4623a90e515abdab4d181df04cb8f7f0aee8b169
[linux-2.6.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 void kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148                 return ;
149         }
150
151         if (!kvm_vsa_base) {
152                 kvm_vsa_base = tmp_base;
153                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
154         }
155         spin_unlock(&vp_lock);
156         ia64_ptr_entry(0x3, slot);
157 }
158
159 void kvm_arch_hardware_disable(void *garbage)
160 {
161
162         long status;
163         int slot;
164         unsigned long pte;
165         unsigned long saved_psr;
166         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
167
168         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
169                                 PAGE_KERNEL));
170
171         local_irq_save(saved_psr);
172         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
173         local_irq_restore(saved_psr);
174         if (slot < 0)
175                 return;
176
177         status = ia64_pal_vp_exit_env(host_iva);
178         if (status)
179                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
180                                 status);
181         ia64_ptr_entry(0x3, slot);
182 }
183
184 void kvm_arch_check_processor_compat(void *rtn)
185 {
186         *(int *)rtn = 0;
187 }
188
189 int kvm_dev_ioctl_check_extension(long ext)
190 {
191
192         int r;
193
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196         case KVM_CAP_MP_STATE:
197         case KVM_CAP_IRQ_INJECT_STATUS:
198                 r = 1;
199                 break;
200         case KVM_CAP_COALESCED_MMIO:
201                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
202                 break;
203         case KVM_CAP_IOMMU:
204                 r = iommu_found();
205                 break;
206         default:
207                 r = 0;
208         }
209         return r;
210
211 }
212
213 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
214                                         gpa_t addr, int len, int is_write)
215 {
216         struct kvm_io_device *dev;
217
218         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
219
220         return dev;
221 }
222
223 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
226         kvm_run->hw.hardware_exit_reason = 1;
227         return 0;
228 }
229
230 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
231 {
232         struct kvm_mmio_req *p;
233         struct kvm_io_device *mmio_dev;
234
235         p = kvm_get_vcpu_ioreq(vcpu);
236
237         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
238                 goto mmio;
239         vcpu->mmio_needed = 1;
240         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
241         vcpu->mmio_size = kvm_run->mmio.len = p->size;
242         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
243
244         if (vcpu->mmio_is_write)
245                 memcpy(vcpu->mmio_data, &p->data, p->size);
246         memcpy(kvm_run->mmio.data, &p->data, p->size);
247         kvm_run->exit_reason = KVM_EXIT_MMIO;
248         return 0;
249 mmio:
250         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
251         if (mmio_dev) {
252                 if (!p->dir)
253                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
254                                                 &p->data);
255                 else
256                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
257                                                 &p->data);
258
259         } else
260                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
261         p->state = STATE_IORESP_READY;
262
263         return 1;
264 }
265
266 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
267 {
268         struct exit_ctl_data *p;
269
270         p = kvm_get_exit_data(vcpu);
271
272         if (p->exit_reason == EXIT_REASON_PAL_CALL)
273                 return kvm_pal_emul(vcpu, kvm_run);
274         else {
275                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
276                 kvm_run->hw.hardware_exit_reason = 2;
277                 return 0;
278         }
279 }
280
281 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
282 {
283         struct exit_ctl_data *p;
284
285         p = kvm_get_exit_data(vcpu);
286
287         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
288                 kvm_sal_emul(vcpu);
289                 return 1;
290         } else {
291                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
292                 kvm_run->hw.hardware_exit_reason = 3;
293                 return 0;
294         }
295
296 }
297
298 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
299 {
300         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
301
302         if (!test_and_set_bit(vector, &vpd->irr[0])) {
303                 vcpu->arch.irq_new_pending = 1;
304                 kvm_vcpu_kick(vcpu);
305                 return 1;
306         }
307         return 0;
308 }
309
310 /*
311  *  offset: address offset to IPI space.
312  *  value:  deliver value.
313  */
314 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
315                                 uint64_t vector)
316 {
317         switch (dm) {
318         case SAPIC_FIXED:
319                 break;
320         case SAPIC_NMI:
321                 vector = 2;
322                 break;
323         case SAPIC_EXTINT:
324                 vector = 0;
325                 break;
326         case SAPIC_INIT:
327         case SAPIC_PMI:
328         default:
329                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
330                 return;
331         }
332         __apic_accept_irq(vcpu, vector);
333 }
334
335 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
336                         unsigned long eid)
337 {
338         union ia64_lid lid;
339         int i;
340
341         for (i = 0; i < kvm->arch.online_vcpus; i++) {
342                 if (kvm->vcpus[i]) {
343                         lid.val = VCPU_LID(kvm->vcpus[i]);
344                         if (lid.id == id && lid.eid == eid)
345                                 return kvm->vcpus[i];
346                 }
347         }
348
349         return NULL;
350 }
351
352 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
353 {
354         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
355         struct kvm_vcpu *target_vcpu;
356         struct kvm_pt_regs *regs;
357         union ia64_ipi_a addr = p->u.ipi_data.addr;
358         union ia64_ipi_d data = p->u.ipi_data.data;
359
360         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
361         if (!target_vcpu)
362                 return handle_vm_error(vcpu, kvm_run);
363
364         if (!target_vcpu->arch.launched) {
365                 regs = vcpu_regs(target_vcpu);
366
367                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
368                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
369
370                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
371                 if (waitqueue_active(&target_vcpu->wq))
372                         wake_up_interruptible(&target_vcpu->wq);
373         } else {
374                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
375                 if (target_vcpu != vcpu)
376                         kvm_vcpu_kick(target_vcpu);
377         }
378
379         return 1;
380 }
381
382 struct call_data {
383         struct kvm_ptc_g ptc_g_data;
384         struct kvm_vcpu *vcpu;
385 };
386
387 static void vcpu_global_purge(void *info)
388 {
389         struct call_data *p = (struct call_data *)info;
390         struct kvm_vcpu *vcpu = p->vcpu;
391
392         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
393                 return;
394
395         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
396         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
397                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
398                                                         p->ptc_g_data;
399         } else {
400                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
401                 vcpu->arch.ptc_g_count = 0;
402                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
403         }
404 }
405
406 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
407 {
408         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
409         struct kvm *kvm = vcpu->kvm;
410         struct call_data call_data;
411         int i;
412
413         call_data.ptc_g_data = p->u.ptc_g_data;
414
415         for (i = 0; i < kvm->arch.online_vcpus; i++) {
416                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
417                                                 KVM_MP_STATE_UNINITIALIZED ||
418                                         vcpu == kvm->vcpus[i])
419                         continue;
420
421                 if (waitqueue_active(&kvm->vcpus[i]->wq))
422                         wake_up_interruptible(&kvm->vcpus[i]->wq);
423
424                 if (kvm->vcpus[i]->cpu != -1) {
425                         call_data.vcpu = kvm->vcpus[i];
426                         smp_call_function_single(kvm->vcpus[i]->cpu,
