parisc: move definition of PAGE0 to asm/page.h
[linux-2.6.git] / arch / parisc / kernel / time.c
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/page.h>
33 #include <asm/param.h>
34 #include <asm/pdc.h>
35 #include <asm/led.h>
36
37 #include <linux/timex.h>
38
39 static unsigned long clocktick __read_mostly;   /* timer cycles per tick */
40
41 /*
42  * We keep time on PA-RISC Linux by using the Interval Timer which is
43  * a pair of registers; one is read-only and one is write-only; both
44  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
45  * and increments by 1 every CPU clock tick.  The architecture only
46  * guarantees us a rate between 0.5 and 2, but all implementations use a
47  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
48  * 32 bits of the read-only register compare equal to the write-only
49  * register, it raises a maskable external interrupt.  Each processor has
50  * an Interval Timer of its own and they are not synchronised.  
51  *
52  * We want to generate an interrupt every 1/HZ seconds.  So we program
53  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
54  * is programmed with the intended time of the next tick.  We can be
55  * held off for an arbitrarily long period of time by interrupts being
56  * disabled, so we may miss one or more ticks.
57  */
58 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
59 {
60         unsigned long now, now2;
61         unsigned long next_tick;
62         unsigned long cycles_elapsed, ticks_elapsed = 1;
63         unsigned long cycles_remainder;
64         unsigned int cpu = smp_processor_id();
65         struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
66
67         /* gcc can optimize for "read-only" case with a local clocktick */
68         unsigned long cpt = clocktick;
69
70         profile_tick(CPU_PROFILING);
71
72         /* Initialize next_tick to the expected tick time. */
73         next_tick = cpuinfo->it_value;
74
75         /* Get current cycle counter (Control Register 16). */
76         now = mfctl(16);
77
78         cycles_elapsed = now - next_tick;
79
80         if ((cycles_elapsed >> 6) < cpt) {
81                 /* use "cheap" math (add/subtract) instead
82                  * of the more expensive div/mul method
83                  */
84                 cycles_remainder = cycles_elapsed;
85                 while (cycles_remainder > cpt) {
86                         cycles_remainder -= cpt;
87                         ticks_elapsed++;
88                 }
89         } else {
90                 /* TODO: Reduce this to one fdiv op */
91                 cycles_remainder = cycles_elapsed % cpt;
92                 ticks_elapsed += cycles_elapsed / cpt;
93         }
94
95         /* convert from "division remainder" to "remainder of clock tick" */
96         cycles_remainder = cpt - cycles_remainder;
97
98         /* Determine when (in CR16 cycles) next IT interrupt will fire.
99          * We want IT to fire modulo clocktick even if we miss/skip some.
100          * But those interrupts don't in fact get delivered that regularly.
101          */
102         next_tick = now + cycles_remainder;
103
104         cpuinfo->it_value = next_tick;
105
106         /* Program the IT when to deliver the next interrupt.
107          * Only bottom 32-bits of next_tick are writable in CR16!
108          */
109         mtctl(next_tick, 16);
110
111         /* Skip one clocktick on purpose if we missed next_tick.
112          * The new CR16 must be "later" than current CR16 otherwise
113          * itimer would not fire until CR16 wrapped - e.g 4 seconds
114          * later on a 1Ghz processor. We'll account for the missed
115          * tick on the next timer interrupt.
116          *
117          * "next_tick - now" will always give the difference regardless
118          * if one or the other wrapped. If "now" is "bigger" we'll end up
119          * with a very large unsigned number.
120          */
121         now2 = mfctl(16);
122         if (next_tick - now2 > cpt)
123                 mtctl(next_tick+cpt, 16);
124
125 #if 1
126 /*
127  * GGG: DEBUG code for how many cycles programming CR16 used.
128  */
129         if (unlikely(now2 - now > 0x3000))      /* 12K cycles */
130                 printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
131                         " cyc %lX rem %lX "
132                         " next/now %lX/%lX\n",
133                         cpu, now2 - now, cycles_elapsed, cycles_remainder,
134                         next_tick, now );
135 #endif
136
137         /* Can we differentiate between "early CR16" (aka Scenario 1) and
138          * "long delay" (aka Scenario 3)? I don't think so.
