crash_dump: export is_kdump_kernel to modules, consolidate elfcorehdr_addr, setup_elf...
[linux-2.6.git] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/tlbflush.h>
43
44 #define EFI_DEBUG       0
45
46 extern efi_status_t efi_call_phys (void *, ...);
47
48 struct efi efi;
49 EXPORT_SYMBOL(efi);
50 static efi_runtime_services_t *runtime;
51 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
52
53 #define efi_call_virt(f, args...)       (*(f))(args)
54
55 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
56 static efi_status_t                                                            \
57 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
58 {                                                                              \
59         struct ia64_fpreg fr[6];                                               \
60         efi_time_cap_t *atc = NULL;                                            \
61         efi_status_t ret;                                                      \
62                                                                                \
63         if (tc)                                                                \
64                 atc = adjust_arg(tc);                                          \
65         ia64_save_scratch_fpregs(fr);                                          \
66         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
67                                 adjust_arg(tm), atc);                          \
68         ia64_load_scratch_fpregs(fr);                                          \
69         return ret;                                                            \
70 }
71
72 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
73 static efi_status_t                                                            \
74 prefix##_set_time (efi_time_t *tm)                                             \
75 {                                                                              \
76         struct ia64_fpreg fr[6];                                               \
77         efi_status_t ret;                                                      \
78                                                                                \
79         ia64_save_scratch_fpregs(fr);                                          \
80         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
81                                 adjust_arg(tm));                               \
82         ia64_load_scratch_fpregs(fr);                                          \
83         return ret;                                                            \
84 }
85
86 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
87 static efi_status_t                                                            \
88 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
89                           efi_time_t *tm)                                      \
90 {                                                                              \
91         struct ia64_fpreg fr[6];                                               \
92         efi_status_t ret;                                                      \
93                                                                                \
94         ia64_save_scratch_fpregs(fr);                                          \
95         ret = efi_call_##prefix(                                               \
96                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
97                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
98         ia64_load_scratch_fpregs(fr);                                          \
99         return ret;                                                            \
100 }
101
102 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
103 static efi_status_t                                                            \
104 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
105 {                                                                              \
106         struct ia64_fpreg fr[6];                                               \
107         efi_time_t *atm = NULL;                                                \
108         efi_status_t ret;                                                      \
109                                                                                \
110         if (tm)                                                                \
111                 atm = adjust_arg(tm);                                          \
112         ia64_save_scratch_fpregs(fr);                                          \
113         ret = efi_call_##prefix(                                               \
114                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
115                 enabled, atm);                                                 \
116         ia64_load_scratch_fpregs(fr);                                          \
117         return ret;                                                            \
118 }
119
120 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
121 static efi_status_t                                                            \
122 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
123                        unsigned long *data_size, void *data)                   \
124 {                                                                              \
125         struct ia64_fpreg fr[6];                                               \
126         u32 *aattr = NULL;                                                     \
127         efi_status_t ret;                                                      \
128                                                                                \
129         if (attr)                                                              \
130                 aattr = adjust_arg(attr);                                      \
131         ia64_save_scratch_fpregs(fr);                                          \
132         ret = efi_call_##prefix(                                               \
133                 (efi_get_variable_t *) __va(runtime->get_variable),            \
134                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
135                 adjust_arg(data_size), adjust_arg(data));                      \
136         ia64_load_scratch_fpregs(fr);                                          \
137         return ret;                                                            \
138 }
139
140 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
141 static efi_status_t                                                            \
142 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
143                             efi_guid_t *vendor)                                \
144 {                                                                              \
145         struct ia64_fpreg fr[6];                                               \
146         efi_status_t ret;                                                      \
147                                                                                \
148         ia64_save_scratch_fpregs(fr);                                          \
149         ret = efi_call_##prefix(                                               \
150                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
151                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
152         ia64_load_scratch_fpregs(fr);                                          \
153         return ret;                                                            \
154 }
155
156 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
157 static efi_status_t                                                            \
158 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
159                        unsigned long attr, unsigned long data_size,            \
160                        void *data)                                             \
161 {                                                                              \
162         struct ia64_fpreg fr[6];                                               \
163         efi_status_t ret;                                                      \
164                                                                                \