427                                         vcpu_global_purge, &call_data, 1);
428                 } else
429                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
430
431         }
432         return 1;
433 }
434
435 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
436 {
437         return 1;
438 }
439
440 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
441 {
442         unsigned long pte, rtc_phys_addr, map_addr;
443         int slot;
444
445         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
446         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
447         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
448         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
449         vcpu->arch.sn_rtc_tr_slot = slot;
450         if (slot < 0) {
451                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
452                 slot = 0;
453         }
454         return slot;
455 }
456
457 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
458 {
459
460         ktime_t kt;
461         long itc_diff;
462         unsigned long vcpu_now_itc;
463         unsigned long expires;
464         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
465         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
466         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
467
468         if (irqchip_in_kernel(vcpu->kvm)) {
469
470                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
471
472                 if (time_after(vcpu_now_itc, vpd->itm)) {
473                         vcpu->arch.timer_check = 1;
474                         return 1;
475                 }
476                 itc_diff = vpd->itm - vcpu_now_itc;
477                 if (itc_diff < 0)
478                         itc_diff = -itc_diff;
479
480                 expires = div64_u64(itc_diff, cyc_per_usec);
481                 kt = ktime_set(0, 1000 * expires);
482
483                 vcpu->arch.ht_active = 1;
484                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
485
486                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
487                 kvm_vcpu_block(vcpu);
488                 hrtimer_cancel(p_ht);
489                 vcpu->arch.ht_active = 0;
490
491                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
492                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
493                                 vcpu->arch.mp_state =
494                                         KVM_MP_STATE_RUNNABLE;
495
496                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
497                         return -EINTR;
498                 return 1;
499         } else {
500                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
501                 return 0;
502         }
503 }
504
505 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
506                 struct kvm_run *kvm_run)
507 {
508         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
509         return 0;
510 }
511
512 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
513                 struct kvm_run *kvm_run)
514 {
515         return 1;
516 }
517
518 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
519                                 struct kvm_run *kvm_run)
520 {
521         printk("VMM: %s", vcpu->arch.log_buf);
522         return 1;
523 }
524
525 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
526                 struct kvm_run *kvm_run) = {
527         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
528         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
529         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
530         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
531         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
532         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
533         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
534         [EXIT_REASON_IPI]                   = handle_ipi,
535         [EXIT_REASON_PTC_G]                 = handle_global_purge,
536         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
537
538 };
539
540 static const int kvm_vti_max_exit_handlers =
541                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
542
543 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
544 {
545         struct exit_ctl_data *p_exit_data;
546
547         p_exit_data = kvm_get_exit_data(vcpu);
548         return p_exit_data->exit_reason;
549 }
550
551 /*
552  * The guest has exited.  See if we can fix it or if we need userspace
553  * assistance.
554  */
555 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
556 {
557         u32 exit_reason = kvm_get_exit_reason(vcpu);
558         vcpu->arch.last_exit = exit_reason;
559
560         if (exit_reason < kvm_vti_max_exit_handlers
561                         && kvm_vti_exit_handlers[exit_reason])
562                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
563         else {
564                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
565                 kvm_run->hw.hardware_exit_reason = exit_reason;
566         }
567         return 0;
568 }
569
570 static inline void vti_set_rr6(unsigned long rr6)
571 {
572         ia64_set_rr(RR6, rr6);
573         ia64_srlz_i();
574 }
575
576 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
577 {
578         unsigned long pte;
579         struct kvm *kvm = vcpu->kvm;
580         int r;
581
582         /*Insert a pair of tr to map vmm*/
583         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
584         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
585         if (r < 0)
586                 goto out;
587         vcpu->arch.vmm_tr_slot = r;
588         /*Insert a pairt of tr to map data of vm*/
589         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
590         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
591                                         pte, KVM_VM_DATA_SHIFT);
592         if (r < 0)
593                 goto out;
594         vcpu->arch.vm_tr_slot = r;
595
596 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
597         if (kvm->arch.is_sn2) {
598                 r = kvm_sn2_setup_mappings(vcpu);
599                 if (r < 0)
600                         goto out;
601         }
602 #endif
603
604         r = 0;
605 out:
606         return r;
607 }
608
609 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
610 {
611         struct kvm *kvm = vcpu->kvm;
612         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
613         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
614 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
615         if (kvm->arch.is_sn2)
616                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
617 #endif
618 }
619
620 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
621 {
622         int cpu = smp_processor_id();
623
624         if (vcpu->arch.last_run_cpu != cpu ||
625                         per_cpu(last_vcpu, cpu) != vcpu) {
626                 per_cpu(last_vcpu, cpu) = vcpu;
627                 vcpu->arch.last_run_cpu = cpu;
628                 kvm_flush_tlb_all();
629         }
630
631         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
632         vti_set_rr6(vcpu->arch.vmm_rr);
633         return kvm_insert_vmm_mapping(vcpu);
634 }
635 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
636 {
637         kvm_purge_vmm_mapping(vcpu);
638         vti_set_rr6(vcpu->arch.host_rr6);
639 }
640
641 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
642 {
643         union context *host_ctx, *guest_ctx;
644         int r;
645
646         /*Get host and guest context with guest address space.*/
647         host_ctx = kvm_get_host_context(vcpu);
648         guest_ctx = kvm_get_guest_context(vcpu);
649
650         r = kvm_vcpu_pre_transition(vcpu);
651         if (r < 0)
652                 goto out;
653         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
654         kvm_vcpu_post_transition(vcpu);
655         r = 0;
656 out:
657         return r;
658 }
659
660 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
661 {
662         int r;
663
664 again:
665         if (signal_pending(current)) {
666                 r = -EINTR;
667                 kvm_run->exit_reason = KVM_EXIT_INTR;
668                 goto out;
669         }
670
671         /*
672          * down_read() may sleep and return with interrupts enabled
673          */
674         down_read(&vcpu->kvm->slots_lock);
675
676         preempt_disable();
677         local_irq_disable();
678
679         vcpu->guest_mode = 1;
680         kvm_guest_enter();
681         r = vti_vcpu_run(vcpu, kvm_run);
682         if (r < 0) {
683                 local_irq_enable();
684                 preempt_enable();
685                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
686                 goto out;
687         }
688
689         vcpu->arch.launched = 1;
690         vcpu->guest_mode = 0;
691         local_irq_enable();
692
693         /*
694          * We must have an instruction between local_irq_enable() and
695          * kvm_guest_exit(), so the timer interrupt isn't delayed by
696          * the interrupt shadow.  The stat.exits increment will do nicely.
