9c1cce9de35fdf9ff28168a87f344b84ffc3370f
[linux-2.6.git] / arch / mips / kernel / smp.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/r4k-timer.h>
41 #include <asm/mmu_context.h>
42 #include <asm/time.h>
43 #include <asm/setup.h>
44
45 #ifdef CONFIG_MIPS_MT_SMTC
46 #include <asm/mipsmtregs.h>
47 #endif /* CONFIG_MIPS_MT_SMTC */
48
49 volatile cpumask_t cpu_callin_map;      /* Bitmask of started secondaries */
50
51 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53
54 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64
65 /* representing cpus for which sibling maps can be computed */
66 static cpumask_t cpu_sibling_setup_map;
67
68 static inline void set_cpu_sibling_map(int cpu)
69 {
70         int i;
71
72         cpu_set(cpu, cpu_sibling_setup_map);
73
74         if (smp_num_siblings > 1) {
75                 for_each_cpu_mask(i, cpu_sibling_setup_map) {
76                         if (cpu_data[cpu].core == cpu_data[i].core) {
77                                 cpu_set(i, cpu_sibling_map[cpu]);
78                                 cpu_set(cpu, cpu_sibling_map[i]);
79                         }
80                 }
81         } else
82                 cpu_set(cpu, cpu_sibling_map[cpu]);
83 }
84
85 struct plat_smp_ops *mp_ops;
86
87 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
88 {
89         if (mp_ops)
90                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
91
92         mp_ops = ops;
93 }
94
95 /*
96  * First C code run on the secondary CPUs after being started up by
97  * the master.
98  */
99 asmlinkage __cpuinit void start_secondary(void)
100 {
101         unsigned int cpu;
102
103 #ifdef CONFIG_MIPS_MT_SMTC
104         /* Only do cpu_probe for first TC of CPU */
105         if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
106 #endif /* CONFIG_MIPS_MT_SMTC */
107         cpu_probe();
108         cpu_report();
109         per_cpu_trap_init();
110         mips_clockevent_init();
111         mp_ops->init_secondary();
112
113         /*
114          * XXX parity protection should be folded in here when it's converted
115          * to an option instead of something based on .cputype
116          */
117
118         calibrate_delay();
119         preempt_disable();
120         cpu = smp_processor_id();
121         cpu_data[cpu].udelay_val = loops_per_jiffy;
122
123         notify_cpu_starting(cpu);
124
125         mp_ops->smp_finish();
126         set_cpu_sibling_map(cpu);
127
128         cpu_set(cpu, cpu_callin_map);
129
130         synchronise_count_slave();
131
132         cpu_idle();
133 }
134
135 /*
136  * Call into both interrupt handlers, as we share the IPI for them
137  */
138 void __irq_entry smp_call_function_interrupt(void)
139 {
140         irq_enter();
141         generic_smp_call_function_single_interrupt();
142         generic_smp_call_function_interrupt();
143         irq_exit();
144 }
145
146 static void stop_this_cpu(void *dummy)
147 {
148         /*
149          * Remove this CPU:
150          */
151         cpu_clear(smp_processor_id(), cpu_online_map);
152         for (;;) {
153                 if (cpu_wait)
154                         (*cpu_wait)();          /* Wait if available. */
155         }
156 }
157
158 void smp_send_stop(void)
159 {
160         smp_call_function(stop_this_cpu, NULL, 0);
161 }
162
163 void __init smp_cpus_done(unsigned int max_cpus)
164 {
165         mp_ops->cpus_done();
166         synchronise_count_master();
167 }
168
169 /* called from main before smp_init() */
170 void __init smp_prepare_cpus(unsigned int max_cpus)
171 {
172         init_new_context(current, &init_mm);
173         current_thread_info()->cpu = 0;
174         mp_ops->prepare_cpus(max_cpus);
175         set_cpu_sibling_map(0);
176 #ifndef CONFIG_HOTPLUG_CPU
177         init_cpu_present(&cpu_possible_map);
178 #endif
179 }
180
181 /* preload SMP state for boot cpu */
182 void __devinit smp_prepare_boot_cpu(void)
183 {
184         set_cpu_possible(0, true);
185         set_cpu_online(0, true);
186         cpu_set(0, cpu_callin_map);
187 }
188
189 /*
190  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
191  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
192  * physical, not logical.
193  */
194 static struct task_struct *cpu_idle_thread[NR_CPUS];
195
196 struct create_idle {
197         struct work_struct work;
198         struct task_struct *idle;
199         struct completion done;
200         int cpu;
201 };
202
203 static void __cpuinit do_fork_idle(struct work_struct *work)
204 {
205         struct create_idle *c_idle =
206                 container_of(work, struct create_idle, work);
207
208         c_idle->idle = fork_idle(c_idle->cpu);
209         complete(&c_idle->done);
210 }
211
212 int __cpuinit __cpu_up(unsigned int cpu)
213 {
214         struct task_struct *idle;
215
216         /*
217          * Processor goes to start_secondary(), sets online flag
218          * The following code is purely to make sure
219          * Linux can schedule processes on this slave.
