[IA64] Wrong args to memset in efi_gettimeofday()
[linux-2.6.git] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2003 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
13  *
14  * All EFI Runtime Services are not implemented yet as EFI only
15  * supports physical mode addressing on SoftSDV. This is to be fixed
16  * in a future version.  --drummond 1999-07-20
17  *
18  * Implemented EFI runtime services and virtual mode calls.  --davidm
19  *
20  * Goutham Rao: <goutham.rao@intel.com>
21  *      Skip non-WB memory and ignore empty memory ranges.
22  */
23 #include <linux/module.h>
24 #include <linux/bootmem.h>
25 #include <linux/kernel.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/time.h>
29 #include <linux/efi.h>
30 #include <linux/kexec.h>
31 #include <linux/mm.h>
32
33 #include <asm/io.h>
34 #include <asm/kregs.h>
35 #include <asm/meminit.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/mca.h>
39
40 #define EFI_DEBUG       0
41
42 extern efi_status_t efi_call_phys (void *, ...);
43
44 struct efi efi;
45 EXPORT_SYMBOL(efi);
46 static efi_runtime_services_t *runtime;
47 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
48
49 #define efi_call_virt(f, args...)       (*(f))(args)
50
51 #define STUB_GET_TIME(prefix, adjust_arg)                                                         \
52 static efi_status_t                                                                               \
53 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                                            \
54 {                                                                                                 \
55         struct ia64_fpreg fr[6];                                                                  \
56         efi_time_cap_t *atc = NULL;                                                               \
57         efi_status_t ret;                                                                         \
58                                                                                                   \
59         if (tc)                                                                                   \
60                 atc = adjust_arg(tc);                                                             \
61         ia64_save_scratch_fpregs(fr);                                                             \
62         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
63         ia64_load_scratch_fpregs(fr);                                                             \
64         return ret;                                                                               \
65 }
66
67 #define STUB_SET_TIME(prefix, adjust_arg)                                                       \
68 static efi_status_t                                                                             \
69 prefix##_set_time (efi_time_t *tm)                                                              \
70 {                                                                                               \
71         struct ia64_fpreg fr[6];                                                                \
72         efi_status_t ret;                                                                       \
73                                                                                                 \
74         ia64_save_scratch_fpregs(fr);                                                           \
75         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));    \
76         ia64_load_scratch_fpregs(fr);                                                           \
77         return ret;                                                                             \
78 }
79
80 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                                                \
81 static efi_status_t                                                                             \
82 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)             \
83 {                                                                                               \
84         struct ia64_fpreg fr[6];                                                                \
85         efi_status_t ret;                                                                       \
86                                                                                                 \
87         ia64_save_scratch_fpregs(fr);                                                           \
88         ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),       \
89                                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));      \
90         ia64_load_scratch_fpregs(fr);                                                           \
91         return ret;                                                                             \
92 }
93
94 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                                                \
95 static efi_status_t                                                                             \
96 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                                   \
97 {                                                                                               \
98         struct ia64_fpreg fr[6];                                                                \
99         efi_time_t *atm = NULL;                                                                 \
100         efi_status_t ret;                                                                       \
101                                                                                                 \
102         if (tm)                                                                                 \
103                 atm = adjust_arg(tm);                                                           \
104         ia64_save_scratch_fpregs(fr);                                                           \
105         ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),       \
106                                 enabled, atm);                                                  \
107         ia64_load_scratch_fpregs(fr);                                                           \
108         return ret;                                                                             \
109 }
110
111 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                           \
112 static efi_status_t                                                                     \
113 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,               \
114                        unsigned long *data_size, void *data)                            \
115 {                                                                                       \
116         struct ia64_fpreg fr[6];                                                        \
117         u32 *aattr = NULL;                                                                      \
118         efi_status_t ret;                                                               \
119                                                                                         \
120         if (attr)                                                                       \
121                 aattr = adjust_arg(attr);                                               \
122         ia64_save_scratch_fpregs(fr);                                                   \
123         ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),     \
124                                 adjust_arg(name), adjust_arg(vendor), aattr,            \
125                                 adjust_arg(data_size), adjust_arg(data));               \
126         ia64_load_scratch_fpregs(fr);                                                   \
127         return ret;                                                                     \
128 }
129
130 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                                              \