697          * But we need to prevent reordering, hence this barrier():
698          */
699         barrier();
700         kvm_guest_exit();
701         up_read(&vcpu->kvm->slots_lock);
702         preempt_enable();
703
704         r = kvm_handle_exit(kvm_run, vcpu);
705
706         if (r > 0) {
707                 if (!need_resched())
708                         goto again;
709         }
710
711 out:
712         if (r > 0) {
713                 kvm_resched(vcpu);
714                 goto again;
715         }
716
717         return r;
718 }
719
720 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
721 {
722         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
723
724         if (!vcpu->mmio_is_write)
725                 memcpy(&p->data, vcpu->mmio_data, 8);
726         p->state = STATE_IORESP_READY;
727 }
728
729 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
730 {
731         int r;
732         sigset_t sigsaved;
733
734         vcpu_load(vcpu);
735
736         if (vcpu->sigset_active)
737                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
738
739         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
740                 kvm_vcpu_block(vcpu);
741                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
742                 r = -EAGAIN;
743                 goto out;
744         }
745
746         if (vcpu->mmio_needed) {
747                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
748                 kvm_set_mmio_data(vcpu);
749                 vcpu->mmio_read_completed = 1;
750                 vcpu->mmio_needed = 0;
751         }
752         r = __vcpu_run(vcpu, kvm_run);
753 out:
754         if (vcpu->sigset_active)
755                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
756
757         vcpu_put(vcpu);
758         return r;
759 }
760
761 static struct kvm *kvm_alloc_kvm(void)
762 {
763
764         struct kvm *kvm;
765         uint64_t  vm_base;
766
767         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
768
769         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
770
771         if (!vm_base)
772                 return ERR_PTR(-ENOMEM);
773
774         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
775         kvm = (struct kvm *)(vm_base +
776                         offsetof(struct kvm_vm_data, kvm_vm_struct));
777         kvm->arch.vm_base = vm_base;
778         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
779
780         return kvm;
781 }
782
783 struct kvm_io_range {
784         unsigned long start;
785         unsigned long size;
786         unsigned long type;
787 };
788
789 static const struct kvm_io_range io_ranges[] = {
790         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
791         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
792         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
793         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
794         {PIB_START, PIB_SIZE, GPFN_PIB},
795 };
796
797 static void kvm_build_io_pmt(struct kvm *kvm)
798 {
799         unsigned long i, j;
800
801         /* Mark I/O ranges */
802         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
803                                                         i++) {
804                 for (j = io_ranges[i].start;
805                                 j < io_ranges[i].start + io_ranges[i].size;
806                                 j += PAGE_SIZE)
807                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
808                                         io_ranges[i].type, 0);
809         }
810
811 }
812
813 /*Use unused rids to virtualize guest rid.*/
814 #define GUEST_PHYSICAL_RR0      0x1739
815 #define GUEST_PHYSICAL_RR4      0x2739
816 #define VMM_INIT_RR             0x1660
817
818 static void kvm_init_vm(struct kvm *kvm)
819 {
820         BUG_ON(!kvm);
821
822         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
823         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
824         kvm->arch.vmm_init_rr = VMM_INIT_RR;
825
826         /*
827          *Fill P2M entries for MMIO/IO ranges
828          */
829         kvm_build_io_pmt(kvm);
830
831         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
832
833         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
834         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
835 }
836
837 struct  kvm *kvm_arch_create_vm(void)
838 {
839         struct kvm *kvm = kvm_alloc_kvm();
840
841         if (IS_ERR(kvm))
842                 return ERR_PTR(-ENOMEM);
843
844         kvm->arch.is_sn2 = ia64_platform_is("sn2");
845
846         kvm_init_vm(kvm);
847
848         kvm->arch.online_vcpus = 0;
849
850         return kvm;
851
852 }
853
854 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
855                                         struct kvm_irqchip *chip)
856 {
857         int r;
858
859         r = 0;
860         switch (chip->chip_id) {
861         case KVM_IRQCHIP_IOAPIC:
862                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
863                                 sizeof(struct kvm_ioapic_state));
864                 break;
865         default:
866                 r = -EINVAL;
867                 break;
868         }
869         return r;
870 }
871
872 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
873 {
874         int r;
875
876         r = 0;
877         switch (chip->chip_id) {
878         case KVM_IRQCHIP_IOAPIC:
879                 memcpy(ioapic_irqchip(kvm),
880                                 &chip->chip.ioapic,
881                                 sizeof(struct kvm_ioapic_state));
882                 break;
883         default:
884                 r = -EINVAL;
885                 break;
886         }
887         return r;
888 }
889
890 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
891
892 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
893 {
894         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
895         int i;
896
897         vcpu_load(vcpu);
898
899         for (i = 0; i < 16; i++) {
900                 vpd->vgr[i] = regs->vpd.vgr[i];
901                 vpd->vbgr[i] = regs->vpd.vbgr[i];
902         }
903         for (i = 0; i < 128; i++)
904                 vpd->vcr[i] = regs->vpd.vcr[i];
905         vpd->vhpi = regs->vpd.vhpi;
906         vpd->vnat = regs->vpd.vnat;
907         vpd->vbnat = regs->vpd.vbnat;
908         vpd->vpsr = regs->vpd.vpsr;
909
910         vpd->vpr = regs->vpd.vpr;
911
912         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
913
914         RESTORE_REGS(mp_state);
915         RESTORE_REGS(vmm_rr);
916         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
917         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
918         RESTORE_REGS(itr_regions);
919         RESTORE_REGS(dtr_regions);
920         RESTORE_REGS(tc_regions);
921         RESTORE_REGS(irq_check);
922         RESTORE_REGS(itc_check);
923         RESTORE_REGS(timer_check);
924         RESTORE_REGS(timer_pending);
925         RESTORE_REGS(last_itc);
926         for (i = 0; i < 8; i++) {
927                 vcpu->arch.vrr[i] = regs->vrr[i];
928                 vcpu->arch.ibr[i] = regs->ibr[i];
929                 vcpu->arch.dbr[i] = regs->dbr[i];
930         }
931         for (i = 0; i < 4; i++)
932                 vcpu->arch.insvc[i] = regs->insvc[i];