165         ia64_save_scratch_fpregs(fr);                                          \
166         ret = efi_call_##prefix(                                               \
167                 (efi_set_variable_t *) __va(runtime->set_variable),            \
168                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
169                 adjust_arg(data));                                             \
170         ia64_load_scratch_fpregs(fr);                                          \
171         return ret;                                                            \
172 }
173
174 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
175 static efi_status_t                                                            \
176 prefix##_get_next_high_mono_count (u32 *count)                                 \
177 {                                                                              \
178         struct ia64_fpreg fr[6];                                               \
179         efi_status_t ret;                                                      \
180                                                                                \
181         ia64_save_scratch_fpregs(fr);                                          \
182         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
183                                 __va(runtime->get_next_high_mono_count),       \
184                                 adjust_arg(count));                            \
185         ia64_load_scratch_fpregs(fr);                                          \
186         return ret;                                                            \
187 }
188
189 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
190 static void                                                                    \
191 prefix##_reset_system (int reset_type, efi_status_t status,                    \
192                        unsigned long data_size, efi_char16_t *data)            \
193 {                                                                              \
194         struct ia64_fpreg fr[6];                                               \
195         efi_char16_t *adata = NULL;                                            \
196                                                                                \
197         if (data)                                                              \
198                 adata = adjust_arg(data);                                      \
199                                                                                \
200         ia64_save_scratch_fpregs(fr);                                          \
201         efi_call_##prefix(                                                     \
202                 (efi_reset_system_t *) __va(runtime->reset_system),            \
203                 reset_type, status, data_size, adata);                         \
204         /* should not return, but just in case... */                           \
205         ia64_load_scratch_fpregs(fr);                                          \
206 }
207
208 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
209
210 STUB_GET_TIME(phys, phys_ptr)
211 STUB_SET_TIME(phys, phys_ptr)
212 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
213 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
214 STUB_GET_VARIABLE(phys, phys_ptr)
215 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
216 STUB_SET_VARIABLE(phys, phys_ptr)
217 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
218 STUB_RESET_SYSTEM(phys, phys_ptr)
219
220 #define id(arg) arg
221
222 STUB_GET_TIME(virt, id)
223 STUB_SET_TIME(virt, id)
224 STUB_GET_WAKEUP_TIME(virt, id)
225 STUB_SET_WAKEUP_TIME(virt, id)
226 STUB_GET_VARIABLE(virt, id)
227 STUB_GET_NEXT_VARIABLE(virt, id)
228 STUB_SET_VARIABLE(virt, id)
229 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
230 STUB_RESET_SYSTEM(virt, id)
231
232 void
233 efi_gettimeofday (struct timespec *ts)
234 {
235         efi_time_t tm;
236
237         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
238                 memset(ts, 0, sizeof(*ts));
239                 return;
240         }
241
242         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
243                             tm.hour, tm.minute, tm.second);
244         ts->tv_nsec = tm.nanosecond;
245 }
246
247 static int
248 is_memory_available (efi_memory_desc_t *md)
249 {
250         if (!(md->attribute & EFI_MEMORY_WB))
251                 return 0;
252
253         switch (md->type) {
254               case EFI_LOADER_CODE:
255               case EFI_LOADER_DATA:
256               case EFI_BOOT_SERVICES_CODE:
257               case EFI_BOOT_SERVICES_DATA:
258               case EFI_CONVENTIONAL_MEMORY:
259                 return 1;
260         }
261         return 0;
262 }
263
264 typedef struct kern_memdesc {
265         u64 attribute;
266         u64 start;
267         u64 num_pages;
268 } kern_memdesc_t;
269
270 static kern_memdesc_t *kern_memmap;
271
272 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
273
274 static inline u64
275 kmd_end(kern_memdesc_t *kmd)
276 {
277         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
278 }
279
280 static inline u64
281 efi_md_end(efi_memory_desc_t *md)
282 {
283         return (md->phys_addr + efi_md_size(md));
284 }
285
286 static inline int
287 efi_wb(efi_memory_desc_t *md)
288 {
289         return (md->attribute & EFI_MEMORY_WB);
290 }
291
292 static inline int
293 efi_uc(efi_memory_desc_t *md)
294 {
295         return (md->attribute & EFI_MEMORY_UC);
296 }
297
298 static void
299 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
300 {
301         kern_memdesc_t *k;
302         u64 start, end, voff;
303
304         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
305         for (k = kern_memmap; k->start != ~0UL; k++) {
306                 if (k->attribute != attr)
307                         continue;
308                 start = PAGE_ALIGN(k->start);
309                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
310                 if (start < end)
311                         if ((*callback)(start + voff, end + voff, arg) < 0)
312                                 return;
313         }
314 }
315
316 /*
317  * Walk the EFI memory map and call CALLBACK once for each EFI memory
318  * descriptor that has memory that is available for OS use.
319  */
320 void
321 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
322 {
323         walk(callback, arg, EFI_MEMORY_WB);
324 }
325
326 /*
327  * Walk the EFI memory map and call CALLBACK once for each EFI memory
328  * descriptor that has memory that is available for uncached allocator.
329  */
330 void
331 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
332 {
333         walk(callback, arg, EFI_MEMORY_UC);
334 }
335
336 /*
337  * Look for the PAL_CODE region reported by EFI and map it using an
338  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
339  * Abstraction Layer chapter 11 in ADAG
340  */
341 void *
342 efi_get_pal_addr (void)
343 {
344         void *efi_map_start, *efi_map_end, *p;
345         efi_memory_desc_t *md;
346         u64 efi_desc_size;
347         int pal_code_count = 0;
348         u64 vaddr, mask;
349
350         efi_map_start = __va(ia64_boot_param->efi_memmap);
351         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
352         efi_desc_size = ia64_boot_param->efi_memdesc_size;
353
354         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
355                 md = p;
356                 if (md->type != EFI_PAL_CODE)
357                         continue;
358
359                 if (++pal_code_count > 1) {
360                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
361                                "dropped @ %llx\n", md->phys_addr);
362                         continue;
363                 }
364                 /*
365                  * The only ITLB entry in region 7 that is used is the one
366                  * installed by __start().  That entry covers a 64MB range.
367                  */
368                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
369                 vaddr = PAGE_OFFSET + md->phys_addr;
370
371                 /*
372                  * We must check that the PAL mapping won't overlap with the
373                  * kernel mapping.
