[PARISC] Show more memory information and memory layout at bootup
[linux-2.6.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h>     /* for node_online_map */
24 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
25
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29 #include <asm/pdc_chassis.h>
30 #include <asm/mmzone.h>
31 #include <asm/sections.h>
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 extern int  data_start;
36
37 #ifdef CONFIG_DISCONTIGMEM
38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
39 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
41 #endif
42
43 static struct resource data_resource = {
44         .name   = "Kernel data",
45         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
46 };
47
48 static struct resource code_resource = {
49         .name   = "Kernel code",
50         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
51 };
52
53 static struct resource pdcdata_resource = {
54         .name   = "PDC data (Page Zero)",
55         .start  = 0,
56         .end    = 0x9ff,
57         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
58 };
59
60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
61
62 /* The following array is initialized from the firmware specific
63  * information retrieved in kernel/inventory.c.
64  */
65
66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
67 int npmem_ranges __read_mostly;
68
69 #ifdef __LP64__
70 #define MAX_MEM         (~0UL)
71 #else /* !__LP64__ */
72 #define MAX_MEM         (3584U*1024U*1024U)
73 #endif /* !__LP64__ */
74
75 static unsigned long mem_limit __read_mostly = MAX_MEM;
76
77 static void __init mem_limit_func(void)
78 {
79         char *cp, *end;
80         unsigned long limit;
81         extern char saved_command_line[];
82
83         /* We need this before __setup() functions are called */
84
85         limit = MAX_MEM;
86         for (cp = saved_command_line; *cp; ) {
87                 if (memcmp(cp, "mem=", 4) == 0) {
88                         cp += 4;
89                         limit = memparse(cp, &end);
90                         if (end != cp)
91                                 break;
92                         cp = end;
93                 } else {
94                         while (*cp != ' ' && *cp)
95                                 ++cp;
96                         while (*cp == ' ')
97                                 ++cp;
98                 }
99         }
100
101         if (limit < mem_limit)
102                 mem_limit = limit;
103 }
104
105 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
106
107 static void __init setup_bootmem(void)
108 {
109         unsigned long bootmap_size;
110         unsigned long mem_max;
111         unsigned long bootmap_pages;
112         unsigned long bootmap_start_pfn;
113         unsigned long bootmap_pfn;
114 #ifndef CONFIG_DISCONTIGMEM
115         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
116         int npmem_holes;
117 #endif
118         int i, sysram_resource_count;
119
120         disable_sr_hashing(); /* Turn off space register hashing */
121
122         /*
123          * Sort the ranges. Since the number of ranges is typically
124          * small, and performance is not an issue here, just do
125          * a simple insertion sort.
126          */
127
128         for (i = 1; i < npmem_ranges; i++) {
129                 int j;
130
131                 for (j = i; j > 0; j--) {
132                         unsigned long tmp;
133
134                         if (pmem_ranges[j-1].start_pfn <
135                             pmem_ranges[j].start_pfn) {
136
137                                 break;
138                         }
139                         tmp = pmem_ranges[j-1].start_pfn;
140                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
141                         pmem_ranges[j].start_pfn = tmp;
142                         tmp = pmem_ranges[j-1].pages;
143                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
144                         pmem_ranges[j].pages = tmp;
145                 }
146         }
147
148 #ifndef CONFIG_DISCONTIGMEM
149         /*
150          * Throw out ranges that are too far apart (controlled by
151          * MAX_GAP).
152          */
153
154         for (i = 1; i < npmem_ranges; i++) {
155                 if (pmem_ranges[i].start_pfn -
156                         (pmem_ranges[i-1].start_pfn +
157                          pmem_ranges[i-1].pages) > MAX_GAP) {
158                         npmem_ranges = i;
159                         printk("Large gap in memory detected (%ld pages). "
160                                "Consider turning on CONFIG_DISCONTIGMEM\n",
161                                pmem_ranges[i].start_pfn -
162                                (pmem_ranges[i-1].start_pfn +
163                                 pmem_ranges[i-1].pages));
164                         break;
165                 }
166         }
167 #endif
168
169         if (npmem_ranges > 1) {
170
171                 /* Print the memory ranges */
172
173                 printk(KERN_INFO "Memory Ranges:\n");
174
175                 for (i = 0; i < npmem_ranges; i++) {
176                         unsigned long start;
177                         unsigned long size;
178
179                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
180                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
181                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
182                                 i,start, start + (size - 1), size >> 20);
183                 }
184         }
185
186         sysram_resource_count = npmem_ranges;
187         for (i = 0; i < sysram_resource_count; i++) {
188                 struct resource *res = &sysram_resources[i];
189                 res->name = "System RAM";
190                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
191                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
192                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
193                 request_resource(&iomem_resource, res);
194         }
195
196         /*
197          * For 32 bit kernels we limit the amount of memory we can
198          * support, in order to preserve enough kernel address space
199          * for other purposes. For 64 bit kernels we don't normally
200          * limit the memory, but this mechanism can be used to
201          * artificially limit the amount of memory (and it is written
202          * to work with multiple memory ranges).