131 static efi_status_t                                                                             \
132 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)   \
133 {                                                                                               \
134         struct ia64_fpreg fr[6];                                                                \
135         efi_status_t ret;                                                                       \
136                                                                                                 \
137         ia64_save_scratch_fpregs(fr);                                                           \
138         ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),   \
139                                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));   \
140         ia64_load_scratch_fpregs(fr);                                                           \
141         return ret;                                                                             \
142 }
143
144 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                           \
145 static efi_status_t                                                                     \
146 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,      \
147                        unsigned long data_size, void *data)                             \
148 {                                                                                       \
149         struct ia64_fpreg fr[6];                                                        \
150         efi_status_t ret;                                                               \
151                                                                                         \
152         ia64_save_scratch_fpregs(fr);                                                   \
153         ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),     \
154                                 adjust_arg(name), adjust_arg(vendor), attr, data_size,  \
155                                 adjust_arg(data));                                      \
156         ia64_load_scratch_fpregs(fr);                                                   \
157         return ret;                                                                     \
158 }
159
160 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                                       \
161 static efi_status_t                                                                             \
162 prefix##_get_next_high_mono_count (u32 *count)                                                  \
163 {                                                                                               \
164         struct ia64_fpreg fr[6];                                                                \
165         efi_status_t ret;                                                                       \
166                                                                                                 \
167         ia64_save_scratch_fpregs(fr);                                                           \
168         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)                              \
169                                 __va(runtime->get_next_high_mono_count), adjust_arg(count));    \
170         ia64_load_scratch_fpregs(fr);                                                           \
171         return ret;                                                                             \
172 }
173
174 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                   \
175 static void                                                                     \
176 prefix##_reset_system (int reset_type, efi_status_t status,                     \
177                        unsigned long data_size, efi_char16_t *data)             \
178 {                                                                               \
179         struct ia64_fpreg fr[6];                                                \
180         efi_char16_t *adata = NULL;                                             \
181                                                                                 \
182         if (data)                                                               \
183                 adata = adjust_arg(data);                                       \
184                                                                                 \
185         ia64_save_scratch_fpregs(fr);                                           \
186         efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),   \
187                           reset_type, status, data_size, adata);                \
188         /* should not return, but just in case... */                            \
189         ia64_load_scratch_fpregs(fr);                                           \
190 }
191
192 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
193
194 STUB_GET_TIME(phys, phys_ptr)
195 STUB_SET_TIME(phys, phys_ptr)
196 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
197 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
198 STUB_GET_VARIABLE(phys, phys_ptr)
199 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
200 STUB_SET_VARIABLE(phys, phys_ptr)
201 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
202 STUB_RESET_SYSTEM(phys, phys_ptr)
203
204 #define id(arg) arg
205
206 STUB_GET_TIME(virt, id)
207 STUB_SET_TIME(virt, id)
208 STUB_GET_WAKEUP_TIME(virt, id)
209 STUB_SET_WAKEUP_TIME(virt, id)
210 STUB_GET_VARIABLE(virt, id)
211 STUB_GET_NEXT_VARIABLE(virt, id)
212 STUB_SET_VARIABLE(virt, id)
213 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
214 STUB_RESET_SYSTEM(virt, id)
215
216 void
217 efi_gettimeofday (struct timespec *ts)
218 {
219         efi_time_t tm;
220
221         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
222                 memset(ts, 0, sizeof(*ts));
223                 return;
224         }
225
226         ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
227         ts->tv_nsec = tm.nanosecond;
228 }
229
230 static int
231 is_memory_available (efi_memory_desc_t *md)
232 {
233         if (!(md->attribute & EFI_MEMORY_WB))
234                 return 0;
235
236         switch (md->type) {
237               case EFI_LOADER_CODE:
238               case EFI_LOADER_DATA:
239               case EFI_BOOT_SERVICES_CODE:
240               case EFI_BOOT_SERVICES_DATA:
241               case EFI_CONVENTIONAL_MEMORY:
242                 return 1;
243         }
244         return 0;
245 }
246
247 typedef struct kern_memdesc {
248         u64 attribute;
249         u64 start;
250         u64 num_pages;
251 } kern_memdesc_t;
252
253 static kern_memdesc_t *kern_memmap;
254
255 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
256
257 static inline u64
258 kmd_end(kern_memdesc_t *kmd)
259 {
260         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
261 }
262
263 static inline u64
264 efi_md_end(efi_memory_desc_t *md)
265 {
266         return (md->phys_addr + efi_md_size(md));
267 }
268
269 static inline int
270 efi_wb(efi_memory_desc_t *md)
271 {
272         return (md->attribute & EFI_MEMORY_WB);
273 }
274
275 static inline int
276 efi_uc(efi_memory_desc_t *md)
277 {
278         return (md->attribute & EFI_MEMORY_UC);
279 }
280
281 static void
282 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
283 {
284         kern_memdesc_t *k;
285         u64 start, end, voff;
286
287         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
288         for (k = kern_memmap; k->start != ~0UL; k++) {
289                 if (k->attribute != attr)
290                         continue;
291                 start = PAGE_ALIGN(k->start);
292                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
293                 if (start < end)
294                         if ((*callback)(start + voff, end + voff, arg) < 0)
295                                 return;
296         }
297 }
298
299 /*
300  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
301  * has memory that is available for OS use.