374                  *
375                  * PAL code is guaranteed to be aligned on a power of 2 between
376                  * 4k and 256KB and that only one ITR is needed to map it. This
377                  * implies that the PAL code is always aligned on its size,
378                  * i.e., the closest matching page size supported by the TLB.
379                  * Therefore PAL code is guaranteed never to cross a 64MB unless
380                  * it is bigger than 64MB (very unlikely!).  So for now the
381                  * following test is enough to determine whether or not we need
382                  * a dedicated ITR for the PAL code.
383                  */
384                 if ((vaddr & mask) == (KERNEL_START & mask)) {
385                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
386                                __func__);
387                         continue;
388                 }
389
390                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
391                         panic("Whoa!  PAL code size bigger than a granule!");
392
393 #if EFI_DEBUG
394                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
395
396                 printk(KERN_INFO "CPU %d: mapping PAL code "
397                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
398                        smp_processor_id(), md->phys_addr,
399                        md->phys_addr + efi_md_size(md),
400                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
401 #endif
402                 return __va(md->phys_addr);
403         }
404         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
405                __func__);
406         return NULL;
407 }
408
409
410 static u8 __init palo_checksum(u8 *buffer, u32 length)
411 {
412         u8 sum = 0;
413         u8 *end = buffer + length;
414
415         while (buffer < end)
416                 sum = (u8) (sum + *(buffer++));
417
418         return sum;
419 }
420
421 /*
422  * Parse and handle PALO table which is published at:
423  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
424  */
425 static void __init handle_palo(unsigned long palo_phys)
426 {
427         struct palo_table *palo = __va(palo_phys);
428         u8  checksum;
429
430         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
431                 printk(KERN_INFO "PALO signature incorrect.\n");
432                 return;
433         }
434
435         checksum = palo_checksum((u8 *)palo, palo->length);
436         if (checksum) {
437                 printk(KERN_INFO "PALO checksum incorrect.\n");
438                 return;
439         }
440
441         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
442 }
443
444 void
445 efi_map_pal_code (void)
446 {
447         void *pal_vaddr = efi_get_pal_addr ();
448         u64 psr;
449
450         if (!pal_vaddr)
451                 return;
452
453         /*
454          * Cannot write to CRx with PSR.ic=1
455          */
456         psr = ia64_clear_ic();
457         ia64_itr(0x1, IA64_TR_PALCODE,
458                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
459                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
460                  IA64_GRANULE_SHIFT);
461         paravirt_dv_serialize_data();
462         ia64_set_psr(psr);              /* restore psr */
463 }
464
465 void __init
466 efi_init (void)
467 {
468         void *efi_map_start, *efi_map_end;
469         efi_config_table_t *config_tables;
470         efi_char16_t *c16;
471         u64 efi_desc_size;
472         char *cp, vendor[100] = "unknown";
473         int i;
474         unsigned long palo_phys;
475
476         /*
477          * It's too early to be able to use the standard kernel command line
478          * support...
479          */
480         for (cp = boot_command_line; *cp; ) {
481                 if (memcmp(cp, "mem=", 4) == 0) {
482                         mem_limit = memparse(cp + 4, &cp);
483                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
484                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
485                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
486                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
487                 } else {
488                         while (*cp != ' ' && *cp)
489                                 ++cp;
490                         while (*cp == ' ')
491                                 ++cp;
492                 }
493         }
494         if (min_addr != 0UL)
495                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
496                        min_addr >> 20);
497         if (max_addr != ~0UL)
498                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
499                        max_addr >> 20);
500
501         efi.systab = __va(ia64_boot_param->efi_systab);
502
503         /*
504          * Verify the EFI Table
505          */
506         if (efi.systab == NULL)
507                 panic("Whoa! Can't find EFI system table.\n");
508         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
509                 panic("Whoa! EFI system table signature incorrect\n");
510         if ((efi.systab->hdr.revision >> 16) == 0)
511                 printk(KERN_WARNING "Warning: EFI system table version "
512                        "%d.%02d, expected 1.00 or greater\n",
513                        efi.systab->hdr.revision >> 16,
514                        efi.systab->hdr.revision & 0xffff);
515
516         config_tables = __va(efi.systab->tables);
517
518         /* Show what we know for posterity */
519         c16 = __va(efi.systab->fw_vendor);
520         if (c16) {
521                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
522                         vendor[i] = *c16++;
523                 vendor[i] = '\0';
524         }
525
526         printk(KERN_INFO "EFI v%u.%.02u by %s:",
527                efi.systab->hdr.revision >> 16,
528                efi.systab->hdr.revision & 0xffff, vendor);
529
530         efi.mps        = EFI_INVALID_TABLE_ADDR;
531         efi.acpi       = EFI_INVALID_TABLE_ADDR;
532         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
533         efi.smbios     = EFI_INVALID_TABLE_ADDR;
534         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
535         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
536         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
537         efi.uga        = EFI_INVALID_TABLE_ADDR;
538
539         palo_phys      = EFI_INVALID_TABLE_ADDR;
540
541         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
542                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
543                         efi.mps = config_tables[i].table;
544                         printk(" MPS=0x%lx", config_tables[i].table);
545                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
546                         efi.acpi20 = config_tables[i].table;
547                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
548                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
549                         efi.acpi = config_tables[i].table;
550                         printk(" ACPI=0x%lx", config_tables[i].table);
551                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