203          */
204
205         mem_limit_func();       /* check for "mem=" argument */
206
207         mem_max = 0;
208         num_physpages = 0;
209         for (i = 0; i < npmem_ranges; i++) {
210                 unsigned long rsize;
211
212                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
213                 if ((mem_max + rsize) > mem_limit) {
214                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
215                         if (mem_max == mem_limit)
216                                 npmem_ranges = i;
217                         else {
218                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
219                                                        - (mem_max >> PAGE_SHIFT);
220                                 npmem_ranges = i + 1;
221                                 mem_max = mem_limit;
222                         }
223                 num_physpages += pmem_ranges[i].pages;
224                         break;
225                 }
226             num_physpages += pmem_ranges[i].pages;
227                 mem_max += rsize;
228         }
229
230         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
231
232 #ifndef CONFIG_DISCONTIGMEM
233         /* Merge the ranges, keeping track of the holes */
234
235         {
236                 unsigned long end_pfn;
237                 unsigned long hole_pages;
238
239                 npmem_holes = 0;
240                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
241                 for (i = 1; i < npmem_ranges; i++) {
242
243                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
244                         if (hole_pages) {
245                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
246                                 pmem_holes[npmem_holes++].pages = hole_pages;
247                                 end_pfn += hole_pages;
248                         }
249                         end_pfn += pmem_ranges[i].pages;
250                 }
251
252                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
253                 npmem_ranges = 1;
254         }
255 #endif
256
257         bootmap_pages = 0;
258         for (i = 0; i < npmem_ranges; i++)
259                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
260
261         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
262
263 #ifdef CONFIG_DISCONTIGMEM
264         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
265                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
266                 NODE_DATA(i)->bdata = &bmem_data[i];
267         }
268         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
269
270         for (i = 0; i < npmem_ranges; i++)
271                 node_set_online(i);
272 #endif
273
274         /*
275          * Initialize and free the full range of memory in each range.
276          * Note that the only writing these routines do are to the bootmap,
277          * and we've made sure to locate the bootmap properly so that they
278          * won't be writing over anything important.
279          */
280
281         bootmap_pfn = bootmap_start_pfn;
282         max_pfn = 0;
283         for (i = 0; i < npmem_ranges; i++) {
284                 unsigned long start_pfn;
285                 unsigned long npages;
286
287                 start_pfn = pmem_ranges[i].start_pfn;
288                 npages = pmem_ranges[i].pages;
289
290                 bootmap_size = init_bootmem_node(NODE_DATA(i),
291                                                 bootmap_pfn,
292                                                 start_pfn,
293                                                 (start_pfn + npages) );
294                 free_bootmem_node(NODE_DATA(i),
295                                   (start_pfn << PAGE_SHIFT),
296                                   (npages << PAGE_SHIFT) );
297                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
298                 if ((start_pfn + npages) > max_pfn)
299                         max_pfn = start_pfn + npages;
300         }
301
302         /* IOMMU is always used to access "high mem" on those boxes
303          * that can support enough mem that a PCI device couldn't
304          * directly DMA to any physical addresses.
305          * ISA DMA support will need to revisit this.