302  */
303 void
304 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
305 {
306         walk(callback, arg, EFI_MEMORY_WB);
307 }
308
309 /*
310  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
311  * has memory that is available for uncached allocator.
312  */
313 void
314 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
315 {
316         walk(callback, arg, EFI_MEMORY_UC);
317 }
318
319 /*
320  * Look for the PAL_CODE region reported by EFI and maps it using an
321  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
322  * Abstraction Layer chapter 11 in ADAG
323  */
324
325 void *
326 efi_get_pal_addr (void)
327 {
328         void *efi_map_start, *efi_map_end, *p;
329         efi_memory_desc_t *md;
330         u64 efi_desc_size;
331         int pal_code_count = 0;
332         u64 vaddr, mask;
333
334         efi_map_start = __va(ia64_boot_param->efi_memmap);
335         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
336         efi_desc_size = ia64_boot_param->efi_memdesc_size;
337
338         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
339                 md = p;
340                 if (md->type != EFI_PAL_CODE)
341                         continue;
342
343                 if (++pal_code_count > 1) {
344                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
345                                md->phys_addr);
346                         continue;
347                 }
348                 /*
349                  * The only ITLB entry in region 7 that is used is the one installed by
350                  * __start().  That entry covers a 64MB range.
351                  */
352                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
353                 vaddr = PAGE_OFFSET + md->phys_addr;
354
355                 /*
356                  * We must check that the PAL mapping won't overlap with the kernel
357                  * mapping.
358                  *
359                  * PAL code is guaranteed to be aligned on a power of 2 between 4k and
360                  * 256KB and that only one ITR is needed to map it. This implies that the
361                  * PAL code is always aligned on its size, i.e., the closest matching page
362                  * size supported by the TLB. Therefore PAL code is guaranteed never to
363                  * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
364                  * now the following test is enough to determine whether or not we need a
365                  * dedicated ITR for the PAL code.
366                  */
367                 if ((vaddr & mask) == (KERNEL_START & mask)) {
368                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
369                                __FUNCTION__);
370                         continue;
371                 }
372
373                 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
374                         panic("Woah!  PAL code size bigger than a granule!");
375
376 #if EFI_DEBUG
377                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
378
379                 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
380                         smp_processor_id(), md->phys_addr,
381                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
382                         vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
383 #endif
384                 return __va(md->phys_addr);
385         }
386         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
387                __FUNCTION__);
388         return NULL;
389 }
390
391 void
392 efi_map_pal_code (void)
393 {
394         void *pal_vaddr = efi_get_pal_addr ();
395         u64 psr;
396
397         if (!pal_vaddr)
398                 return;
399
400         /*
401          * Cannot write to CRx with PSR.ic=1
402          */
403         psr = ia64_clear_ic();
404         ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
405                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
406                  IA64_GRANULE_SHIFT);
407         ia64_set_psr(psr);              /* restore psr */
408         ia64_srlz_i();
409 }
410
411 void __init
412 efi_init (void)
413 {
414         void *efi_map_start, *efi_map_end;
415         efi_config_table_t *config_tables;
416         efi_char16_t *c16;
417         u64 efi_desc_size;
418         char *cp, vendor[100] = "unknown";
419         int i;
420
421         /* it's too early to be able to use the standard kernel command line support... */
422         for (cp = boot_command_line; *cp; ) {
423                 if (memcmp(cp, "mem=", 4) == 0) {
424                         mem_limit = memparse(cp + 4, &cp);
425                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
426                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
427                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
428                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
429                 } else {
430                         while (*cp != ' ' && *cp)
431                                 ++cp;
432                         while (*cp == ' ')
433                                 ++cp;
434                 }
435         }
436         if (min_addr != 0UL)
437                 printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
438         if (max_addr != ~0UL)
439                 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
440
441         efi.systab = __va(ia64_boot_param->efi_systab);
442
443         /*
444          * Verify the EFI Table
445          */
446         if (efi.systab == NULL)
447                 panic("Woah! Can't find EFI system table.\n");
448         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
449                 panic("Woah! EFI system table signature incorrect\n");
450         if ((efi.systab->hdr.revision >> 16) == 0)
451                 printk(KERN_WARNING "Warning: EFI system table version "
452                        "%d.%02d, expected 1.00 or greater\n",
453                        efi.systab->hdr.revision >> 16,
454                        efi.systab->hdr.revision & 0xffff);
455
456         config_tables = __va(efi.systab->tables);
457
458         /* Show what we know for posterity */
459         c16 = __va(efi.systab->fw_vendor);
460         if (c16) {
461                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
462                         vendor[i] = *c16++;
463                 vendor[i] = '\0';
464         }
465
466         printk(KERN_INFO "EFI v%u.%.02u by %s:",
467                efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
468
469         efi.mps        = EFI_INVALID_TABLE_ADDR;
470         efi.acpi       = EFI_INVALID_TABLE_ADDR;
471         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