552                         efi.smbios = config_tables[i].table;
553                         printk(" SMBIOS=0x%lx", config_tables[i].table);
554                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
555                         efi.sal_systab = config_tables[i].table;
556                         printk(" SALsystab=0x%lx", config_tables[i].table);
557                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
558                         efi.hcdp = config_tables[i].table;
559                         printk(" HCDP=0x%lx", config_tables[i].table);
560                 } else if (efi_guidcmp(config_tables[i].guid,
561                          PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
562                         palo_phys = config_tables[i].table;
563                         printk(" PALO=0x%lx", config_tables[i].table);
564                 }
565         }
566         printk("\n");
567
568         if (palo_phys != EFI_INVALID_TABLE_ADDR)
569                 handle_palo(palo_phys);
570
571         runtime = __va(efi.systab->runtime);
572         efi.get_time = phys_get_time;
573         efi.set_time = phys_set_time;
574         efi.get_wakeup_time = phys_get_wakeup_time;
575         efi.set_wakeup_time = phys_set_wakeup_time;
576         efi.get_variable = phys_get_variable;
577         efi.get_next_variable = phys_get_next_variable;
578         efi.set_variable = phys_set_variable;
579         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
580         efi.reset_system = phys_reset_system;
581
582         efi_map_start = __va(ia64_boot_param->efi_memmap);
583         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
584         efi_desc_size = ia64_boot_param->efi_memdesc_size;
585
586 #if EFI_DEBUG
587         /* print EFI memory map: */
588         {
589                 efi_memory_desc_t *md;
590                 void *p;
591
592                 for (i = 0, p = efi_map_start; p < efi_map_end;
593                      ++i, p += efi_desc_size)
594                 {
595                         const char *unit;
596                         unsigned long size;
597
598                         md = p;
599                         size = md->num_pages << EFI_PAGE_SHIFT;
600
601                         if ((size >> 40) > 0) {
602                                 size >>= 40;
603                                 unit = "TB";
604                         } else if ((size >> 30) > 0) {
605                                 size >>= 30;
606                                 unit = "GB";
607                         } else if ((size >> 20) > 0) {
608                                 size >>= 20;
609                                 unit = "MB";
610                         } else {
611                                 size >>= 10;
612                                 unit = "KB";
613                         }
614
615                         printk("mem%02d: type=%2u, attr=0x%016lx, "
616                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
617                                i, md->type, md->attribute, md->phys_addr,
618                                md->phys_addr + efi_md_size(md), size, unit);
619                 }
620         }
621 #endif
622
623         efi_map_pal_code();
624         efi_enter_virtual_mode();
625 }
626
627 void
628 efi_enter_virtual_mode (void)
629 {
630         void *efi_map_start, *efi_map_end, *p;
631         efi_memory_desc_t *md;
632         efi_status_t status;
633         u64 efi_desc_size;
634
635         efi_map_start = __va(ia64_boot_param->efi_memmap);
636         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
637         efi_desc_size = ia64_boot_param->efi_memdesc_size;
638
639         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
640                 md = p;
641                 if (md->attribute & EFI_MEMORY_RUNTIME) {
642                         /*
643                          * Some descriptors have multiple bits set, so the
644                          * order of the tests is relevant.
645                          */
646                         if (md->attribute & EFI_MEMORY_WB) {
647                                 md->virt_addr = (u64) __va(md->phys_addr);
648                         } else if (md->attribute & EFI_MEMORY_UC) {
649                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
650                         } else if (md->attribute & EFI_MEMORY_WC) {
651 #if 0
652                                 md->virt_addr = ia64_remap(md->phys_addr,
653                                                            (_PAGE_A |
654                                                             _PAGE_P |
655                                                             _PAGE_D |
656                                                             _PAGE_MA_WC |
657                                                             _PAGE_PL_0 |
658                                                             _PAGE_AR_RW));
659 #else
660                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
661                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
662 #endif
663                         } else if (md->attribute & EFI_MEMORY_WT) {
664 #if 0
665                                 md->virt_addr = ia64_remap(md->phys_addr,
666                                                            (_PAGE_A |
667                                                             _PAGE_P |
668                                                             _PAGE_D |
669                                                             _PAGE_MA_WT |
670                                                             _PAGE_PL_0 |
671                                                             _PAGE_AR_RW));
672 #else
673                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
674                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
675 #endif
676                         }
677                 }
678         }
679
680         status = efi_call_phys(__va(runtime->set_virtual_address_map),
681                                ia64_boot_param->efi_memmap_size,
682                                efi_desc_size,
683                                ia64_boot_param->efi_memdesc_version,
684                                ia64_boot_param->efi_memmap);
685         if (status != EFI_SUCCESS) {
686                 printk(KERN_WARNING "warning: unable to switch EFI into "
687                        "virtual mode (status=%lu)\n", status);
688                 return;
689         }
690
691         /*
692          * Now that EFI is in virtual mode, we call the EFI functions more
693          * efficiently:
694          */
695         efi.get_time = virt_get_time;
696         efi.set_time = virt_set_time;
697         efi.get_wakeup_time = virt_get_wakeup_time;
698         efi.set_wakeup_time = virt_set_wakeup_time;
699         efi.get_variable = virt_get_variable;
700         efi.get_next_variable = virt_get_next_variable;
701         efi.set_variable = virt_set_variable;
702         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
703         efi.reset_system = virt_reset_system;
704 }
705
706 /*
707  * Walk the EFI memory map looking for the I/O port range.  There can only be
708  * one entry of this type, other I/O port ranges should be described via ACPI.