933         RESTORE_REGS(xtp);
934         RESTORE_REGS(metaphysical_rr0);
935         RESTORE_REGS(metaphysical_rr4);
936         RESTORE_REGS(metaphysical_saved_rr0);
937         RESTORE_REGS(metaphysical_saved_rr4);
938         RESTORE_REGS(fp_psr);
939         RESTORE_REGS(saved_gp);
940
941         vcpu->arch.irq_new_pending = 1;
942         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
943         set_bit(KVM_REQ_RESUME, &vcpu->requests);
944
945         vcpu_put(vcpu);
946
947         return 0;
948 }
949
950 long kvm_arch_vm_ioctl(struct file *filp,
951                 unsigned int ioctl, unsigned long arg)
952 {
953         struct kvm *kvm = filp->private_data;
954         void __user *argp = (void __user *)arg;
955         int r = -EINVAL;
956
957         switch (ioctl) {
958         case KVM_SET_MEMORY_REGION: {
959                 struct kvm_memory_region kvm_mem;
960                 struct kvm_userspace_memory_region kvm_userspace_mem;
961
962                 r = -EFAULT;
963                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
964                         goto out;
965                 kvm_userspace_mem.slot = kvm_mem.slot;
966                 kvm_userspace_mem.flags = kvm_mem.flags;
967                 kvm_userspace_mem.guest_phys_addr =
968                                         kvm_mem.guest_phys_addr;
969                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
970                 r = kvm_vm_ioctl_set_memory_region(kvm,
971                                         &kvm_userspace_mem, 0);
972                 if (r)
973                         goto out;
974                 break;
975                 }
976         case KVM_CREATE_IRQCHIP:
977                 r = -EFAULT;
978                 r = kvm_ioapic_init(kvm);
979                 if (r)
980                         goto out;
981                 r = kvm_setup_default_irq_routing(kvm);
982                 if (r) {
983                         kfree(kvm->arch.vioapic);
984                         goto out;
985                 }
986                 break;
987         case KVM_IRQ_LINE_STATUS:
988         case KVM_IRQ_LINE: {
989                 struct kvm_irq_level irq_event;
990
991                 r = -EFAULT;
992                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
993                         goto out;
994                 if (irqchip_in_kernel(kvm)) {
995                         __s32 status;
996                         mutex_lock(&kvm->lock);
997                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
998                                     irq_event.irq, irq_event.level);
999                         mutex_unlock(&kvm->lock);
1000                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1001                                 irq_event.status = status;
1002                                 if (copy_to_user(argp, &irq_event,
1003                                                         sizeof irq_event))
1004                                         goto out;
1005                         }
1006                         r = 0;
1007                 }
1008                 break;
1009                 }
1010         case KVM_GET_IRQCHIP: {
1011                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1012                 struct kvm_irqchip chip;
1013
1014                 r = -EFAULT;
1015                 if (copy_from_user(&chip, argp, sizeof chip))
1016                                 goto out;
1017                 r = -ENXIO;
1018                 if (!irqchip_in_kernel(kvm))
1019                         goto out;
1020                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1021                 if (r)
1022                         goto out;
1023                 r = -EFAULT;
1024                 if (copy_to_user(argp, &chip, sizeof chip))
1025                                 goto out;
1026                 r = 0;
1027                 break;
1028                 }
1029         case KVM_SET_IRQCHIP: {
1030                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1031                 struct kvm_irqchip chip;
1032
1033                 r = -EFAULT;
1034                 if (copy_from_user(&chip, argp, sizeof chip))
1035                                 goto out;
1036                 r = -ENXIO;
1037                 if (!irqchip_in_kernel(kvm))
1038                         goto out;
1039                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1040                 if (r)
1041                         goto out;
1042                 r = 0;
1043                 break;
1044                 }
1045         default:
1046                 ;
1047         }
1048 out:
1049         return r;
1050 }
1051
1052 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1053                 struct kvm_sregs *sregs)
1054 {
1055         return -EINVAL;
1056 }
1057
1058 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1059                 struct kvm_sregs *sregs)
1060 {
1061         return -EINVAL;
1062
1063 }
1064 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1065                 struct kvm_translation *tr)
1066 {
1067
1068         return -EINVAL;
1069 }
1070
1071 static int kvm_alloc_vmm_area(void)
1072 {
1073         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1074                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1075                                 get_order(KVM_VMM_SIZE));
1076                 if (!kvm_vmm_base)
1077                         return -ENOMEM;
1078
1079                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1080                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1081
1082                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1083                                 kvm_vmm_base, kvm_vm_buffer);
1084         }
1085
1086         return 0;
1087 }
1088
1089 static void kvm_free_vmm_area(void)
1090 {
1091         if (kvm_vmm_base) {
1092                 /*Zero this area before free to avoid bits leak!!*/
1093                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1094                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1095                 kvm_vmm_base  = 0;
1096                 kvm_vm_buffer = 0;
1097                 kvm_vsa_base = 0;
1098         }
1099 }
1100
1101 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1102 {
1103 }
1104
1105 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1106 {
1107         int i;
1108         union cpuid3_t cpuid3;
1109         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1110
1111         if (IS_ERR(vpd))
1112                 return PTR_ERR(vpd);
1113
1114         /* CPUID init */
1115         for (i = 0; i < 5; i++)
1116                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1117
1118         /* Limit the CPUID number to 5 */
1119         cpuid3.value = vpd->vcpuid[3];
1120         cpuid3.number = 4;      /* 5 - 1 */
1121         vpd->vcpuid[3] = cpuid3.value;
1122
1123         /*Set vac and vdc fields*/
1124         vpd->vac.a_from_int_cr = 1;
1125         vpd->vac.a_to_int_cr = 1;
1126         vpd->vac.a_from_psr = 1;
1127         vpd->vac.a_from_cpuid = 1;
1128         vpd->vac.a_cover = 1;
1129         vpd->vac.a_bsw = 1;
1130         vpd->vac.a_int = 1;
1131         vpd->vdc.d_vmsw = 1;
1132