306          */
307         max_low_pfn = max_pfn;
308
309         if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
310                 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
311                 BUG();
312         }
313
314         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
315
316 #define PDC_CONSOLE_IO_IODC_SIZE 32768
317
318         reserve_bootmem_node(NODE_DATA(0), 0UL,
319                         (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
320         reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
321                         (unsigned long)(_end - _text));
322         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
323                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
324
325 #ifndef CONFIG_DISCONTIGMEM
326
327         /* reserve the holes */
328
329         for (i = 0; i < npmem_holes; i++) {
330                 reserve_bootmem_node(NODE_DATA(0),
331                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
332                                 (pmem_holes[i].pages << PAGE_SHIFT));
333         }
334 #endif
335
336 #ifdef CONFIG_BLK_DEV_INITRD
337         if (initrd_start) {
338                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
339                 if (__pa(initrd_start) < mem_max) {
340                         unsigned long initrd_reserve;
341
342                         if (__pa(initrd_end) > mem_max) {
343                                 initrd_reserve = mem_max - __pa(initrd_start);
344                         } else {
345                                 initrd_reserve = initrd_end - initrd_start;
346                         }
347                         initrd_below_start_ok = 1;
348                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349
350                         reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
351                 }
352         }
353 #endif
354
355         data_resource.start =  virt_to_phys(&data_start);
356         data_resource.end = virt_to_phys(_end) - 1;
357         code_resource.start = virt_to_phys(_text);
358         code_resource.end = virt_to_phys(&data_start)-1;
359
360         /* We don't know which region the kernel will be in, so try
361          * all of them.
362          */
363         for (i = 0; i < sysram_resource_count; i++) {
364                 struct resource *res = &sysram_resources[i];
365                 request_resource(res, &code_resource);
366                 request_resource(res, &data_resource);
367         }
368         request_resource(&sysram_resources[0], &pdcdata_resource);
369 }
370
371 void free_initmem(void)
372 {
373         unsigned long addr, init_begin, init_end;
374
375         printk(KERN_INFO "Freeing unused kernel memory: ");
376
377 #ifdef CONFIG_DEBUG_KERNEL
378         /* Attempt to catch anyone trying to execute code here
379          * by filling the page with BRK insns.
380          * 
381          * If we disable interrupts for all CPUs, then IPI stops working.
382          * Kinda breaks the global cache flushing.
383          */
384         local_irq_disable();
385
386         memset(__init_begin, 0x00,
387                 (unsigned long)__init_end - (unsigned long)__init_begin);
388
389         flush_data_cache();
390         asm volatile("sync" : : );
391         flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
392         asm volatile("sync" : : );
393
394         local_irq_enable();
395 #endif
396         
397         /* align __init_begin and __init_end to page size,
398            ignoring linker script where we might have tried to save RAM */
399         init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
400         init_end   = PAGE_ALIGN((unsigned long)(__init_end));
401         for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
402                 ClearPageReserved(virt_to_page(addr));
403                 init_page_count(virt_to_page(addr));
404                 free_page(addr);
405                 num_physpages++;
406                 totalram_pages++;
407         }
408
409         /* set up a new led state on systems shipped LED State panel */
410         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
411         
412         printk("%luk freed\n", (init_end - init_begin) >> 10);
413 }
414
415
416 #ifdef CONFIG_DEBUG_RODATA
417 void mark_rodata_ro(void)
418 {
419         /* rodata memory was already mapped with KERNEL_RO access rights by
420            pagetable_init() and map_pages(). No need to do additional stuff here */
421         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
422                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
423 }
424 #endif
425
426
427 /*
428  * Just an arbitrary offset to serve as a "hole" between mapping areas
429  * (between top of physical memory and a potential pcxl dma mapping
430  * area, and below the vmalloc mapping area).
431  *
432  * The current 32K value just means that there will be a 32K "hole"
433  * between mapping areas. That means that  any out-of-bounds memory
434  * accesses will hopefully be caught. The vmalloc() routines leaves
435  * a hole of 4kB between each vmalloced area for the same reason.