472         efi.smbios     = EFI_INVALID_TABLE_ADDR;
473         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
474         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
475         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
476         efi.uga        = EFI_INVALID_TABLE_ADDR;
477
478         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
479                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
480                         efi.mps = config_tables[i].table;
481                         printk(" MPS=0x%lx", config_tables[i].table);
482                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
483                         efi.acpi20 = config_tables[i].table;
484                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
485                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
486                         efi.acpi = config_tables[i].table;
487                         printk(" ACPI=0x%lx", config_tables[i].table);
488                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
489                         efi.smbios = config_tables[i].table;
490                         printk(" SMBIOS=0x%lx", config_tables[i].table);
491                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
492                         efi.sal_systab = config_tables[i].table;
493                         printk(" SALsystab=0x%lx", config_tables[i].table);
494                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
495                         efi.hcdp = config_tables[i].table;
496                         printk(" HCDP=0x%lx", config_tables[i].table);
497                 }
498         }
499         printk("\n");
500
501         runtime = __va(efi.systab->runtime);
502         efi.get_time = phys_get_time;
503         efi.set_time = phys_set_time;
504         efi.get_wakeup_time = phys_get_wakeup_time;
505         efi.set_wakeup_time = phys_set_wakeup_time;
506         efi.get_variable = phys_get_variable;
507         efi.get_next_variable = phys_get_next_variable;
508         efi.set_variable = phys_set_variable;
509         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
510         efi.reset_system = phys_reset_system;
511
512         efi_map_start = __va(ia64_boot_param->efi_memmap);
513         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
514         efi_desc_size = ia64_boot_param->efi_memdesc_size;
515
516 #if EFI_DEBUG
517         /* print EFI memory map: */
518         {
519                 efi_memory_desc_t *md;
520                 void *p;
521
522                 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
523                         md = p;
524                         printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
525                                i, md->type, md->attribute, md->phys_addr,
526                                md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
527                                md->num_pages >> (20 - EFI_PAGE_SHIFT));
528                 }
529         }
530 #endif
531
532         efi_map_pal_code();
533         efi_enter_virtual_mode();
534 }
535
536 void
537 efi_enter_virtual_mode (void)
538 {
539         void *efi_map_start, *efi_map_end, *p;
540         efi_memory_desc_t *md;
541         efi_status_t status;
542         u64 efi_desc_size;
543
544         efi_map_start = __va(ia64_boot_param->efi_memmap);
545         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
546         efi_desc_size = ia64_boot_param->efi_memdesc_size;
547
548         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
549                 md = p;
550                 if (md->attribute & EFI_MEMORY_RUNTIME) {
551                         /*
552                          * Some descriptors have multiple bits set, so the order of
553                          * the tests is relevant.
554                          */
555                         if (md->attribute & EFI_MEMORY_WB) {
556                                 md->virt_addr = (u64) __va(md->phys_addr);
557                         } else if (md->attribute & EFI_MEMORY_UC) {
558                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
559                         } else if (md->attribute & EFI_MEMORY_WC) {
560 #if 0
561                                 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
562                                                                            | _PAGE_D
563                                                                            | _PAGE_MA_WC
564                                                                            | _PAGE_PL_0
565                                                                            | _PAGE_AR_RW));
566 #else
567                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
568                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
569 #endif
570                         } else if (md->attribute & EFI_MEMORY_WT) {
571 #if 0
572                                 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
573                                                                            | _PAGE_D | _PAGE_MA_WT
574                                                                            | _PAGE_PL_0
575                                                                            | _PAGE_AR_RW));
576 #else
577                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
578                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
579 #endif
580                         }
581                 }
582         }
583
584         status = efi_call_phys(__va(runtime->set_virtual_address_map),
585                                ia64_boot_param->efi_memmap_size,
586                                efi_desc_size, ia64_boot_param->efi_memdesc_version,
587                                ia64_boot_param->efi_memmap);
588         if (status != EFI_SUCCESS) {
589                 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
590                        "(status=%lu)\n", status);
591                 return;
592         }
593
594         /*
595          * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
596          */
597         efi.get_time = virt_get_time;
598         efi.set_time = virt_set_time;
599         efi.get_wakeup_time = virt_get_wakeup_time;
600         efi.set_wakeup_time = virt_set_wakeup_time;
601         efi.get_variable = virt_get_variable;
602         efi.get_next_variable = virt_get_next_variable;
603         efi.set_variable = virt_set_variable;
604         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
605         efi.reset_system = virt_reset_system;
606 }
607
608 /*
609  * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
610  * this type, other I/O port ranges should be described via ACPI.
