parisc: fix kernel crash (protection id trap) when compiling ruby1.9
[linux-2.6.git] / arch / parisc / mm / fault.c
1 /* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $
2  *
3  * This file is subject to the terms and conditions of the GNU General Public
4  * License.  See the file "COPYING" in the main directory of this archive
5  * for more details.
6  *
7  *
8  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
9  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
10  * Copyright 1999 Hewlett Packard Co.
11  *
12  */
13
14 #include <linux/mm.h>
15 #include <linux/ptrace.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19
20 #include <asm/uaccess.h>
21 #include <asm/traps.h>
22
23 #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
24                          /*  dumped to the console via printk)          */
25
26
27 /* Various important other fields */
28 #define bit22set(x)             (x & 0x00000200)
29 #define bits23_25set(x)         (x & 0x000001c0)
30 #define isGraphicsFlushRead(x)  ((x & 0xfc003fdf) == 0x04001a80)
31                                 /* extended opcode is 0x6a */
32
33 #define BITSSET         0x1c0   /* for identifying LDCW */
34
35
36 DEFINE_PER_CPU(struct exception_data, exception_data);
37
38 /*
39  * parisc_acctyp(unsigned int inst) --
40  *    Given a PA-RISC memory access instruction, determine if the
41  *    the instruction would perform a memory read or memory write
42  *    operation.
43  *
44  *    This function assumes that the given instruction is a memory access
45  *    instruction (i.e. you should really only call it if you know that
46  *    the instruction has generated some sort of a memory access fault).
47  *
48  * Returns:
49  *   VM_READ  if read operation
50  *   VM_WRITE if write operation
51  *   VM_EXEC  if execute operation
52  */
53 static unsigned long
54 parisc_acctyp(unsigned long code, unsigned int inst)
55 {
56         if (code == 6 || code == 16)
57             return VM_EXEC;
58
59         switch (inst & 0xf0000000) {
60         case 0x40000000: /* load */
61         case 0x50000000: /* new load */
62                 return VM_READ;
63
64         case 0x60000000: /* store */
65         case 0x70000000: /* new store */
66                 return VM_WRITE;
67
68         case 0x20000000: /* coproc */
69         case 0x30000000: /* coproc2 */
70                 if (bit22set(inst))
71                         return VM_WRITE;
72
73         case 0x0: /* indexed/memory management */
74                 if (bit22set(inst)) {
75                         /*
76                          * Check for the 'Graphics Flush Read' instruction.
77                          * It resembles an FDC instruction, except for bits
78                          * 20 and 21. Any combination other than zero will
79                          * utilize the block mover functionality on some
80                          * older PA-RISC platforms.  The case where a block
81                          * move is performed from VM to graphics IO space
82                          * should be treated as a READ.
83                          *
84                          * The significance of bits 20,21 in the FDC
85                          * instruction is:
86                          *
87                          *   00  Flush data cache (normal instruction behavior)
88                          *   01  Graphics flush write  (IO space -> VM)
89                          *   10  Graphics flush read   (VM -> IO space)
90                          *   11  Graphics flush read/write (VM <-> IO space)
91                          */
92                         if (isGraphicsFlushRead(inst))
93                                 return VM_READ;
94                         return VM_WRITE;
95                 } else {
96                         /*
97                          * Check for LDCWX and LDCWS (semaphore instructions).
98                          * If bits 23 through 25 are all 1's it is one of
99                          * the above two instructions and is a write.