1133         /*Set virtual buffer*/
1134         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1135
1136         return 0;
1137 }
1138
1139 static int vti_create_vp(struct kvm_vcpu *vcpu)
1140 {
1141         long ret;
1142         struct vpd *vpd = vcpu->arch.vpd;
1143         unsigned long  vmm_ivt;
1144
1145         vmm_ivt = kvm_vmm_info->vmm_ivt;
1146
1147         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1148
1149         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1150
1151         if (ret) {
1152                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1153                 return -EINVAL;
1154         }
1155         return 0;
1156 }
1157
1158 static void init_ptce_info(struct kvm_vcpu *vcpu)
1159 {
1160         ia64_ptce_info_t ptce = {0};
1161
1162         ia64_get_ptce(&ptce);
1163         vcpu->arch.ptce_base = ptce.base;
1164         vcpu->arch.ptce_count[0] = ptce.count[0];
1165         vcpu->arch.ptce_count[1] = ptce.count[1];
1166         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1167         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1168 }
1169
1170 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1171 {
1172         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1173
1174         if (hrtimer_cancel(p_ht))
1175                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1176 }
1177
1178 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1179 {
1180         struct kvm_vcpu *vcpu;
1181         wait_queue_head_t *q;
1182
1183         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1184         q = &vcpu->wq;
1185
1186         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1187                 goto out;
1188
1189         if (waitqueue_active(q))
1190                 wake_up_interruptible(q);
1191
1192 out:
1193         vcpu->arch.timer_fired = 1;
1194         vcpu->arch.timer_check = 1;
1195         return HRTIMER_NORESTART;
1196 }
1197
1198 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1199
1200 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1201 {
1202         struct kvm_vcpu *v;
1203         int r;
1204         int i;
1205         long itc_offset;
1206         struct kvm *kvm = vcpu->kvm;
1207         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1208
1209         union context *p_ctx = &vcpu->arch.guest;
1210         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1211
1212         /*Init vcpu context for first run.*/
1213         if (IS_ERR(vmm_vcpu))
1214                 return PTR_ERR(vmm_vcpu);
1215
1216         if (vcpu->vcpu_id == 0) {
1217                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1218
1219                 /*Set entry address for first run.*/
1220                 regs->cr_iip = PALE_RESET_ENTRY;
1221
1222                 /*Initialize itc offset for vcpus*/
1223                 itc_offset = 0UL - kvm_get_itc(vcpu);
1224                 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1225                         v = (struct kvm_vcpu *)((char *)vcpu +
1226                                         sizeof(struct kvm_vcpu_data) * i);
1227                         v->arch.itc_offset = itc_offset;
1228                         v->arch.last_itc = 0;
1229                 }
1230         } else
1231                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1232
1233         r = -ENOMEM;
1234         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1235         if (!vcpu->arch.apic)
1236                 goto out;
1237         vcpu->arch.apic->vcpu = vcpu;
1238
1239         p_ctx->gr[1] = 0;
1240         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1241         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1242         p_ctx->psr = 0x1008522000UL;
1243         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1244         p_ctx->caller_unat = 0;
1245         p_ctx->pr = 0x0;
1246         p_ctx->ar[36] = 0x0; /*unat*/
1247         p_ctx->ar[19] = 0x0; /*rnat*/
1248         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1249                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1250         p_ctx->ar[64] = 0x0; /*pfs*/
1251         p_ctx->cr[0] = 0x7e04UL;
1252         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1253         p_ctx->cr[8] = 0x3c;
1254
1255         /*Initilize region register*/
1256         p_ctx->rr[0] = 0x30;
1257         p_ctx->rr[1] = 0x30;
1258         p_ctx->rr[2] = 0x30;
1259         p_ctx->rr[3] = 0x30;
1260         p_ctx->rr[4] = 0x30;
1261         p_ctx->rr[5] = 0x30;
1262         p_ctx->rr[7] = 0x30;
1263
1264         /*Initilize branch register 0*/
1265         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1266
1267         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1268         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1269         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1270
1271         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1272         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1273
1274         vcpu->arch.last_run_cpu = -1;
1275         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1276         vcpu->arch.vsa_base = kvm_vsa_base;
1277         vcpu->arch.__gp = kvm_vmm_gp;
1278         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1279         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1280         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1281         init_ptce_info(vcpu);
1282
1283         r = 0;
1284 out:
1285         return r;
1286 }
1287
1288 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1289 {
1290         unsigned long psr;
1291         int r;
1292
1293         local_irq_save(psr);
1294         r = kvm_insert_vmm_mapping(vcpu);
1295         if (r)
1296                 goto fail;
1297         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1298         if (r)
1299                 goto fail;
1300
1301         r = vti_init_vpd(vcpu);
1302         if (r) {
1303                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1304                 goto uninit;
1305         }
1306
1307         r = vti_create_vp(vcpu);
1308         if (r)
1309                 goto uninit;
1310
1311         kvm_purge_vmm_mapping(vcpu);
1312         local_irq_restore(psr);
1313
1314         return 0;
1315 uninit:
1316         kvm_vcpu_uninit(vcpu);
1317 fail:
1318         local_irq_restore(psr);
1319         return r;
1320 }
1321
1322 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1323                 unsigned int id)
1324 {
1325         struct kvm_vcpu *vcpu;
1326         unsigned long vm_base = kvm->arch.vm_base;
1327         int r;
1328         int cpu;
1329
1330         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1331
1332         r = -EINVAL;
1333         if (id >= KVM_MAX_VCPUS) {
1334                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1335                                 KVM_MAX_VCPUS);
1336                 goto fail;
1337         }
1338
1339         r = -ENOMEM;
1340         if (!vm_base) {
1341                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1342                 goto fail;
1343         }
1344         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1345                                         vcpu_data[id].vcpu_struct));
1346         vcpu->kvm = kvm;
