Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-2.6.git] / arch / mips / mm / dma-default.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
7  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
8  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9  */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19
20 #include <asm/cache.h>
21 #include <asm/io.h>
22
23 #include <dma-coherence.h>
24
25 static inline struct page *dma_addr_to_page(struct device *dev,
26         dma_addr_t dma_addr)
27 {
28         return pfn_to_page(
29                 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
30 }
31
32 /*
33  * Warning on the terminology - Linux calls an uncached area coherent;
34  * MIPS terminology calls memory areas with hardware maintained coherency
35  * coherent.
36  */
37
38 static inline int cpu_is_noncoherent_r10000(struct device *dev)
39 {
40         return !plat_device_is_coherent(dev) &&
41                (current_cpu_type() == CPU_R10000 ||
42                current_cpu_type() == CPU_R12000);
43 }
44
45 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
46 {
47         gfp_t dma_flag;
48
49         /* ignore region specifiers */
50         gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
51
52 #ifdef CONFIG_ISA
53         if (dev == NULL)
54                 dma_flag = __GFP_DMA;
55         else
56 #endif
57 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
58              if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
59                         dma_flag = __GFP_DMA;
60         else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
61                         dma_flag = __GFP_DMA32;
62         else
63 #endif
64 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
65              if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
66                 dma_flag = __GFP_DMA32;
67         else
68 #endif
69 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
70              if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
71                 dma_flag = __GFP_DMA;
72         else
73 #endif
74                 dma_flag = 0;
75
76         /* Don't invoke OOM killer */
77         gfp |= __GFP_NORETRY;
78
79         return gfp | dma_flag;
80 }
81
82 void *dma_alloc_noncoherent(struct device *dev, size_t size,
83         dma_addr_t * dma_handle, gfp_t gfp)
84 {
85         void *ret;
86
87         gfp = massage_gfp_flags(dev, gfp);
88
89         ret = (void *) __get_free_pages(gfp, get_order(size));
90
91         if (ret != NULL) {
92                 memset(ret, 0, size);
93                 *dma_handle = plat_map_dma_mem(dev, ret, size);
94         }
95
96         return ret;
97 }
98 EXPORT_SYMBOL(dma_alloc_noncoherent);
99
100 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
101         dma_addr_t * dma_handle, gfp_t gfp)
102 {
103         void *ret;
104
105         if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
106                 return ret;
107
108         gfp = massage_gfp_flags(dev, gfp);
109
110         ret = (void *) __get_free_pages(gfp, get_order(size));
111
112         if (ret) {
113                 memset(ret, 0, size);
114                 *dma_handle = plat_map_dma_mem(dev, ret, size);
115
116                 if (!plat_device_is_coherent(dev)) {
117                         dma_cache_wback_inv((unsigned long) ret, size);
118                         ret = UNCAC_ADDR(ret);
119                 }
120         }
121
122         return ret;
123 }
124
125
126 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
127         dma_addr_t dma_handle)
128 {
129         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
130         free_pages((unsigned long) vaddr, get_order(size));
131 }
132 EXPORT_SYMBOL(dma_free_noncoherent);
133
134 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
135         dma_addr_t dma_handle)
136 {
137         unsigned long addr = (unsigned long) vaddr;
138         int order = get_order(size);
139
140         if (dma_release_from_coherent(dev, order, vaddr))
141                 return;
142
143         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
144
145         if (!plat_device_is_coherent(dev))
146                 addr = CAC_ADDR(addr);
147
148         free_pages(addr, get_order(size));
149 }
150
151 static inline void __dma_sync_virtual(void *addr, size_t size,
152         enum dma_data_direction direction)
153 {
154         switch (direction) {
155         case DMA_TO_DEVICE:
156                 dma_cache_wback((unsigned long)addr, size);
157                 break;
158
159         case DMA_FROM_DEVICE:
160                 dma_cache_inv((unsigned long)addr, size);
161                 break;
162
163         case DMA_BIDIRECTIONAL:
164                 dma_cache_wback_inv((unsigned long)addr, size);
165                 break;
166
167         default:
168                 BUG();
169         }
170 }
171
172 /*
173  * A single sg entry may refer to multiple physically contiguous
174  * pages. But we still need to process highmem pages individually.
175  * If highmem is not configured then the bulk of this loop gets
176  * optimized out.
