EINVAL;
1123         if (log->slot >= KVM_MEMORY_SLOTS)
1124                 goto out;
1125
1126         memslot = id_to_memslot(kvm->memslots, log->slot);
1127         r = -ENOENT;
1128         if (!memslot->dirty_bitmap)
1129                 goto out;
1130
1131         n = kvm_dirty_bitmap_bytes(memslot);
1132         memset(memslot->dirty_bitmap, 0, n);
1133
1134         r = kvmppc_hv_get_dirty_log(kvm, memslot);
1135         if (r)
1136                 goto out;
1137
1138         r = -EFAULT;
1139         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1140                 goto out;
1141
1142         r = 0;
1143 out:
1144         mutex_unlock(&kvm->slots_lock);
1145         return r;
1146 }
1147
1148 static unsigned long slb_pgsize_encoding(unsigned long psize)
1149 {
1150         unsigned long senc = 0;
1151
1152         if (psize > 0x1000) {
1153                 senc = SLB_VSID_L;
1154                 if (psize == 0x10000)
1155                         senc |= SLB_VSID_LP_01;
1156         }
1157         return senc;
1158 }
1159
1160 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1161                                 struct kvm_userspace_memory_region *mem)
1162 {
1163         unsigned long npages;
1164         unsigned long *phys;
1165
1166         /* Allocate a slot_phys array */
1167         phys = kvm->arch.slot_phys[mem->slot];
1168         if (!kvm->arch.using_mmu_notifiers && !phys) {
1169                 npages = mem->memory_size >> PAGE_SHIFT;
1170                 phys = vzalloc(npages * sizeof(unsigned long));
1171                 if (!phys)
1172                         return -ENOMEM;
1173                 kvm->arch.slot_phys[mem->slot] = phys;
1174                 kvm->arch.slot_npages[mem->slot] = npages;
1175         }
1176
1177         return 0;
1178 }
1179
1180 static void unpin_slot(struct kvm *kvm, int slot_id)
1181 {
1182         unsigned long *physp;
1183         unsigned long j, npages, pfn;
1184         struct page *page;
1185
1186         physp = kvm->arch.slot_phys[slot_id];
1187         npages = kvm->arch.slot_npages[slot_id];
1188         if (physp) {
1189                 spin_lock(&kvm->arch.slot_phys_lock);
1190                 for (j = 0; j < npages; j++) {
1191                         if (!(physp[j] & KVMPPC_GOT_PAGE))
1192                                 continue;
1193                         pfn = physp[j] >> PAGE_SHIFT;
1194                         page = pfn_to_page(pfn);
1195                         if (PageHuge(page))
1196                                 page = compound_head(page);
1197                         SetPageDirty(page);
1198                         put_page(page);
1199                 }
1200                 kvm->arch.slot_phys[slot_id] = NULL;
1201                 spin_unlock(&kvm->arch.slot_phys_lock);
1202                 vfree(physp);
1203         }
1204 }
1205
1206 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1207                                 struct kvm_userspace_memory_region *mem)
1208 {
1209 }
1210
1211 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
1212 {
1213         int err = 0;
1214         struct kvm *kvm = vcpu->kvm;
1215         struct kvmppc_linear_info *ri = NULL;
1216         unsigned long hva;
1217         struct kvm_memory_slot *memslot;
1218         struct vm_area_struct *vma;
1219         unsigned long lpcr, senc;
1220         unsigned long psize, porder;
1221         unsigned long rma_size;
1222         unsigned long rmls;
1223         unsigned long *physp;
1224         unsigned long i, npages;
1225
1226         mutex_lock(&kvm->lock);
1227         if (kvm->arch.rma_setup_done)
1228                 goto out;       /* another vcpu beat us to it */
1229
1230         /* Look up the memslot for guest physical address 0 */
1231         memslot = gfn_to_memslot(kvm, 0);
1232
1233         /* We must have some memory at 0 by now */
1234         err = -EINVAL;
1235         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1236                 goto out;
1237
1238         /* Look up the VMA for the start of this memory slot */
1239         hva = memslot->userspace_addr;
1240         down_read(&current->mm->mmap_sem);
1241         vma = find_vma(current->mm, hva);
1242         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1243                 goto up_out;
1244
1245         psize = vma_kernel_pagesize(vma);
1246         porder = __ilog2(psize);
1247
1248         /* Is this one of our preallocated RMAs? */
1249         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1250             hva == vma->vm_start)
1251                 ri = vma->vm_file->private_data;
1252
1253         up_read(&current->mm->mmap_sem);
1254
1255         if (!ri) {
1256                 /* On POWER7, use VRMA; on PPC970, give up */
1257                 err = -EPERM;
1258                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1259                         pr_err("KVM: CPU requires an RMO\n");
1260                         goto out;
1261                 }
1262
1263                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1264                 err = -EINVAL;
1265                 if (!(psize == 0x1000 || psize == 0x10000 ||
1266                       psize == 0x1000000))
1267                         goto out;
1268
1269                 /* Update VRMASD field in the LPCR */
1270                 senc = slb_pgsize_encoding(psize);
1271                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1272                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1273                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1274                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1275                 kvm->arch.lpcr = lpcr;
1276
1277                 /* Create HPTEs in the hash page table for the VRMA */
1278                 kvmppc_map_vrma(vcpu, memslot, porder);
1279
1280         } else {