436  */
437
438  /* Leave room for gateway page expansion */
439 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
440 #error KERNEL_MAP_START is in gateway reserved region
441 #endif
442 #define MAP_START (KERNEL_MAP_START)
443
444 #define VM_MAP_OFFSET  (32*1024)
445 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
446                                      & ~(VM_MAP_OFFSET-1)))
447
448 void *vmalloc_start __read_mostly;
449 EXPORT_SYMBOL(vmalloc_start);
450
451 #ifdef CONFIG_PA11
452 unsigned long pcxl_dma_start __read_mostly;
453 #endif
454
455 void __init mem_init(void)
456 {
457         int codesize, reservedpages, datasize, initsize;
458         int tmp;
459
460         high_memory = __va((max_pfn << PAGE_SHIFT));
461
462 #ifndef CONFIG_DISCONTIGMEM
463         max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
464         totalram_pages += free_all_bootmem();
465 #else
466         {
467                 int i;
468
469                 for (i = 0; i < npmem_ranges; i++)
470                         totalram_pages += free_all_bootmem_node(NODE_DATA(i));
471         }
472 #endif
473         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
474         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
475         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
476
477         reservedpages = 0;
478         for (tmp = 0; tmp < max_low_pfn; tmp++)
479                 /*
480                  * Only count reserved RAM pages
481                  */
482                 if (PageReserved(pfn_to_page(tmp)))
483                         reservedpages++;
484
485 #ifdef CONFIG_PA11
486         if (hppa_dma_ops == &pcxl_dma_ops) {
487                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
488                 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
489         } else {
490                 pcxl_dma_start = 0;
491                 vmalloc_start = SET_MAP_OFFSET(MAP_START);
492         }
493 #else
494         vmalloc_start = SET_MAP_OFFSET(MAP_START);
495 #endif
496
497         printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
498                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
499                 num_physpages << (PAGE_SHIFT-10),
500                 codesize >> 10,
501                 reservedpages << (PAGE_SHIFT-10),
502                 datasize >> 10,
503                 initsize >> 10,
504                 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
505                );
506
507 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
508         printk("virtual kernel memory layout:\n"
509                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
510                "    lowmem  : 0x%p - 0x%p   (%4ld MB)\n"
511                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
512                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
513                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
514
515                (void*)VMALLOC_START, (void*)VMALLOC_END,
516                (VMALLOC_END - VMALLOC_START) >> 20,
517
518                __va(0), high_memory,
519                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
520
521                &__init_begin, &__init_end,
522                ((unsigned long)&__init_end - (unsigned long)&__init_begin) >> 10,
523
524                &_etext, &_edata,
525                ((unsigned long)&_edata - (unsigned long)&_etext) >> 10,
526
527                &_text, &_etext,
528                ((unsigned long)&_etext - (unsigned long)&_text) >> 10);
529 #endif
530 }
531
532 unsigned long *empty_zero_page __read_mostly;
533
534 void show_mem(void)
535 {
536         int i,free = 0,total = 0,reserved = 0;
537         int shared = 0, cached = 0;
538
539         printk(KERN_INFO "Mem-info:\n");
540         show_free_areas();
541         printk(KERN_INFO "Free swap:     %6ldkB\n",
542                                 nr_swap_pages<<(PAGE_SHIFT-10));
543 #ifndef CONFIG_DISCONTIGMEM
544         i = max_mapnr;
545         while (i-- > 0) {
546                 total++;
547                 if (PageReserved(mem_map+i))
548                         reserved++;
549                 else if (PageSwapCache(mem_map+i))
550                         cached++;
551                 else if (!page_count(&mem_map[i]))
552                         free++;
553                 else
554                         shared += page_count(&mem_map[i]) - 1;
555         }
556 #else
557         for (i = 0; i < npmem_ranges; i++) {
558                 int j;
559
560                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
561                         struct page *p;
562                         unsigned long flags;
563
564                         pgdat_resize_lock(NODE_DATA(i), &flags);
565                         p = nid_page_nr(i, j) - node_start_pfn(i);
566
567                         total++;
568                         if (PageReserved(p))
569                                 reserved++;
570                         else if (PageSwapCache(p))
571                                 cached++;
572                         else if (!page_count(p))
573                                 free++;
574                         else
575                                 shared += page_count(p) - 1;
576                         pgdat_resize_unlock(NODE_DATA(i), &flags);
577                 }
578         }
579 #endif
580         printk(KERN_INFO "%d pages of RAM\n", total);
581         printk(KERN_INFO "%d reserved pages\n", reserved);
582         printk(KERN_INFO "%d pages shared\n", shared);
583         printk(KERN_INFO "%d pages swap cached\n", cached);
584
585
586 #ifdef CONFIG_DISCONTIGMEM
587         {
588                 struct zonelist *zl;
589                 int i, j, k;
590
591                 for (i = 0; i < npmem_ranges; i++) {
592                         for (j = 0; j < MAX_NR_ZONES; j++) {
593                                 zl = NODE_DATA(i)->node_zonelists + j;
594
595                                 printk("Zone list for zone %d on node %d: ", j, i);
596                                 for (k = 0; zl->zones[k] != NULL; k++) 