611  */
612 u64
613 efi_get_iobase (void)
614 {
615         void *efi_map_start, *efi_map_end, *p;
616         efi_memory_desc_t *md;
617         u64 efi_desc_size;
618
619         efi_map_start = __va(ia64_boot_param->efi_memmap);
620         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
621         efi_desc_size = ia64_boot_param->efi_memdesc_size;
622
623         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
624                 md = p;
625                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
626                         if (md->attribute & EFI_MEMORY_UC)
627                                 return md->phys_addr;
628                 }
629         }
630         return 0;
631 }
632
633 static struct kern_memdesc *
634 kern_memory_descriptor (unsigned long phys_addr)
635 {
636         struct kern_memdesc *md;
637
638         for (md = kern_memmap; md->start != ~0UL; md++) {
639                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
640                          return md;
641         }
642         return NULL;
643 }
644
645 static efi_memory_desc_t *
646 efi_memory_descriptor (unsigned long phys_addr)
647 {
648         void *efi_map_start, *efi_map_end, *p;
649         efi_memory_desc_t *md;
650         u64 efi_desc_size;
651
652         efi_map_start = __va(ia64_boot_param->efi_memmap);
653         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
654         efi_desc_size = ia64_boot_param->efi_memdesc_size;
655
656         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
657                 md = p;
658
659                 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
660                          return md;
661         }
662         return NULL;
663 }
664
665 static int
666 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
667 {
668         void *efi_map_start, *efi_map_end, *p;
669         efi_memory_desc_t *md;
670         u64 efi_desc_size;
671         unsigned long end;
672
673         efi_map_start = __va(ia64_boot_param->efi_memmap);
674         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
675         efi_desc_size = ia64_boot_param->efi_memdesc_size;
676
677         end = phys_addr + size;
678
679         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
680                 md = p;
681
682                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
683                         return 1;
684         }
685         return 0;
686 }
687
688 u32
689 efi_mem_type (unsigned long phys_addr)
690 {
691         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
692
693         if (md)
694                 return md->type;
695         return 0;
696 }
697
698 u64
699 efi_mem_attributes (unsigned long phys_addr)
700 {
701         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
702
703         if (md)
704                 return md->attribute;
705         return 0;
706 }
707 EXPORT_SYMBOL(efi_mem_attributes);
708
709 u64
710 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
711 {
712         unsigned long end = phys_addr + size;
713         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
714         u64 attr;
715
716         if (!md)
717                 return 0;
718
719         /*
720          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
721          * the kernel that firmware needs this region mapped.
722          */
723         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
724         do {
725                 unsigned long md_end = efi_md_end(md);
726
727                 if (end <= md_end)
728                         return attr;
729
730                 md = efi_memory_descriptor(md_end);
731                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
732                         return 0;
733         } while (md);
734         return 0;
735 }
736
737 u64
738 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
739 {
740         unsigned long end = phys_addr + size;
741         struct kern_memdesc *md;
742         u64 attr;
743
744         /*
745          * This is a hack for ioremap calls before we set up kern_memmap.
746          * Maybe we should do efi_memmap_init() earlier instead.
747          */
748         if (!kern_memmap) {
749                 attr = efi_mem_attribute(phys_addr, size);
750                 if (attr & EFI_MEMORY_WB)
751                         return EFI_MEMORY_WB;
752                 return 0;
753         }
754
755         md = kern_memory_descriptor(phys_addr);
756         if (!md)
757                 return 0;
758
759         attr = md->attribute;
760         do {
761                 unsigned long md_end = kmd_end(md);
762
763                 if (end <= md_end)
764                         return attr;
765
766                 md = kern_memory_descriptor(md_end);
767                 if (!md || md->attribute != attr)
768                         return 0;
769         } while (md);
770         return 0;
771 }
772 EXPORT_SYMBOL(kern_mem_attribute);
773
774 int
775 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
776 {
777         u64 attr;
778
779         /*
780          * /dev/mem reads and writes use copy_to_user(), which implicitly
781          * uses a granule-sized kernel identity mapping.  It's really
782          * only safe to do this for regions in kern_memmap.  For more
783          * details, see Documentation/ia64/aliasing.txt.
784          */
785         attr = kern_mem_attribute(phys_addr, size);
786         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
787                 return 1;
788         return 0;
789 }
790
791 int
792 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
793 {
794         unsigned long phys_addr = pfn << PAGE_SHIFT;
795         u64 attr;
796
797         attr = efi_mem_attribute(phys_addr, size);
798
799         /*
800          * /dev/mem mmap uses normal user pages, so we don't need the entire
801          * granule, but the entire region we're mapping must support the same
802          * attribute.
803          */
804         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
805                 return 1;
806
807         /*
808          * Intel firmware doesn't tell us about all the MMIO regions, so
809          * in general we have to allow mmap requests.  But if EFI *does*
810          * tell us about anything inside this region, we should deny it.
811          * The user can always map a smaller region to avoid the overlap.