1281                 /* Set up to use an RMO region */
1282                 rma_size = ri->npages;
1283                 if (rma_size > memslot->npages)
1284                         rma_size = memslot->npages;
1285                 rma_size <<= PAGE_SHIFT;
1286                 rmls = lpcr_rmls(rma_size);
1287                 err = -EINVAL;
1288                 if (rmls < 0) {
1289                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1290                         goto out;
1291                 }
1292                 atomic_inc(&ri->use_count);
1293                 kvm->arch.rma = ri;
1294
1295                 /* Update LPCR and RMOR */
1296                 lpcr = kvm->arch.lpcr;
1297                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1298                         /* PPC970; insert RMLS value (split field) in HID4 */
1299                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1300                                   (3ul << HID4_RMLS2_SH));
1301                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1302                                 ((rmls & 3) << HID4_RMLS2_SH);
1303                         /* RMOR is also in HID4 */
1304                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1305                                 << HID4_RMOR_SH;
1306                 } else {
1307                         /* POWER7 */
1308                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1309                         lpcr |= rmls << LPCR_RMLS_SH;
1310                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1311                 }
1312                 kvm->arch.lpcr = lpcr;
1313                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1314                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1315
1316                 /* Initialize phys addrs of pages in RMO */
1317                 npages = ri->npages;
1318                 porder = __ilog2(npages);
1319                 physp = kvm->arch.slot_phys[memslot->id];
1320                 spin_lock(&kvm->arch.slot_phys_lock);
1321                 for (i = 0; i < npages; ++i)
1322                         physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1323                 spin_unlock(&kvm->arch.slot_phys_lock);
1324         }
1325
1326         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1327         smp_wmb();
1328         kvm->arch.rma_setup_done = 1;
1329         err = 0;
1330  out:
1331         mutex_unlock(&kvm->lock);
1332         return err;
1333
1334  up_out:
1335         up_read(&current->mm->mmap_sem);
1336         goto out;
1337 }
1338
1339 int kvmppc_core_init_vm(struct kvm *kvm)
1340 {
1341         long r;
1342         unsigned long lpcr;
1343
1344         /* Allocate hashed page table */
1345         r = kvmppc_alloc_hpt(kvm);
1346         if (r)
1347                 return r;
1348
1349         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1350
1351         kvm->arch.rma = NULL;
1352
1353         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1354
1355         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1356                 /* PPC970; HID4 is effectively the LPCR */
1357                 unsigned long lpid = kvm->arch.lpid;
1358                 kvm->arch.host_lpid = 0;
1359                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1360                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1361                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1362                         ((lpid & 0xf) << HID4_LPID5_SH);
1363         } else {
1364                 /* POWER7; init LPCR for virtual RMA mode */
1365                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1366                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1367                 lpcr &= LPCR_PECE | LPCR_LPES;
1368                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1369                         LPCR_VPM0 | LPCR_VPM1;
1370                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1371                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1372         }
1373         kvm->arch.lpcr = lpcr;
1374
1375         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1376         spin_lock_init(&kvm->arch.slot_phys_lock);
1377         return 0;
1378 }
1379
1380 void kvmppc_core_destroy_vm(struct kvm *kvm)
1381 {
1382         unsigned long i;
1383
1384         if (!kvm->arch.using_mmu_notifiers)
1385                 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1386                         unpin_slot(kvm, i);
1387
1388         if (kvm->arch.rma) {
1389                 kvm_release_rma(kvm->arch.rma);
1390                 kvm->arch.rma = NULL;
1391         }
1392
1393         kvmppc_free_hpt(kvm);
1394         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1395 }
1396
1397 /* These are stubs for now */
1398 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1399 {
1400 }
1401
1402 /* We don't need to emulate any privileged instructions or dcbz */
1403 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1404                            unsigned int inst, int *advance)
1405 {
1406         return EMULATE_FAIL;
1407 }
1408
1409 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1410 {
1411         return EMULATE_FAIL;
1412 }
1413
1414 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1415 {
1416         return EMULATE_FAIL;
1417 }
1418
1419 static int kvmppc_book3s_hv_init(void)
1420 {
1421         int r;
1422
1423         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1424
1425         if (r)
1426                 return r;
1427
1428         r = kvmppc_mmu_hv_init();
1429
1430         return r;
1431 }
1432
1433 static void kvmppc_book3s_hv_exit(void)
1434 {
1435         kvm_exit();
1436 }
1437
1438 module_init(kvmppc_book3s_hv_init);
1439 module_exit(kvmppc_book3s_hv_exit);