597                                         printk("[%d/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name);
598                                 printk("\n");
599                         }
600                 }
601         }
602 #endif
603 }
604
605
606 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
607 {
608         pgd_t *pg_dir;
609         pmd_t *pmd;
610         pte_t *pg_table;
611         unsigned long end_paddr;
612         unsigned long start_pmd;
613         unsigned long start_pte;
614         unsigned long tmp1;
615         unsigned long tmp2;
616         unsigned long address;
617         unsigned long ro_start;
618         unsigned long ro_end;
619         unsigned long fv_addr;
620         unsigned long gw_addr;
621         extern const unsigned long fault_vector_20;
622         extern void * const linux_gateway_page;
623
624         ro_start = __pa((unsigned long)_text);
625         ro_end   = __pa((unsigned long)&data_start);
626         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
627         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
628
629         end_paddr = start_paddr + size;
630
631         pg_dir = pgd_offset_k(start_vaddr);
632
633 #if PTRS_PER_PMD == 1
634         start_pmd = 0;
635 #else
636         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
637 #endif
638         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
639
640         address = start_paddr;
641         while (address < end_paddr) {
642 #if PTRS_PER_PMD == 1
643                 pmd = (pmd_t *)__pa(pg_dir);
644 #else
645                 pmd = (pmd_t *)pgd_address(*pg_dir);
646
647                 /*
648                  * pmd is physical at this point
649                  */
650
651                 if (!pmd) {
652                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
653                         pmd = (pmd_t *) __pa(pmd);
654                 }
655
656                 pgd_populate(NULL, pg_dir, __va(pmd));
657 #endif
658                 pg_dir++;
659
660                 /* now change pmd to kernel virtual addresses */
661
662                 pmd = (pmd_t *)__va(pmd) + start_pmd;
663                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
664
665                         /*
666                          * pg_table is physical at this point
667                          */
668
669                         pg_table = (pte_t *)pmd_address(*pmd);
670                         if (!pg_table) {
671                                 pg_table = (pte_t *)
672                                         alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
673                                 pg_table = (pte_t *) __pa(pg_table);
674                         }
675
676                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
677
678                         /* now change pg_table to kernel virtual addresses */
679
680                         pg_table = (pte_t *) __va(pg_table) + start_pte;
681                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
682                                 pte_t pte;
683
684                                 /*
685                                  * Map the fault vector writable so we can
686                                  * write the HPMC checksum.
687                                  */
688 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
689                                 if (address >= ro_start && address < ro_end
690                                                         && address != fv_addr
691                                                         && address != gw_addr)
692                                     pte = __mk_pte(address, PAGE_KERNEL_RO);
693                                 else
694 #endif
695                                     pte = __mk_pte(address, pgprot);
696
697                                 if (address >= end_paddr)
698                                         pte_val(pte) = 0;
699
700                                 set_pte(pg_table, pte);
701
702                                 address += PAGE_SIZE;
703                         }
704                         start_pte = 0;
705
706                         if (address >= end_paddr)
707                             break;
708                 }
709                 start_pmd = 0;
710         }
711 }
712
713 /*
714  * pagetable_init() sets up the page tables
715  *
716  * Note that gateway_init() places the Linux gateway page at page 0.
717  * Since gateway pages cannot be dereferenced this has the desirable
718  * side effect of trapping those pesky NULL-reference errors in the
719  * kernel.
720  */
721 static void __init pagetable_init(void)
722 {
723         int range;
724
725         /* Map each physical memory range to its kernel vaddr */
726
727         for (range = 0; range < npmem_ranges; range++) {
728                 unsigned long start_paddr;
729                 unsigned long end_paddr;
730                 unsigned long size;
731
732                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
733                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
734                 size = pmem_ranges[range].pages << PAGE_SHIFT;
735
736                 map_pages((unsigned long)__va(start_paddr), start_paddr,
737                         size, PAGE_KERNEL);
738         }
739
740 #ifdef CONFIG_BLK_DEV_INITRD
741         if (initrd_end && initrd_end > mem_limit) {
742                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
743                 map_pages(initrd_start, __pa(initrd_start),
744                         initrd_end - initrd_start, PAGE_KERNEL);
745         }
746 #endif
747
748         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
749         memset(empty_zero_page, 0, PAGE_SIZE);
750 }
751
752 static void __init gateway_init(void)
753 {
754         unsigned long linux_gateway_page_addr;
755         /* FIXME: This is 'const' in order to trick the compiler
756            into not treating it as DP-relative data. */
757         extern void * const linux_gateway_page;
758
759         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
760
761         /*
762          * Setup Linux Gateway page.