100                          *
101                          * Note: With the limited bits we are looking at,
102                          * this will also catch PROBEW and PROBEWI. However,
103                          * these should never get in here because they don't
104                          * generate exceptions of the type:
105                          *   Data TLB miss fault/data page fault
106                          *   Data memory protection trap
107                          */
108                         if (bits23_25set(inst) == BITSSET)
109                                 return VM_WRITE;
110                 }
111                 return VM_READ; /* Default */
112         }
113         return VM_READ; /* Default */
114 }
115
116 #undef bit22set
117 #undef bits23_25set
118 #undef isGraphicsFlushRead
119 #undef BITSSET
120
121
122 #if 0
123 /* This is the treewalk to find a vma which is the highest that has
124  * a start < addr.  We're using find_vma_prev instead right now, but
125  * we might want to use this at some point in the future.  Probably
126  * not, but I want it committed to CVS so I don't lose it :-)
127  */
128                         while (tree != vm_avl_empty) {
129                                 if (tree->vm_start > addr) {
130                                         tree = tree->vm_avl_left;
131                                 } else {
132                                         prev = tree;
133                                         if (prev->vm_next == NULL)
134                                                 break;
135                                         if (prev->vm_next->vm_start > addr)
136                                                 break;
137                                         tree = tree->vm_avl_right;
138                                 }
139                         }
140 #endif
141
142 int fixup_exception(struct pt_regs *regs)
143 {
144         const struct exception_table_entry *fix;
145
146         fix = search_exception_tables(regs->iaoq[0]);
147         if (fix) {
148                 struct exception_data *d;
149                 d = &__get_cpu_var(exception_data);
150                 d->fault_ip = regs->iaoq[0];
151                 d->fault_space = regs->isr;
152                 d->fault_addr = regs->ior;
153
154                 regs->iaoq[0] = ((fix->fixup) & ~3);
155                 /*
156                  * NOTE: In some cases the faulting instruction
157                  * may be in the delay slot of a branch. We
158                  * don't want to take the branch, so we don't
159                  * increment iaoq[1], instead we set it to be
160                  * iaoq[0]+4, and clear the B bit in the PSW
161                  */
162                 regs->iaoq[1] = regs->iaoq[0] + 4;
163                 regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
164
165                 return 1;
166         }
167
168         return 0;
169 }
170
171 void do_page_fault(struct pt_regs *regs, unsigned long code,
172                               unsigned long address)
173 {
174         struct vm_area_struct *vma, *prev_vma;
175         struct task_struct *tsk = current;
176         struct mm_struct *mm = tsk->mm;
177         unsigned long acc_type;
178         int fault;
179
180         if (in_atomic() || !mm)
181                 goto no_context;
182
183         down_read(&mm->mmap_sem);
184         vma = find_vma_prev(mm, address, &prev_vma);
185         if (!vma || address < vma->vm_start)
186                 goto check_expansion;
187 /*
188  * Ok, we have a good vm_area for this memory access. We still need to
189  * check the access permissions.
190  */
191
192 good_area:
193
194         acc_type = parisc_acctyp(code,regs->iir);
195
196         if ((vma->vm_flags & acc_type) != acc_type)
197                 goto bad_area;
198
199         /*
200          * If for any reason at all we couldn't handle the fault, make
201          * sure we exit gracefully rather than endlessly redo the
202          * fault.
203          */
204
205         fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0);
206         if (unlikely(fault & VM_FAULT_ERROR)) {
207                 /*
208                  * We hit a shared mapping outside of the file, or some
209                  * other thing happened to us that made us unable to
210                  * handle the page fault gracefully.
211                  */
212                 if (fault & VM_FAULT_OOM)
213                         goto out_of_memory;
214                 else if (fault & VM_FAULT_SIGBUS)
215                         goto bad_area;
216                 BUG();
217         }
218         if (fault & VM_FAULT_MAJOR)
219                 current->maj_flt++;
220         else
221                 current->min_flt++;
222         up_read(&mm->mmap_sem);
223         return;
224
225 check_expansion:
226         vma = prev_vma;
227         if (vma && (expand_stack(vma, address) == 0))
228                 goto good_area;
229
230 /*
231  * Something tried to access memory that isn't in our memory map..
232  */
233 bad_area:
234         up_read(&mm->mmap_sem);
235
236         if (user_mode(regs)) {
237                 struct siginfo si;
238
239 #ifdef PRINT_USER_FAULTS
240                 printk(KERN_DEBUG "\n");
241                 printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
242                     task_pid_nr(tsk), tsk->comm, code, address);
243                 if (vma) {
244                         printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
245                                         vma->vm_start, vma->vm_end);
246                 }
247                 show_regs(regs);
248 #endif
249                 /* FIXME: actually we need to get the signo and code correct */
250                 si.si_signo = SIGSEGV;
251                 si.si_errno = 0;
252                 si.si_code = SEGV_MAPERR;
253                 si.si_addr = (void __user *) address;
254                 force_sig_info(SIGSEGV, &si, current);
255                 return;
256         }
257
258 no_context:
259
260         if (!user_mode(regs) && fixup_exception(regs)) {
261                 return;
262         }
263
264         parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
265
266   out_of_memory:
267         up_read(&mm->mmap_sem);
268         printk(KERN_CRIT "VM: killing process %s\n", current->comm);
269         if (user_mode(regs))
270                 do_group_exit(SIGKILL);
271         goto no_context;
272 }