177  */
178 static inline void __dma_sync(struct page *page,
179         unsigned long offset, size_t size, enum dma_data_direction direction)
180 {
181         size_t left = size;
182
183         do {
184                 size_t len = left;
185
186                 if (PageHighMem(page)) {
187                         void *addr;
188
189                         if (offset + len > PAGE_SIZE) {
190                                 if (offset >= PAGE_SIZE) {
191                                         page += offset >> PAGE_SHIFT;
192                                         offset &= ~PAGE_MASK;
193                                 }
194                                 len = PAGE_SIZE - offset;
195                         }
196
197                         addr = kmap_atomic(page);
198                         __dma_sync_virtual(addr + offset, len, direction);
199                         kunmap_atomic(addr);
200                 } else
201                         __dma_sync_virtual(page_address(page) + offset,
202                                            size, direction);
203                 offset = 0;
204                 page++;
205                 left -= len;
206         } while (left);
207 }
208
209 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
210         size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
211 {
212         if (cpu_is_noncoherent_r10000(dev))
213                 __dma_sync(dma_addr_to_page(dev, dma_addr),
214                            dma_addr & ~PAGE_MASK, size, direction);
215
216         plat_unmap_dma_mem(dev, dma_addr, size, direction);
217 }
218
219 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
220         int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
221 {
222         int i;
223
224         for (i = 0; i < nents; i++, sg++) {
225                 if (!plat_device_is_coherent(dev))
226                         __dma_sync(sg_page(sg), sg->offset, sg->length,
227                                    direction);
228                 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
229                                   sg->offset;
230         }
231
232         return nents;
233 }
234
235 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
236         unsigned long offset, size_t size, enum dma_data_direction direction,
237         struct dma_attrs *attrs)
238 {
239         if (!plat_device_is_coherent(dev))
240                 __dma_sync(page, offset, size, direction);
241
242         return plat_map_dma_mem_page(dev, page) + offset;
243 }
244
245 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
246         int nhwentries, enum dma_data_direction direction,
247         struct dma_attrs *attrs)
248 {
249         int i;
250
251         for (i = 0; i < nhwentries; i++, sg++) {
252                 if (!plat_device_is_coherent(dev) &&
253                     direction != DMA_TO_DEVICE)
254                         __dma_sync(sg_page(sg), sg->offset, sg->length,
255                                    direction);
256                 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257         }
258 }
259
260 static void mips_dma_sync_single_for_cpu(struct device *dev,
261         dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
262 {
263         if (cpu_is_noncoherent_r10000(dev))
264                 __dma_sync(dma_addr_to_page(dev, dma_handle),
265                            dma_handle & ~PAGE_MASK, size, direction);
266 }
267
268 static void mips_dma_sync_single_for_device(struct device *dev,
269         dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
270 {
271         plat_extra_sync_for_device(dev);
272         if (!plat_device_is_coherent(dev))
273                 __dma_sync(dma_addr_to_page(dev, dma_handle),
274                            dma_handle & ~PAGE_MASK, size, direction);
275 }
276
277 static void mips_dma_sync_sg_for_cpu(struct device *dev,
278         struct scatterlist *sg, int nelems, enum dma_data_direction direction)
279 {
280         int i;
281
282         /* Make sure that gcc doesn't leave the empty loop body.  */
283         for (i = 0; i < nelems; i++, sg++) {
284                 if (cpu_is_noncoherent_r10000(dev))
285                         __dma_sync(sg_page(sg), sg->offset, sg->length,
286                                    direction);
287         }
288 }
289
290 static void mips_dma_sync_sg_for_device(struct device *dev,
291         struct scatterlist *sg, int nelems, enum dma_data_direction direction)
292 {
293         int i;
294
295         /* Make sure that gcc doesn't leave the empty loop body.  */
296         for (i = 0; i < nelems; i++, sg++) {
297                 if (!plat_device_is_coherent(dev))
298                         __dma_sync(sg_page(sg), sg->offset, sg->length,
299                                    direction);
300         }
301 }
302
303 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
304 {
305         return plat_dma_mapping_error(dev, dma_addr);
306 }
307
308 int mips_dma_supported(struct device *dev, u64 mask)
309 {
310         return plat_dma_supported(dev, mask);
311 }
312
313 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
314                          enum dma_data_direction direction)
315 {
316         BUG_ON(direction == DMA_NONE);
317
318         plat_extra_sync_for_device(dev);
319         if (!plat_device_is_coherent(dev))
320                 __dma_sync_virtual(vaddr, size, direction);
321 }
322
323 EXPORT_SYMBOL(dma_cache_sync);
324
325 static struct dma_map_ops mips_default_dma_map_ops = {
326         .alloc_coherent = mips_dma_alloc_coherent,
327         .free_coherent = mips_dma_free_coherent,
328         .map_page = mips_dma_map_page,
329         .unmap_page = mips_dma_unmap_page,
330         .map_sg = mips_dma_map_sg,
331         .unmap_sg = mips_dma_unmap_sg,
332         .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
333         .sync_single_for_device = mips_dma_sync_single_for_device,
334         .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
335         .sync_sg_for_device = mips_dma_sync_sg_for_device,
336         .mapping_error = mips_dma_mapping_error,
337         .dma_supported = mips_dma_supported
338 };
339
340 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
341 EXPORT_SYMBOL(mips_dma_map_ops);
342
343 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
344
345 static int __init mips_dma_init(void)
346 {
347         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
348
349         return 0;
350 }
351 fs_initcall(mips_dma_init);