812          */
813         if (efi_memmap_intersects(phys_addr, size))
814                 return 0;
815
816         return 1;
817 }
818
819 pgprot_t
820 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
821                      pgprot_t vma_prot)
822 {
823         unsigned long phys_addr = pfn << PAGE_SHIFT;
824         u64 attr;
825
826         /*
827          * For /dev/mem mmap, we use user mappings, but if the region is
828          * in kern_memmap (and hence may be covered by a kernel mapping),
829          * we must use the same attribute as the kernel mapping.
830          */
831         attr = kern_mem_attribute(phys_addr, size);
832         if (attr & EFI_MEMORY_WB)
833                 return pgprot_cacheable(vma_prot);
834         else if (attr & EFI_MEMORY_UC)
835                 return pgprot_noncached(vma_prot);
836
837         /*
838          * Some chipsets don't support UC access to memory.  If
839          * WB is supported, we prefer that.
840          */
841         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
842                 return pgprot_cacheable(vma_prot);
843
844         return pgprot_noncached(vma_prot);
845 }
846
847 int __init
848 efi_uart_console_only(void)
849 {
850         efi_status_t status;
851         char *s, name[] = "ConOut";
852         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
853         efi_char16_t *utf16, name_utf16[32];
854         unsigned char data[1024];
855         unsigned long size = sizeof(data);
856         struct efi_generic_dev_path *hdr, *end_addr;
857         int uart = 0;
858
859         /* Convert to UTF-16 */
860         utf16 = name_utf16;
861         s = name;
862         while (*s)
863                 *utf16++ = *s++ & 0x7f;
864         *utf16 = 0;
865
866         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
867         if (status != EFI_SUCCESS) {
868                 printk(KERN_ERR "No EFI %s variable?\n", name);
869                 return 0;
870         }
871
872         hdr = (struct efi_generic_dev_path *) data;
873         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
874         while (hdr < end_addr) {
875                 if (hdr->type == EFI_DEV_MSG &&
876                     hdr->sub_type == EFI_DEV_MSG_UART)
877                         uart = 1;
878                 else if (hdr->type == EFI_DEV_END_PATH ||
879                           hdr->type == EFI_DEV_END_PATH2) {
880                         if (!uart)
881                                 return 0;
882                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
883                                 return 1;
884                         uart = 0;
885                 }
886                 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
887         }
888         printk(KERN_ERR "Malformed %s value\n", name);
889         return 0;
890 }
891
892 /*
893  * Look for the first granule aligned memory descriptor memory
894  * that is big enough to hold EFI memory map. Make sure this
895  * descriptor is atleast granule sized so it does not get trimmed
896  */
897 struct kern_memdesc *
898 find_memmap_space (void)
899 {
900         u64     contig_low=0, contig_high=0;
901         u64     as = 0, ae;
902         void *efi_map_start, *efi_map_end, *p, *q;
903         efi_memory_desc_t *md, *pmd = NULL, *check_md;
904         u64     space_needed, efi_desc_size;
905         unsigned long total_mem = 0;
906
907         efi_map_start = __va(ia64_boot_param->efi_memmap);
908         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
909         efi_desc_size = ia64_boot_param->efi_memdesc_size;
910
911         /*
912          * Worst case: we need 3 kernel descriptors for each efi descriptor
913          * (if every entry has a WB part in the middle, and UC head and tail),
914          * plus one for the end marker.
915          */
916         space_needed = sizeof(kern_memdesc_t) *
917                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
918
919         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
920                 md = p;
921                 if (!efi_wb(md)) {
922                         continue;
923                 }
924                 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
925                         contig_low = GRANULEROUNDUP(md->phys_addr);
926                         contig_high = efi_md_end(md);
927                         for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
928                                 check_md = q;
929                                 if (!efi_wb(check_md))
930                                         break;
931                                 if (contig_high != check_md->phys_addr)
932                                         break;
933                                 contig_high = efi_md_end(check_md);
934                         }
935                         contig_high = GRANULEROUNDDOWN(contig_high);
936                 }
937                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
938                         continue;
939
940                 /* Round ends inward to granule boundaries */
941                 as = max(contig_low, md->phys_addr);
942                 ae = min(contig_high, efi_md_end(md));
943
944                 /* keep within max_addr= and min_addr= command line arg */
945                 as = max(as, min_addr);
946                 ae = min(ae, max_addr);
947                 if (ae <= as)
948                         continue;
949
950                 /* avoid going over mem= command line arg */
951                 if (total_mem + (ae - as) > mem_limit)
952                         ae -= total_mem + (ae - as) - mem_limit;
953
954                 if (ae <= as)
955                         continue;
956
957                 if (ae - as > space_needed)
958                         break;
959         }
960         if (p >= efi_map_end)
961                 panic("Can't allocate space for kernel memory descriptors");
962
963         return __va(as);
964 }
965
966 /*
967  * Walk the EFI memory map and gather all memory available for kernel
968  * to use.  We can allocate partial granules only if the unavailable
969  * parts exist, and are WB.