1347
1348         cpu = get_cpu();
1349         vti_vcpu_load(vcpu, cpu);
1350         r = vti_vcpu_setup(vcpu, id);
1351         put_cpu();
1352
1353         if (r) {
1354                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1355                 goto fail;
1356         }
1357
1358         kvm->arch.online_vcpus++;
1359
1360         return vcpu;
1361 fail:
1362         return ERR_PTR(r);
1363 }
1364
1365 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1366 {
1367         return 0;
1368 }
1369
1370 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1371 {
1372         return -EINVAL;
1373 }
1374
1375 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1376 {
1377         return -EINVAL;
1378 }
1379
1380 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1381                                         struct kvm_guest_debug *dbg)
1382 {
1383         return -EINVAL;
1384 }
1385
1386 static void free_kvm(struct kvm *kvm)
1387 {
1388         unsigned long vm_base = kvm->arch.vm_base;
1389
1390         if (vm_base) {
1391                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1392                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1393         }
1394
1395 }
1396
1397 static void kvm_release_vm_pages(struct kvm *kvm)
1398 {
1399         struct kvm_memory_slot *memslot;
1400         int i, j;
1401         unsigned long base_gfn;
1402
1403         for (i = 0; i < kvm->nmemslots; i++) {
1404                 memslot = &kvm->memslots[i];
1405                 base_gfn = memslot->base_gfn;
1406
1407                 for (j = 0; j < memslot->npages; j++) {
1408                         if (memslot->rmap[j])
1409                                 put_page((struct page *)memslot->rmap[j]);
1410                 }
1411         }
1412 }
1413
1414 void kvm_arch_sync_events(struct kvm *kvm)
1415 {
1416 }
1417
1418 void kvm_arch_destroy_vm(struct kvm *kvm)
1419 {
1420         kvm_iommu_unmap_guest(kvm);
1421 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1422         kvm_free_all_assigned_devices(kvm);
1423 #endif
1424         kfree(kvm->arch.vioapic);
1425         kvm_release_vm_pages(kvm);
1426         kvm_free_physmem(kvm);
1427         free_kvm(kvm);
1428 }
1429
1430 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1431 {
1432 }
1433
1434 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1435 {
1436         if (cpu != vcpu->cpu) {
1437                 vcpu->cpu = cpu;
1438                 if (vcpu->arch.ht_active)
1439                         kvm_migrate_hlt_timer(vcpu);
1440         }
1441 }
1442
1443 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1444
1445 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1446 {
1447         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1448         int i;
1449
1450         vcpu_load(vcpu);
1451
1452         for (i = 0; i < 16; i++) {
1453                 regs->vpd.vgr[i] = vpd->vgr[i];
1454                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1455         }
1456         for (i = 0; i < 128; i++)
1457                 regs->vpd.vcr[i] = vpd->vcr[i];
1458         regs->vpd.vhpi = vpd->vhpi;
1459         regs->vpd.vnat = vpd->vnat;
1460         regs->vpd.vbnat = vpd->vbnat;
1461         regs->vpd.vpsr = vpd->vpsr;
1462         regs->vpd.vpr = vpd->vpr;
1463
1464         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1465
1466         SAVE_REGS(mp_state);
1467         SAVE_REGS(vmm_rr);
1468         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1469         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1470         SAVE_REGS(itr_regions);
1471         SAVE_REGS(dtr_regions);
1472         SAVE_REGS(tc_regions);
1473         SAVE_REGS(irq_check);
1474         SAVE_REGS(itc_check);
1475         SAVE_REGS(timer_check);
1476         SAVE_REGS(timer_pending);
1477         SAVE_REGS(last_itc);
1478         for (i = 0; i < 8; i++) {
1479                 regs->vrr[i] = vcpu->arch.vrr[i];
1480                 regs->ibr[i] = vcpu->arch.ibr[i];
1481                 regs->dbr[i] = vcpu->arch.dbr[i];
1482         }
1483         for (i = 0; i < 4; i++)
1484                 regs->insvc[i] = vcpu->arch.insvc[i];
1485         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1486         SAVE_REGS(xtp);
1487         SAVE_REGS(metaphysical_rr0);
1488         SAVE_REGS(metaphysical_rr4);
1489         SAVE_REGS(metaphysical_saved_rr0);
1490         SAVE_REGS(metaphysical_saved_rr4);
1491         SAVE_REGS(fp_psr);
1492         SAVE_REGS(saved_gp);
1493
1494         vcpu_put(vcpu);
1495         return 0;
1496 }
1497
1498 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1499                                   struct kvm_ia64_vcpu_stack *stack)
1500 {
1501         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1502         return 0;
1503 }
1504
1505 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1506                                   struct kvm_ia64_vcpu_stack *stack)
1507 {
1508         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1509                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1510
1511         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1512         return 0;
1513 }
1514
1515 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1516 {
1517
1518         hrtimer_cancel(&vcpu->arch.hlt_timer);
1519         kfree(vcpu->arch.apic);
1520 }
1521
1522
1523 long kvm_arch_vcpu_ioctl(struct file *filp,
1524                          unsigned int ioctl, unsigned long arg)
1525 {
1526         struct kvm_vcpu *vcpu = filp->private_data;
1527         void __user *argp = (void __user *)arg;
1528         struct kvm_ia64_vcpu_stack *stack = NULL;
1529         long r;
1530
1531         switch (ioctl) {
1532         case KVM_IA64_VCPU_GET_STACK: {
1533                 struct kvm_ia64_vcpu_stack __user *user_stack;
1534                 void __user *first_p = argp;
1535
1536                 r = -EFAULT;
1537                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1538                         goto out;
1539
1540                 if (!access_ok(VERIFY_WRITE, user_stack,
1541                                sizeof(struct kvm_ia64_vcpu_stack))) {
1542                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1543                                "Illegal user destination address for stack\n");
1544                         goto out;
1545                 }
1546                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1547                 if (!stack) {
1548                         r = -ENOMEM;
1549                         goto out;
1550                 }
1551
1552                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1553                 if (r)
1554                         goto out;
1555
1556                 if (copy_to_user(user_stack, stack,
1557                                  sizeof(struct kvm_ia64_vcpu_stack)))
1558                         goto out;
1559
1560                 break;
1561         }
1562         case KVM_IA64_VCPU_SET_STACK: {
1563                 struct kvm_ia64_vcpu_stack __user *user_stack;
1564                 void __user *first_p = argp;
1565
1566                 r = -EFAULT;
1567                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1568                         goto out;
1569
1570                 if (!access_ok(VERIFY_READ, user_stack,