139          *
140          * Timer_interrupt will be delivered at least a few hundred cycles
141          * after the IT fires. But it's arbitrary how much time passes
142          * before we call it "late". I've picked one second.
143          *
144          * It's important NO printk's are between reading CR16 and
145          * setting up the next value. May introduce huge variance.
146          */
147         if (unlikely(ticks_elapsed > HZ)) {
148                 /* Scenario 3: very long delay?  bad in any case */
149                 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
150                         " cycles %lX rem %lX "
151                         " next/now %lX/%lX\n",
152                         cpu,
153                         cycles_elapsed, cycles_remainder,
154                         next_tick, now );
155         }
156
157         /* Done mucking with unreliable delivery of interrupts.
158          * Go do system house keeping.
159          */
160
161         if (!--cpuinfo->prof_counter) {
162                 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
163                 update_process_times(user_mode(get_irq_regs()));
164         }
165
166         if (cpu == 0)
167                 xtime_update(ticks_elapsed);
168
169         return IRQ_HANDLED;
170 }
171
172
173 unsigned long profile_pc(struct pt_regs *regs)
174 {
175         unsigned long pc = instruction_pointer(regs);
176
177         if (regs->gr[0] & PSW_N)
178                 pc -= 4;
179
180 #ifdef CONFIG_SMP
181         if (in_lock_functions(pc))
182                 pc = regs->gr[2];
183 #endif
184
185         return pc;
186 }
187 EXPORT_SYMBOL(profile_pc);
188
189
190 /* clock source code */
191
192 static cycle_t read_cr16(struct clocksource *cs)
193 {
194         return get_cycles();
195 }
196
197 static struct clocksource clocksource_cr16 = {
198         .name                   = "cr16",
199         .rating                 = 300,
200         .read                   = read_cr16,
201         .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
202         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
203 };
204
205 #ifdef CONFIG_SMP
206 int update_cr16_clocksource(void)
207 {
208         /* since the cr16 cycle counters are not synchronized across CPUs,
209            we'll check if we should switch to a safe clocksource: */
210         if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
211                 clocksource_change_rating(&clocksource_cr16, 0);
212                 return 1;
213         }
214
215         return 0;
216 }
217 #else
218 int update_cr16_clocksource(void)
219 {
220         return 0; /* no change */
221 }
222 #endif /*CONFIG_SMP*/
223
224 void __init start_cpu_itimer(void)
225 {
226         unsigned int cpu = smp_processor_id();
227         unsigned long next_tick = mfctl(16) + clocktick;
228
229         mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
230
231         per_cpu(cpu_data, cpu).it_value = next_tick;
232 }
233
234 static struct platform_device rtc_generic_dev = {
235         .name = "rtc-generic",
236         .id = -1,
237 };
238
239 static int __init rtc_init(void)
240 {
241         if (platform_device_register(&rtc_generic_dev) < 0)
242                 printk(KERN_ERR "unable to register rtc device...\n");
243
244         /* not necessarily an error */
245         return 0;
246 }
247 module_init(rtc_init);
248
249 void read_persistent_clock(struct timespec *ts)
250 {
251         static struct pdc_tod tod_data;
252         if (pdc_tod_read(&tod_data) == 0) {
253                 ts->tv_sec = tod_data.tod_sec;
254                 ts->tv_nsec = tod_data.tod_usec * 1000;
255         } else {
256                 printk(KERN_ERR "Error reading tod clock\n");
257                 ts->tv_sec = 0;
258                 ts->tv_nsec = 0;
259         }
260 }
261
262 void __init time_init(void)
263 {
264         unsigned long current_cr16_khz;
265
266         clocktick = (100 * PAGE0->mem_10msec) / HZ;
267
268         start_cpu_itimer();     /* get CPU 0 started */
269
270         /* register at clocksource framework */
271         current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
272         clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
273 }