970  */
971 unsigned long
972 efi_memmap_init(unsigned long *s, unsigned long *e)
973 {
974         struct kern_memdesc *k, *prev = NULL;
975         u64     contig_low=0, contig_high=0;
976         u64     as, ae, lim;
977         void *efi_map_start, *efi_map_end, *p, *q;
978         efi_memory_desc_t *md, *pmd = NULL, *check_md;
979         u64     efi_desc_size;
980         unsigned long total_mem = 0;
981
982         k = kern_memmap = find_memmap_space();
983
984         efi_map_start = __va(ia64_boot_param->efi_memmap);
985         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
986         efi_desc_size = ia64_boot_param->efi_memdesc_size;
987
988         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
989                 md = p;
990                 if (!efi_wb(md)) {
991                         if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
992                                            md->type == EFI_BOOT_SERVICES_DATA)) {
993                                 k->attribute = EFI_MEMORY_UC;
994                                 k->start = md->phys_addr;
995                                 k->num_pages = md->num_pages;
996                                 k++;
997                         }
998                         continue;
999                 }
1000                 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
1001                         contig_low = GRANULEROUNDUP(md->phys_addr);
1002                         contig_high = efi_md_end(md);
1003                         for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
1004                                 check_md = q;
1005                                 if (!efi_wb(check_md))
1006                                         break;
1007                                 if (contig_high != check_md->phys_addr)
1008                                         break;
1009                                 contig_high = efi_md_end(check_md);
1010                         }
1011                         contig_high = GRANULEROUNDDOWN(contig_high);
1012                 }
1013                 if (!is_memory_available(md))
1014                         continue;
1015
1016 #ifdef CONFIG_CRASH_DUMP
1017                 /* saved_max_pfn should ignore max_addr= command line arg */
1018                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1019                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1020 #endif
1021                 /*
1022                  * Round ends inward to granule boundaries
1023                  * Give trimmings to uncached allocator
1024                  */
1025                 if (md->phys_addr < contig_low) {
1026                         lim = min(efi_md_end(md), contig_low);
1027                         if (efi_uc(md)) {
1028                                 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
1029                                     kmd_end(k-1) == md->phys_addr) {
1030                                         (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1031                                 } else {
1032                                         k->attribute = EFI_MEMORY_UC;
1033                                         k->start = md->phys_addr;
1034                                         k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1035                                         k++;
1036                                 }
1037                         }
1038                         as = contig_low;
1039                 } else
1040                         as = md->phys_addr;
1041
1042                 if (efi_md_end(md) > contig_high) {
1043                         lim = max(md->phys_addr, contig_high);
1044                         if (efi_uc(md)) {
1045                                 if (lim == md->phys_addr && k > kern_memmap &&
1046                                     (k-1)->attribute == EFI_MEMORY_UC &&
1047                                     kmd_end(k-1) == md->phys_addr) {
1048                                         (k-1)->num_pages += md->num_pages;
1049                                 } else {
1050                                         k->attribute = EFI_MEMORY_UC;
1051                                         k->start = lim;
1052                                         k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1053                                         k++;
1054                                 }
1055                         }
1056                         ae = contig_high;
1057                 } else
1058                         ae = efi_md_end(md);
1059
1060                 /* keep within max_addr= and min_addr= command line arg */
1061                 as = max(as, min_addr);
1062                 ae = min(ae, max_addr);
1063                 if (ae <= as)
1064                         continue;
1065
1066                 /* avoid going over mem= command line arg */
1067                 if (total_mem + (ae - as) > mem_limit)
1068                         ae -= total_mem + (ae - as) - mem_limit;
1069
1070                 if (ae <= as)
1071                         continue;
1072                 if (prev && kmd_end(prev) == md->phys_addr) {
1073                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1074                         total_mem += ae - as;
1075                         continue;
1076                 }
1077                 k->attribute = EFI_MEMORY_WB;
1078                 k->start = as;
1079                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1080                 total_mem += ae - as;
1081                 prev = k++;
1082         }
1083         k->start = ~0L; /* end-marker */
1084
1085         /* reserve the memory we are using for kern_memmap */
1086         *s = (u64)kern_memmap;
1087         *e = (u64)++k;
1088
1089         return total_mem;
1090 }
1091
1092 void
1093 efi_initialize_iomem_resources(struct resource *code_resource,
1094                                struct resource *data_resource,
1095                                struct resource *bss_resource)
1096 {
1097         struct resource *res;
1098         void *efi_map_start, *efi_map_end, *p;
1099         efi_memory_desc_t *md;
1100         u64 efi_desc_size;
1101         char *name;
1102         unsigned long flags;