709  */
710 u64
711 efi_get_iobase (void)
712 {
713         void *efi_map_start, *efi_map_end, *p;
714         efi_memory_desc_t *md;
715         u64 efi_desc_size;
716
717         efi_map_start = __va(ia64_boot_param->efi_memmap);
718         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
719         efi_desc_size = ia64_boot_param->efi_memdesc_size;
720
721         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
722                 md = p;
723                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
724                         if (md->attribute & EFI_MEMORY_UC)
725                                 return md->phys_addr;
726                 }
727         }
728         return 0;
729 }
730
731 static struct kern_memdesc *
732 kern_memory_descriptor (unsigned long phys_addr)
733 {
734         struct kern_memdesc *md;
735
736         for (md = kern_memmap; md->start != ~0UL; md++) {
737                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
738                          return md;
739         }
740         return NULL;
741 }
742
743 static efi_memory_desc_t *
744 efi_memory_descriptor (unsigned long phys_addr)
745 {
746         void *efi_map_start, *efi_map_end, *p;
747         efi_memory_desc_t *md;
748         u64 efi_desc_size;
749
750         efi_map_start = __va(ia64_boot_param->efi_memmap);
751         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
752         efi_desc_size = ia64_boot_param->efi_memdesc_size;
753
754         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
755                 md = p;
756
757                 if (phys_addr - md->phys_addr < efi_md_size(md))
758                          return md;
759         }
760         return NULL;
761 }
762
763 static int
764 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
765 {
766         void *efi_map_start, *efi_map_end, *p;
767         efi_memory_desc_t *md;
768         u64 efi_desc_size;
769         unsigned long end;
770
771         efi_map_start = __va(ia64_boot_param->efi_memmap);
772         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
773         efi_desc_size = ia64_boot_param->efi_memdesc_size;
774
775         end = phys_addr + size;
776
777         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
778                 md = p;
779                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
780                         return 1;
781         }
782         return 0;
783 }
784
785 u32
786 efi_mem_type (unsigned long phys_addr)
787 {
788         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
789
790         if (md)
791                 return md->type;
792         return 0;
793 }
794
795 u64
796 efi_mem_attributes (unsigned long phys_addr)
797 {
798         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
799
800         if (md)
801                 return md->attribute;
802         return 0;
803 }
804 EXPORT_SYMBOL(efi_mem_attributes);
805
806 u64
807 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
808 {
809         unsigned long end = phys_addr + size;
810         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
811         u64 attr;
812
813         if (!md)
814                 return 0;
815
816         /*
817          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
818          * the kernel that firmware needs this region mapped.
819          */
820         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
821         do {
822                 unsigned long md_end = efi_md_end(md);
823
824                 if (end <= md_end)
825                         return attr;
826
827                 md = efi_memory_descriptor(md_end);
828                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
829                         return 0;
830         } while (md);
831         return 0;       /* never reached */
832 }
833
834 u64
835 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
836 {
837         unsigned long end = phys_addr + size;
838         struct kern_memdesc *md;
839         u64 attr;
840
841         /*
842          * This is a hack for ioremap calls before we set up kern_memmap.
843          * Maybe we should do efi_memmap_init() earlier instead.
844          */
845         if (!kern_memmap) {
846                 attr = efi_mem_attribute(phys_addr, size);
847                 if (attr & EFI_MEMORY_WB)
848                         return EFI_MEMORY_WB;
849                 return 0;
850         }
851
852         md = kern_memory_descriptor(phys_addr);
853         if (!md)
854                 return 0;
855
856         attr = md->attribute;
857         do {
858                 unsigned long md_end = kmd_end(md);
859
860                 if (end <= md_end)
861                         return attr;
862
863                 md = kern_memory_descriptor(md_end);
864                 if (!md || md->attribute != attr)
865                         return 0;
866         } while (md);
867         return 0;       /* never reached */
868 }
869 EXPORT_SYMBOL(kern_mem_attribute);
870
871 int
872 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
873 {
874         u64 attr;
875
876         /*
877          * /dev/mem reads and writes use copy_to_user(), which implicitly
878          * uses a granule-sized kernel identity mapping.  It's really
879          * only safe to do this for regions in kern_memmap.  For more
880          * details, see Documentation/ia64/aliasing.txt.
881          */
882         attr = kern_mem_attribute(phys_addr, size);
883         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
884                 return 1;
885         return 0;
886 }
887
888 int
889 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
890 {
891         unsigned long phys_addr = pfn << PAGE_SHIFT;
892         u64 attr;
893
894         attr = efi_mem_attribute(phys_addr, size);
895
896         /*
897          * /dev/mem mmap uses normal user pages, so we don't need the entire
898          * granule, but the entire region we're mapping must support the same
899          * attribute.