763          *
764          * The Linux gateway page will reside in kernel space (on virtual
765          * page 0), so it doesn't need to be aliased into user space.
766          */
767
768         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
769                 PAGE_SIZE, PAGE_GATEWAY);
770 }
771
772 #ifdef CONFIG_HPUX
773 void
774 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
775 {
776         pgd_t *pg_dir;
777         pmd_t *pmd;
778         pte_t *pg_table;
779         unsigned long start_pmd;
780         unsigned long start_pte;
781         unsigned long address;
782         unsigned long hpux_gw_page_addr;
783         /* FIXME: This is 'const' in order to trick the compiler
784            into not treating it as DP-relative data. */
785         extern void * const hpux_gateway_page;
786
787         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
788
789         /*
790          * Setup HP-UX Gateway page.
791          *
792          * The HP-UX gateway page resides in the user address space,
793          * so it needs to be aliased into each process.
794          */
795
796         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
797
798 #if PTRS_PER_PMD == 1
799         start_pmd = 0;
800 #else
801         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
802 #endif
803         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
804
805         address = __pa(&hpux_gateway_page);
806 #if PTRS_PER_PMD == 1
807         pmd = (pmd_t *)__pa(pg_dir);
808 #else
809         pmd = (pmd_t *) pgd_address(*pg_dir);
810
811         /*
812          * pmd is physical at this point
813          */
814
815         if (!pmd) {
816                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
817                 pmd = (pmd_t *) __pa(pmd);
818         }
819
820         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
821 #endif
822         /* now change pmd to kernel virtual addresses */
823
824         pmd = (pmd_t *)__va(pmd) + start_pmd;
825
826         /*
827          * pg_table is physical at this point
828          */
829
830         pg_table = (pte_t *) pmd_address(*pmd);
831         if (!pg_table)
832                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
833
834         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
835
836         /* now change pg_table to kernel virtual addresses */
837
838         pg_table = (pte_t *) __va(pg_table) + start_pte;
839         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
840 }
841 EXPORT_SYMBOL(map_hpux_gateway_page);
842 #endif
843
844 void __init paging_init(void)
845 {
846         int i;
847
848         setup_bootmem();
849         pagetable_init();
850         gateway_init();
851         flush_cache_all_local(); /* start with known state */
852         flush_tlb_all_local(NULL);
853
854         for (i = 0; i < npmem_ranges; i++) {
855                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
856
857                 /* We have an IOMMU, so all memory can go into a single
858                    ZONE_DMA zone. */
859                 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
860
861 #ifdef CONFIG_DISCONTIGMEM
862                 /* Need to initialize the pfnnid_map before we can initialize
863                    the zone */
864                 {
865                     int j;
866                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
867                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
868                          j++) {
869                         pfnnid_map[j] = i;
870                     }
871                 }
872 #endif
873
874                 free_area_init_node(i, NODE_DATA(i), zones_size,
875                                 pmem_ranges[i].start_pfn, NULL);
876         }
877 }
878
879 #ifdef CONFIG_PA20
880
881 /*
882  * Currently, all PA20 chips have 18 bit protection id's, which is the
883  * limiting factor (space ids are 32 bits).
884  */
885
886 #define NR_SPACE_IDS 262144
887
888 #else
889
890 /*
891  * Currently we have a one-to-one relationship between space id's and
892  * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
893  * support 15 bit protection id's, so that is the limiting factor.
894  * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
895  * probably not worth the effort for a special case here.