1571                             sizeof(struct kvm_ia64_vcpu_stack))) {
1572                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1573                                "Illegal user address for stack\n");
1574                         goto out;
1575                 }
1576                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1577                 if (!stack) {
1578                         r = -ENOMEM;
1579                         goto out;
1580                 }
1581                 if (copy_from_user(stack, user_stack,
1582                                    sizeof(struct kvm_ia64_vcpu_stack)))
1583                         goto out;
1584
1585                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1586                 break;
1587         }
1588
1589         default:
1590                 r = -EINVAL;
1591         }
1592
1593 out:
1594         kfree(stack);
1595         return r;
1596 }
1597
1598 int kvm_arch_set_memory_region(struct kvm *kvm,
1599                 struct kvm_userspace_memory_region *mem,
1600                 struct kvm_memory_slot old,
1601                 int user_alloc)
1602 {
1603         unsigned long i;
1604         unsigned long pfn;
1605         int npages = mem->memory_size >> PAGE_SHIFT;
1606         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1607         unsigned long base_gfn = memslot->base_gfn;
1608
1609         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1610                 return -ENOMEM;
1611
1612         for (i = 0; i < npages; i++) {
1613                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1614                 if (!kvm_is_mmio_pfn(pfn)) {
1615                         kvm_set_pmt_entry(kvm, base_gfn + i,
1616                                         pfn << PAGE_SHIFT,
1617                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1618                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1619                 } else {
1620                         kvm_set_pmt_entry(kvm, base_gfn + i,
1621                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1622                                         _PAGE_MA_UC);
1623                         memslot->rmap[i] = 0;
1624                         }
1625         }
1626
1627         return 0;
1628 }
1629
1630 void kvm_arch_flush_shadow(struct kvm *kvm)
1631 {
1632 }
1633
1634 long kvm_arch_dev_ioctl(struct file *filp,
1635                         unsigned int ioctl, unsigned long arg)
1636 {
1637         return -EINVAL;
1638 }
1639
1640 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1641 {
1642         kvm_vcpu_uninit(vcpu);
1643 }
1644
1645 static int vti_cpu_has_kvm_support(void)
1646 {
1647         long  avail = 1, status = 1, control = 1;
1648         long ret;
1649
1650         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1651         if (ret)
1652                 goto out;
1653
1654         if (!(avail & PAL_PROC_VM_BIT))
1655                 goto out;
1656
1657         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1658
1659         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1660         if (ret)
1661                 goto out;
1662         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1663
1664         if (!(vp_env_info & VP_OPCODE)) {
1665                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1666                                 "vm_env_info:0x%lx\n", vp_env_info);
1667         }
1668
1669         return 1;
1670 out:
1671         return 0;
1672 }
1673
1674
1675 /*
1676  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1677  * SN2 RTC, replacing the ITC based default verion.
1678  */
1679 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1680                           struct module *module)
1681 {
1682         unsigned long new_ar, new_ar_sn2;
1683         unsigned long module_base;
1684
1685         if (!ia64_platform_is("sn2"))
1686                 return;
1687
1688         module_base = (unsigned long)module->module_core;
1689
1690         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1691         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1692
1693         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1694                "as source\n");
1695
1696         /*
1697          * Copy the SN2 version of mov_ar into place. They are both
1698          * the same size, so 6 bundles is sufficient (6 * 0x10).
1699          */
1700         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1701 }
1702
1703 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1704                             struct module *module)
1705 {
1706         unsigned long module_base;
1707         unsigned long vmm_size;
1708
1709         unsigned long vmm_offset, func_offset, fdesc_offset;
1710         struct fdesc *p_fdesc;
1711
1712         BUG_ON(!module);
1713
1714         if (!kvm_vmm_base) {
1715                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1716                 return -EFAULT;
1717         }
1718
1719         /*Calculate new position of relocated vmm module.*/
1720         module_base = (unsigned long)module->module_core;
1721         vmm_size = module->core_size;
1722         if (unlikely(vmm_size > KVM_VMM_SIZE))
1723                 return -EFAULT;
1724
1725         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1726         kvm_patch_vmm(vmm_info, module);
1727         kvm_flush_icache(kvm_vmm_base, vmm_size);
1728
1729         /*Recalculate kvm_vmm_info based on new VMM*/
1730         vmm_offset = vmm_info->vmm_ivt - module_base;
1731         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1732         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1733                         kvm_vmm_info->vmm_ivt);
1734
1735         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1736         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1737                                                         fdesc_offset);
1738         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1739         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1740         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1741         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1742
1743         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1744                         KVM_VMM_BASE+func_offset);
1745
1746         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1747         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1748                         fdesc_offset);
1749         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1750         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1751         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1752         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1753
1754         kvm_vmm_gp = p_fdesc->gp;
1755
1756         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1757                                                 kvm_vmm_info->vmm_entry);
1758         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1759                                                 KVM_VMM_BASE + func_offset);
1760
1761         return 0;
1762 }
1763
1764 int kvm_arch_init(void *opaque)
1765 {
1766         int r;
1767         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1768
1769         if (!vti_cpu_has_kvm_support()) {