900          */
901         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
902                 return 1;
903
904         /*
905          * Intel firmware doesn't tell us about all the MMIO regions, so
906          * in general we have to allow mmap requests.  But if EFI *does*
907          * tell us about anything inside this region, we should deny it.
908          * The user can always map a smaller region to avoid the overlap.
909          */
910         if (efi_memmap_intersects(phys_addr, size))
911                 return 0;
912
913         return 1;
914 }
915
916 pgprot_t
917 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
918                      pgprot_t vma_prot)
919 {
920         unsigned long phys_addr = pfn << PAGE_SHIFT;
921         u64 attr;
922
923         /*
924          * For /dev/mem mmap, we use user mappings, but if the region is
925          * in kern_memmap (and hence may be covered by a kernel mapping),
926          * we must use the same attribute as the kernel mapping.
927          */
928         attr = kern_mem_attribute(phys_addr, size);
929         if (attr & EFI_MEMORY_WB)
930                 return pgprot_cacheable(vma_prot);
931         else if (attr & EFI_MEMORY_UC)
932                 return pgprot_noncached(vma_prot);
933
934         /*
935          * Some chipsets don't support UC access to memory.  If
936          * WB is supported, we prefer that.
937          */
938         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
939                 return pgprot_cacheable(vma_prot);
940
941         return pgprot_noncached(vma_prot);
942 }
943
944 int __init
945 efi_uart_console_only(void)
946 {
947         efi_status_t status;
948         char *s, name[] = "ConOut";
949         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
950         efi_char16_t *utf16, name_utf16[32];
951         unsigned char data[1024];
952         unsigned long size = sizeof(data);
953         struct efi_generic_dev_path *hdr, *end_addr;
954         int uart = 0;
955
956         /* Convert to UTF-16 */
957         utf16 = name_utf16;
958         s = name;
959         while (*s)
960                 *utf16++ = *s++ & 0x7f;
961         *utf16 = 0;
962
963         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
964         if (status != EFI_SUCCESS) {
965                 printk(KERN_ERR "No EFI %s variable?\n", name);
966                 return 0;
967         }
968
969         hdr = (struct efi_generic_dev_path *) data;
970         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
971         while (hdr < end_addr) {
972                 if (hdr->type == EFI_DEV_MSG &&
973                     hdr->sub_type == EFI_DEV_MSG_UART)
974                         uart = 1;
975                 else if (hdr->type == EFI_DEV_END_PATH ||
976                           hdr->type == EFI_DEV_END_PATH2) {
977                         if (!uart)
978                                 return 0;
979                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
980                                 return 1;
981                         uart = 0;
982                 }
983                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
984         }
985         printk(KERN_ERR "Malformed %s value\n", name);
986         return 0;
987 }
988
989 /*
990  * Look for the first granule aligned memory descriptor memory
991  * that is big enough to hold EFI memory map. Make sure this
992  * descriptor is atleast granule sized so it does not get trimmed
993  */
994 struct kern_memdesc *
995 find_memmap_space (void)
996 {
997         u64     contig_low=0, contig_high=0;
998         u64     as = 0, ae;
999         void *efi_map_start, *efi_map_end, *p, *q;
1000         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1001         u64     space_needed, efi_desc_size;
1002         unsigned long total_mem = 0;
1003
1004         efi_map_start = __va(ia64_boot_param->efi_memmap);
1005         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1006         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1007
1008         /*
1009          * Worst case: we need 3 kernel descriptors for each efi descriptor
1010          * (if every entry has a WB part in the middle, and UC head and tail),
1011          * plus one for the end marker.
1012          */
1013         space_needed = sizeof(kern_memdesc_t) *
1014                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1015
1016         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1017                 md = p;
1018                 if (!efi_wb(md)) {
1019                         continue;
1020                 }
1021                 if (pmd == NULL || !efi_wb(pmd) ||
1022                     efi_md_end(pmd) != md->phys_addr) {
1023                         contig_low = GRANULEROUNDUP(md->phys_addr);
1024                         contig_high = efi_md_end(md);
1025                         for (q = p + efi_desc_size; q < efi_map_end;
1026                              q += efi_desc_size) {
1027                                 check_md = q;
1028                                 if (!efi_wb(check_md))
1029                                         break;
1030                                 if (contig_high != check_md->phys_addr)
1031                                         break;
1032                                 contig_high = efi_md_end(check_md);
1033                         }
1034                         contig_high = GRANULEROUNDDOWN(contig_high);
1035                 }
1036                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1037                         continue;
1038
1039                 /* Round ends inward to granule boundaries */
1040                 as = max(contig_low, md->phys_addr);
1041                 ae = min(contig_high, efi_md_end(md));
1042
1043                 /* keep within max_addr= and min_addr= command line arg */
1044                 as = max(as, min_addr);
1045                 ae = min(ae, max_addr);
1046                 if (ae <= as)
1047                         continue;
1048
1049                 /* avoid going over mem= command line arg */
1050                 if (total_mem + (ae - as) > mem_limit)
1051                         ae -= total_mem + (ae - as) - mem_limit;
1052
1053                 if (ae <= as)
1054                         continue;
1055
1056                 if (ae - as > space_needed)
1057                         break;
1058         }
1059         if (p >= efi_map_end)
1060                 panic("Can't allocate space for kernel memory descriptors");
1061
1062         return __va(as);
1063 }
1064
1065 /*
1066  * Walk the EFI memory map and gather all memory available for kernel
1067  * to use.  We can allocate partial granules only if the unavailable
1068  * parts exist, and are WB.