896  */
897
898 #define NR_SPACE_IDS 32768
899
900 #endif  /* !CONFIG_PA20 */
901
902 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
903 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
904
905 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
906 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
907 static unsigned long space_id_index;
908 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
909 static unsigned long dirty_space_ids = 0;
910
911 static DEFINE_SPINLOCK(sid_lock);
912
913 unsigned long alloc_sid(void)
914 {
915         unsigned long index;
916
917         spin_lock(&sid_lock);
918
919         if (free_space_ids == 0) {
920                 if (dirty_space_ids != 0) {
921                         spin_unlock(&sid_lock);
922                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
923                         spin_lock(&sid_lock);
924                 }
925                 BUG_ON(free_space_ids == 0);
926         }
927
928         free_space_ids--;
929
930         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
931         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
932         space_id_index = index;
933
934         spin_unlock(&sid_lock);
935
936         return index << SPACEID_SHIFT;
937 }
938
939 void free_sid(unsigned long spaceid)
940 {
941         unsigned long index = spaceid >> SPACEID_SHIFT;
942         unsigned long *dirty_space_offset;
943
944         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
945         index &= (BITS_PER_LONG - 1);
946
947         spin_lock(&sid_lock);
948
949         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
950
951         *dirty_space_offset |= (1L << index);
952         dirty_space_ids++;
953
954         spin_unlock(&sid_lock);
955 }
956
957
958 #ifdef CONFIG_SMP
959 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
960 {
961         int i;
962
963         /* NOTE: sid_lock must be held upon entry */
964
965         *ndirtyptr = dirty_space_ids;
966         if (dirty_space_ids != 0) {
967             for (i = 0; i < SID_ARRAY_SIZE; i++) {
968                 dirty_array[i] = dirty_space_id[i];
969                 dirty_space_id[i] = 0;
970             }
971             dirty_space_ids = 0;
972         }
973
974         return;
975 }
976
977 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
978 {
979         int i;
980
981         /* NOTE: sid_lock must be held upon entry */
982
983         if (ndirty != 0) {
984                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
985                         space_id[i] ^= dirty_array[i];
986                 }
987
988                 free_space_ids += ndirty;
989                 space_id_index = 0;
990         }
991 }
992
993 #else /* CONFIG_SMP */
994
995 static void recycle_sids(void)
996 {
997         int i;
998
999         /* NOTE: sid_lock must be held upon entry */
1000
1001         if (dirty_space_ids != 0) {
1002                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1003                         space_id[i] ^= dirty_space_id[i];
1004                         dirty_space_id[i] = 0;
1005                 }
1006
1007                 free_space_ids += dirty_space_ids;
1008                 dirty_space_ids = 0;
1009                 space_id_index = 0;
1010         }
1011 }
1012 #endif
1013
1014 /*
1015  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1016  * purged, we can safely reuse the space ids that were released but
1017  * not flushed from the tlb.
1018  */
1019
1020 #ifdef CONFIG_SMP
1021
1022 static unsigned long recycle_ndirty;
1023 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1024 static unsigned int recycle_inuse;
1025
1026 void flush_tlb_all(void)
1027 {
1028         int do_recycle;
1029
1030         do_recycle = 0;
1031         spin_lock(&sid_lock);
1032         if (dirty_space_ids > RECYCLE_THRESHOLD) {
1033             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1034             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1035             recycle_inuse++;
1036             do_recycle++;
1037         }
1038         spin_unlock(&sid_lock);
1039         on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
1040         if (do_recycle) {
1041             spin_lock(&sid_lock);
1042             recycle_sids(recycle_ndirty,recycle_dirty_array);
1043             recycle_inuse = 0;
1044             spin_unlock(&sid_lock);
1045         }
1046 }
1047 #else
1048 void flush_tlb_all(void)
1049 {
1050         spin_lock(&sid_lock);
1051         flush_tlb_all_local(NULL);
1052         recycle_sids();
1053         spin_unlock(&sid_lock);
1054 }
1055 #endif
1056
1057 #ifdef CONFIG_BLK_DEV_INITRD
1058 void free_initrd_mem(unsigned long start, unsigned long end)
1059 {
1060         if (start >= end)
1061                 return;
1062         printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1063         for (; start < end; start += PAGE_SIZE) {
1064                 ClearPageReserved(virt_to_page(start));
1065                 init_page_count(virt_to_page(start));
1066                 free_page(start);
1067                 num_physpages++;
1068                 totalram_pages++;
1069         }
1070 }
1071 #endif