1770                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1771                 r = -EOPNOTSUPP;
1772                 goto out;
1773         }
1774
1775         if (kvm_vmm_info) {
1776                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1777                 r = -EEXIST;
1778                 goto out;
1779         }
1780
1781         r = -ENOMEM;
1782         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1783         if (!kvm_vmm_info)
1784                 goto out;
1785
1786         if (kvm_alloc_vmm_area())
1787                 goto out_free0;
1788
1789         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1790         if (r)
1791                 goto out_free1;
1792
1793         return 0;
1794
1795 out_free1:
1796         kvm_free_vmm_area();
1797 out_free0:
1798         kfree(kvm_vmm_info);
1799 out:
1800         return r;
1801 }
1802
1803 void kvm_arch_exit(void)
1804 {
1805         kvm_free_vmm_area();
1806         kfree(kvm_vmm_info);
1807         kvm_vmm_info = NULL;
1808 }
1809
1810 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1811                 struct kvm_dirty_log *log)
1812 {
1813         struct kvm_memory_slot *memslot;
1814         int r, i;
1815         long n, base;
1816         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1817                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1818
1819         r = -EINVAL;
1820         if (log->slot >= KVM_MEMORY_SLOTS)
1821                 goto out;
1822
1823         memslot = &kvm->memslots[log->slot];
1824         r = -ENOENT;
1825         if (!memslot->dirty_bitmap)
1826                 goto out;
1827
1828         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1829         base = memslot->base_gfn / BITS_PER_LONG;
1830
1831         for (i = 0; i < n/sizeof(long); ++i) {
1832                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1833                 dirty_bitmap[base + i] = 0;
1834         }
1835         r = 0;
1836 out:
1837         return r;
1838 }
1839
1840 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1841                 struct kvm_dirty_log *log)
1842 {
1843         int r;
1844         int n;
1845         struct kvm_memory_slot *memslot;
1846         int is_dirty = 0;
1847
1848         spin_lock(&kvm->arch.dirty_log_lock);
1849
1850         r = kvm_ia64_sync_dirty_log(kvm, log);
1851         if (r)
1852                 goto out;
1853
1854         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1855         if (r)
1856                 goto out;
1857
1858         /* If nothing is dirty, don't bother messing with page tables. */
1859         if (is_dirty) {
1860                 kvm_flush_remote_tlbs(kvm);
1861                 memslot = &kvm->memslots[log->slot];
1862                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1863                 memset(memslot->dirty_bitmap, 0, n);
1864         }
1865         r = 0;
1866 out:
1867         spin_unlock(&kvm->arch.dirty_log_lock);
1868         return r;
1869 }
1870
1871 int kvm_arch_hardware_setup(void)
1872 {
1873         return 0;
1874 }
1875
1876 void kvm_arch_hardware_unsetup(void)
1877 {
1878 }
1879
1880 static void vcpu_kick_intr(void *info)
1881 {
1882 #ifdef DEBUG
1883         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1884         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1885 #endif
1886 }
1887
1888 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1889 {
1890         int ipi_pcpu = vcpu->cpu;
1891         int cpu = get_cpu();
1892
1893         if (waitqueue_active(&vcpu->wq))
1894                 wake_up_interruptible(&vcpu->wq);
1895
1896         if (vcpu->guest_mode && cpu != ipi_pcpu)
1897                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1898         put_cpu();
1899 }
1900
1901 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1902 {
1903         return __apic_accept_irq(vcpu, irq->vector);
1904 }
1905
1906 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1907 {
1908         return apic->vcpu->vcpu_id == dest;
1909 }
1910
1911 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1912 {
1913         return 0;
1914 }
1915
1916 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1917 {
1918         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1919 }
1920
1921 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1922                 int short_hand, int dest, int dest_mode)
1923 {
1924         struct kvm_lapic *target = vcpu->arch.apic;
1925         return (dest_mode == 0) ?
1926                 kvm_apic_match_physical_addr(target, dest) :
1927                 kvm_apic_match_logical_addr(target, dest);
1928 }
1929
1930 static int find_highest_bits(int *dat)
1931 {
1932         u32  bits, bitnum;
1933         int i;
1934
1935         /* loop for all 256 bits */
1936         for (i = 7; i >= 0 ; i--) {
1937                 bits = dat[i];
1938                 if (bits) {
1939                         bitnum = fls(bits);
1940                         return i * 32 + bitnum - 1;
1941                 }
1942         }
1943
1944         return -1;
1945 }
1946
1947 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1948 {
1949     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1950
1951     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1952                 return NMI_VECTOR;
1953     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1954                 return ExtINT_VECTOR;
1955
1956     return find_highest_bits((int *)&vpd->irr[0]);
1957 }
1958
1959 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1960 {
1961         if (kvm_highest_pending_irq(vcpu) != -1)
1962                 return 1;
1963         return 0;
1964 }
1965
1966 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1967 {
1968         return vcpu->arch.timer_fired;
1969 }
1970
1971 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1972 {
1973         return gfn;
1974 }
1975
1976 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1977 {
1978         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1979 }
1980
1981 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1982                                     struct kvm_mp_state *mp_state)
1983 {
1984         vcpu_load(vcpu);
1985         mp_state->mp_state = vcpu->arch.mp_state;
1986         vcpu_put(vcpu);
1987         return 0;
1988 }
1989
1990 static int vcpu_reset(struct kvm_vcpu *vcpu)
1991 {
1992         int r;
1993         long psr;
1994         local_irq_save(psr);
1995         r = kvm_insert_vmm_mapping(vcpu);
1996         if (r)
1997                 goto fail;
1998
1999         vcpu->arch.launched = 0;
2000         kvm_arch_vcpu_uninit(vcpu);
2001         r = kvm_arch_vcpu_init(vcpu);
2002         if (r)
2003                 goto fail;
2004
2005         kvm_purge_vmm_mapping(vcpu);
2006         r = 0;
2007 fail:
2008         local_irq_restore(psr);
2009         return r;
2010 }
2011
2012 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2013                                     struct kvm_mp_state *mp_state)
2014 {
2015         int r = 0;
2016
2017         vcpu_load(vcpu);
2018         vcpu->arch.mp_state = mp_state->mp_state;
2019         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
2020                 r = vcpu_reset(vcpu);
2021         vcpu_put(vcpu);
2022         return r;
2023 }