1069  */
1070 unsigned long
1071 efi_memmap_init(u64 *s, u64 *e)
1072 {
1073         struct kern_memdesc *k, *prev = NULL;
1074         u64     contig_low=0, contig_high=0;
1075         u64     as, ae, lim;
1076         void *efi_map_start, *efi_map_end, *p, *q;
1077         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1078         u64     efi_desc_size;
1079         unsigned long total_mem = 0;
1080
1081         k = kern_memmap = find_memmap_space();
1082
1083         efi_map_start = __va(ia64_boot_param->efi_memmap);
1084         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1085         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1086
1087         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1088                 md = p;
1089                 if (!efi_wb(md)) {
1090                         if (efi_uc(md) &&
1091                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1092                              md->type == EFI_BOOT_SERVICES_DATA)) {
1093                                 k->attribute = EFI_MEMORY_UC;
1094                                 k->start = md->phys_addr;
1095                                 k->num_pages = md->num_pages;
1096                                 k++;
1097                         }
1098                         continue;
1099                 }
1100                 if (pmd == NULL || !efi_wb(pmd) ||
1101                     efi_md_end(pmd) != md->phys_addr) {
1102                         contig_low = GRANULEROUNDUP(md->phys_addr);
1103                         contig_high = efi_md_end(md);
1104                         for (q = p + efi_desc_size; q < efi_map_end;
1105                              q += efi_desc_size) {
1106                                 check_md = q;
1107                                 if (!efi_wb(check_md))
1108                                         break;
1109                                 if (contig_high != check_md->phys_addr)
1110                                         break;
1111                                 contig_high = efi_md_end(check_md);
1112                         }
1113                         contig_high = GRANULEROUNDDOWN(contig_high);
1114                 }
1115                 if (!is_memory_available(md))
1116                         continue;
1117
1118 #ifdef CONFIG_CRASH_DUMP
1119                 /* saved_max_pfn should ignore max_addr= command line arg */
1120                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1121                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1122 #endif
1123                 /*
1124                  * Round ends inward to granule boundaries
1125                  * Give trimmings to uncached allocator
1126                  */
1127                 if (md->phys_addr < contig_low) {
1128                         lim = min(efi_md_end(md), contig_low);
1129                         if (efi_uc(md)) {
1130                                 if (k > kern_memmap &&
1131                                     (k-1)->attribute == EFI_MEMORY_UC &&
1132                                     kmd_end(k-1) == md->phys_addr) {
1133                                         (k-1)->num_pages +=
1134                                                 (lim - md->phys_addr)
1135                                                 >> EFI_PAGE_SHIFT;
1136                                 } else {
1137                                         k->attribute = EFI_MEMORY_UC;
1138                                         k->start = md->phys_addr;
1139                                         k->num_pages = (lim - md->phys_addr)
1140                                                 >> EFI_PAGE_SHIFT;
1141                                         k++;
1142                                 }
1143                         }
1144                         as = contig_low;
1145                 } else
1146                         as = md->phys_addr;
1147
1148                 if (efi_md_end(md) > contig_high) {
1149                         lim = max(md->phys_addr, contig_high);
1150                         if (efi_uc(md)) {
1151                                 if (lim == md->phys_addr && k > kern_memmap &&
1152                                     (k-1)->attribute == EFI_MEMORY_UC &&
1153                                     kmd_end(k-1) == md->phys_addr) {
1154                                         (k-1)->num_pages += md->num_pages;
1155                                 } else {
1156                                         k->attribute = EFI_MEMORY_UC;
1157                                         k->start = lim;
1158                                         k->num_pages = (efi_md_end(md) - lim)
1159                                                 >> EFI_PAGE_SHIFT;
1160                                         k++;
1161                                 }
1162                         }
1163                         ae = contig_high;
1164                 } else
1165                         ae = efi_md_end(md);
1166
1167                 /* keep within max_addr= and min_addr= command line arg */
1168                 as = max(as, min_addr);
1169                 ae = min(ae, max_addr);
1170                 if (ae <= as)
1171                         continue;
1172
1173                 /* avoid going over mem= command line arg */
1174                 if (total_mem + (ae - as) > mem_limit)
1175                         ae -= total_mem + (ae - as) - mem_limit;
1176
1177                 if (ae <= as)
1178                         continue;
1179                 if (prev && kmd_end(prev) == md->phys_addr) {
1180                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1181                         total_mem += ae - as;
1182                         continue;
1183                 }
1184                 k->attribute = EFI_MEMORY_WB;
1185                 k->start = as;
1186                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1187                 total_mem += ae - as;
1188                 prev = k++;
1189         }
1190         k->start = ~0L; /* end-marker */
1191
1192         /* reserve the memory we are using for kern_memmap */
1193         *s = (u64)kern_memmap;
1194         *e = (u64)++k;
1195
1196         return total_mem;
1197 }
1198
1199 void
1200 efi_initialize_iomem_resources(struct resource *code_resource,
1201                                struct resource *data_resource,
1202                                struct resource *bss_resource)
1203 {
1204         struct resource *res;
1205         void *efi_map_start, *efi_map_end, *p;
1206         efi_memory_desc_t *md;
1207         u64 efi_desc_size;
1208         char *name;
1209         unsigned long flags;
1210