220          */
221         if (!cpu_idle_thread[cpu]) {
222                 /*
223                  * Schedule work item to avoid forking user task
224                  * Ported from arch/x86/kernel/smpboot.c
225                  */
226                 struct create_idle c_idle = {
227                         .cpu    = cpu,
228                         .done   = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
229                 };
230
231                 INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
232                 schedule_work(&c_idle.work);
233                 wait_for_completion(&c_idle.done);
234                 idle = cpu_idle_thread[cpu] = c_idle.idle;
235
236                 if (IS_ERR(idle))
237                         panic(KERN_ERR "Fork failed for CPU %d", cpu);
238         } else {
239                 idle = cpu_idle_thread[cpu];
240                 init_idle(idle, cpu);
241         }
242
243         mp_ops->boot_secondary(cpu, idle);
244
245         /*
246          * Trust is futile.  We should really have timeouts ...
247          */
248         while (!cpu_isset(cpu, cpu_callin_map))
249                 udelay(100);
250
251         cpu_set(cpu, cpu_online_map);
252
253         return 0;
254 }
255
256 /* Not really SMP stuff ... */
257 int setup_profiling_timer(unsigned int multiplier)
258 {
259         return 0;
260 }
261
262 static void flush_tlb_all_ipi(void *info)
263 {
264         local_flush_tlb_all();
265 }
266
267 void flush_tlb_all(void)
268 {
269         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
270 }
271
272 static void flush_tlb_mm_ipi(void *mm)
273 {
274         local_flush_tlb_mm((struct mm_struct *)mm);
275 }
276
277 /*
278  * Special Variant of smp_call_function for use by TLB functions:
279  *
280  *  o No return value
281  *  o collapses to normal function call on UP kernels
282  *  o collapses to normal function call on systems with a single shared
283  *    primary cache.
284  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
285  */
286 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
287 {
288 #ifndef CONFIG_MIPS_MT_SMTC
289         smp_call_function(func, info, 1);
290 #endif
291 }
292
293 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
294 {
295         preempt_disable();
296
297         smp_on_other_tlbs(func, info);
298         func(info);
299
300         preempt_enable();
301 }
302
303 /*
304  * The following tlb flush calls are invoked when old translations are
305  * being torn down, or pte attributes are changing. For single threaded
306  * address spaces, a new context is obtained on the current cpu, and tlb
307  * context on other cpus are invalidated to force a new context allocation
308  * at switch_mm time, should the mm ever be used on other cpus. For
309  * multithreaded address spaces, intercpu interrupts have to be sent.
310  * Another case where intercpu interrupts are required is when the target
311  * mm might be active on another cpu (eg debuggers doing the flushes on
312  * behalf of debugees, kswapd stealing pages from another process etc).
313  * Kanoj 07/00.
314  */
315
316 void flush_tlb_mm(struct mm_struct *mm)
317 {
318         preempt_disable();
319
320         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
321                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
322         } else {
323                 cpumask_t mask = cpu_online_map;
324                 unsigned int cpu;
325
326                 cpu_clear(smp_processor_id(), mask);
327                 for_each_cpu_mask(cpu, mask)
328                         if (cpu_context(cpu, mm))
329                                 cpu_context(cpu, mm) = 0;
330         }
331         local_flush_tlb_mm(mm);
332
333         preempt_enable();
334 }
335
336 struct flush_tlb_data {
337         struct vm_area_struct *vma;
338         unsigned long addr1;
339         unsigned long addr2;
340 };
341
342 static void flush_tlb_range_ipi(void *info)
343 {
344         struct flush_tlb_data *fd = info;
345
346         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
347 }
348
349 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
350 {
351         struct mm_struct *mm = vma->vm_mm;
352
353         preempt_disable();
354         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
355                 struct flush_tlb_data fd = {
356                         .vma = vma,
357                         .addr1 = start,
358                         .addr2 = end,
359                 };
360
361                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
362         } else {
363                 cpumask_t mask = cpu_online_map;
364                 unsigned int cpu;
365
366                 cpu_clear(smp_processor_id(), mask);
367                 for_each_cpu_mask(cpu, mask)
368                         if (cpu_context(cpu, mm))
369                                 cpu_context(cpu, mm) = 0;
370         }
371         local_flush_tlb_range(vma, start, end);
372         preempt_enable();
373 }
374
375 static void flush_tlb_kernel_range_ipi(void *info)
376 {
377         struct flush_tlb_data *fd = info;
378
379         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
380 }
381
382 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
383 {
384         struct flush_tlb_data fd = {
385                 .addr1 = start,
386                 .addr2 = end,
387         };
388
389         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
390 }
391
392 static void flush_tlb_page_ipi(void *info)
393 {
394         struct flush_tlb_data *fd = info;
395
396         local_flush_tlb_page(fd->vma, fd->addr1);
397 }
398
399 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
400 {
401         preempt_disable();
402         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
403                 struct flush_tlb_data fd = {
404                         .vma = vma,
405                         .addr1 = page,
406                 };
407
408                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
409         } else {
410                 cpumask_t mask = cpu_online_map;
411                 unsigned int cpu;
412
413                 cpu_clear(smp_processor_id(), mask);
414                 for_each_cpu_mask(cpu, mask)
415                         if (cpu_context(cpu, vma->vm_mm))
416                                 cpu_context(cpu, vma->vm_mm) = 0;
417         }
418         local_flush_tlb_page(vma, page);
419         preempt_enable();
420 }
421
422 static void flush_tlb_one_ipi(void *info)
423 {
424         unsigned long vaddr = (unsigned long) info;
425
426         local_flush_tlb_one(vaddr);
427 }
428
429 void flush_tlb_one(unsigned long vaddr)
430 {
431         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
432 }
433
434 EXPORT_SYMBOL(flush_tlb_page);
435 EXPORT_SYMBOL(flush_tlb_one);