1211         efi_map_start = __va(ia64_boot_param->efi_memmap);
1212         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1213         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1214
1215         res = NULL;
1216
1217         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1218                 md = p;
1219
1220                 if (md->num_pages == 0) /* should not happen */
1221                         continue;
1222
1223                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1224                 switch (md->type) {
1225
1226                         case EFI_MEMORY_MAPPED_IO:
1227                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1228                                 continue;
1229
1230                         case EFI_LOADER_CODE:
1231                         case EFI_LOADER_DATA:
1232                         case EFI_BOOT_SERVICES_DATA:
1233                         case EFI_BOOT_SERVICES_CODE:
1234                         case EFI_CONVENTIONAL_MEMORY:
1235                                 if (md->attribute & EFI_MEMORY_WP) {
1236                                         name = "System ROM";
1237                                         flags |= IORESOURCE_READONLY;
1238                                 } else if (md->attribute == EFI_MEMORY_UC)
1239                                         name = "Uncached RAM";
1240                                 else
1241                                         name = "System RAM";
1242                                 break;
1243
1244                         case EFI_ACPI_MEMORY_NVS:
1245                                 name = "ACPI Non-volatile Storage";
1246                                 break;
1247
1248                         case EFI_UNUSABLE_MEMORY:
1249                                 name = "reserved";
1250                                 flags |= IORESOURCE_DISABLED;
1251                                 break;
1252
1253                         case EFI_RESERVED_TYPE:
1254                         case EFI_RUNTIME_SERVICES_CODE:
1255                         case EFI_RUNTIME_SERVICES_DATA:
1256                         case EFI_ACPI_RECLAIM_MEMORY:
1257                         default:
1258                                 name = "reserved";
1259                                 break;
1260                 }
1261
1262                 if ((res = kzalloc(sizeof(struct resource),
1263                                    GFP_KERNEL)) == NULL) {
1264                         printk(KERN_ERR
1265                                "failed to allocate resource for iomem\n");
1266                         return;
1267                 }
1268
1269                 res->name = name;
1270                 res->start = md->phys_addr;
1271                 res->end = md->phys_addr + efi_md_size(md) - 1;
1272                 res->flags = flags;
1273
1274                 if (insert_resource(&iomem_resource, res) < 0)
1275                         kfree(res);
1276                 else {
1277                         /*
1278                          * We don't know which region contains
1279                          * kernel data so we try it repeatedly and
1280                          * let the resource manager test it.
1281                          */
1282                         insert_resource(res, code_resource);
1283                         insert_resource(res, data_resource);
1284                         insert_resource(res, bss_resource);
1285 #ifdef CONFIG_KEXEC
1286                         insert_resource(res, &efi_memmap_res);
1287                         insert_resource(res, &boot_param_res);
1288                         if (crashk_res.end > crashk_res.start)
1289                                 insert_resource(res, &crashk_res);
1290 #endif
1291                 }
1292         }
1293 }
1294
1295 #ifdef CONFIG_KEXEC
1296 /* find a block of memory aligned to 64M exclude reserved regions
1297    rsvd_regions are sorted
1298  */
1299 unsigned long __init
1300 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1301 {
1302         int i;
1303         u64 start, end;
1304         u64 alignment = 1UL << _PAGE_SIZE_64M;
1305         void *efi_map_start, *efi_map_end, *p;
1306         efi_memory_desc_t *md;
1307         u64 efi_desc_size;
1308
1309         efi_map_start = __va(ia64_boot_param->efi_memmap);
1310         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1311         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1312
1313         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1314                 md = p;
1315                 if (!efi_wb(md))
1316                         continue;
1317                 start = ALIGN(md->phys_addr, alignment);
1318                 end = efi_md_end(md);
1319                 for (i = 0; i < n; i++) {
1320                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1321                                 if (__pa(r[i].start) > start + size)
1322                                         return start;
1323                                 start = ALIGN(__pa(r[i].end), alignment);
1324                                 if (i < n-1 &&
1325                                     __pa(r[i+1].start) < start + size)
1326                                         continue;
1327                                 else
1328                                         break;
1329                         }
1330                 }
1331                 if (end > start + size)
1332                         return start;
1333         }
1334
1335         printk(KERN_WARNING
1336                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1337         return ~0UL;
1338 }
1339 #endif
1340
1341 #ifdef CONFIG_CRASH_DUMP
1342 /* locate the size find a the descriptor at a certain address */
1343 unsigned long __init
1344 vmcore_find_descriptor_size (unsigned long address)
1345 {
1346         void *efi_map_start, *efi_map_end, *p;
1347         efi_memory_desc_t *md;
1348         u64 efi_desc_size;
1349         unsigned long ret = 0;
1350
1351         efi_map_start = __va(ia64_boot_param->efi_memmap);
1352         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1353         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1354
1355         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1356                 md = p;
1357                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1358                     && md->phys_addr == address) {
1359                         ret = efi_md_size(md);
1360                         break;
1361                 }
1362         }
1363
1364         if (ret == 0)
1365                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1366
1367         return ret;
1368 }
1369 #endif