1103
1104         efi_map_start = __va(ia64_boot_param->efi_memmap);
1105         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1106         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1107
1108         res = NULL;
1109
1110         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1111                 md = p;
1112
1113                 if (md->num_pages == 0) /* should not happen */
1114                         continue;
1115
1116                 flags = IORESOURCE_MEM;
1117                 switch (md->type) {
1118
1119                         case EFI_MEMORY_MAPPED_IO:
1120                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1121                                 continue;
1122
1123                         case EFI_LOADER_CODE:
1124                         case EFI_LOADER_DATA:
1125                         case EFI_BOOT_SERVICES_DATA:
1126                         case EFI_BOOT_SERVICES_CODE:
1127                         case EFI_CONVENTIONAL_MEMORY:
1128                                 if (md->attribute & EFI_MEMORY_WP) {
1129                                         name = "System ROM";
1130                                         flags |= IORESOURCE_READONLY;
1131                                 } else {
1132                                         name = "System RAM";
1133                                 }
1134                                 break;
1135
1136                         case EFI_ACPI_MEMORY_NVS:
1137                                 name = "ACPI Non-volatile Storage";
1138                                 flags |= IORESOURCE_BUSY;
1139                                 break;
1140
1141                         case EFI_UNUSABLE_MEMORY:
1142                                 name = "reserved";
1143                                 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1144                                 break;
1145
1146                         case EFI_RESERVED_TYPE:
1147                         case EFI_RUNTIME_SERVICES_CODE:
1148                         case EFI_RUNTIME_SERVICES_DATA:
1149                         case EFI_ACPI_RECLAIM_MEMORY:
1150                         default:
1151                                 name = "reserved";
1152                                 flags |= IORESOURCE_BUSY;
1153                                 break;
1154                 }
1155
1156                 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1157                         printk(KERN_ERR "failed to alocate resource for iomem\n");
1158                         return;
1159                 }
1160
1161                 res->name = name;
1162                 res->start = md->phys_addr;
1163                 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1164                 res->flags = flags;
1165
1166                 if (insert_resource(&iomem_resource, res) < 0)
1167                         kfree(res);
1168                 else {
1169                         /*
1170                          * We don't know which region contains
1171                          * kernel data so we try it repeatedly and
1172                          * let the resource manager test it.
1173                          */
1174                         insert_resource(res, code_resource);
1175                         insert_resource(res, data_resource);
1176                         insert_resource(res, bss_resource);
1177 #ifdef CONFIG_KEXEC
1178                         insert_resource(res, &efi_memmap_res);
1179                         insert_resource(res, &boot_param_res);
1180                         if (crashk_res.end > crashk_res.start)
1181                                 insert_resource(res, &crashk_res);
1182 #endif
1183                 }
1184         }
1185 }
1186
1187 #ifdef CONFIG_KEXEC
1188 /* find a block of memory aligned to 64M exclude reserved regions
1189    rsvd_regions are sorted
1190  */
1191 unsigned long __init
1192 kdump_find_rsvd_region (unsigned long size,
1193                 struct rsvd_region *r, int n)
1194 {
1195   int i;
1196   u64 start, end;
1197   u64 alignment = 1UL << _PAGE_SIZE_64M;
1198   void *efi_map_start, *efi_map_end, *p;
1199   efi_memory_desc_t *md;
1200   u64 efi_desc_size;
1201
1202   efi_map_start = __va(ia64_boot_param->efi_memmap);
1203   efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1204   efi_desc_size = ia64_boot_param->efi_memdesc_size;
1205
1206   for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1207           md = p;
1208           if (!efi_wb(md))
1209                   continue;
1210           start = ALIGN(md->phys_addr, alignment);
1211           end = efi_md_end(md);
1212           for (i = 0; i < n; i++) {
1213                 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1214                         if (__pa(r[i].start) > start + size)
1215                                 return start;
1216                         start = ALIGN(__pa(r[i].end), alignment);
1217                         if (i < n-1 && __pa(r[i+1].start) < start + size)
1218                                 continue;
1219                         else
1220                                 break;
1221                 }
1222           }
1223           if (end > start + size)
1224                 return start;
1225   }
1226
1227   printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
1228         size);
1229   return ~0UL;
1230 }
1231 #endif
1232
1233 #ifdef CONFIG_PROC_VMCORE
1234 /* locate the size find a the descriptor at a certain address */
1235 unsigned long __init
1236 vmcore_find_descriptor_size (unsigned long address)
1237 {
1238         void *efi_map_start, *efi_map_end, *p;
1239         efi_memory_desc_t *md;
1240         u64 efi_desc_size;
1241         unsigned long ret = 0;
1242
1243         efi_map_start = __va(ia64_boot_param->efi_memmap);
1244         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1245         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1246
1247         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1248                 md = p;
1249                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1250                     && md->phys_addr == address) {
1251                         ret = efi_md_size(md);
1252                         break;
1253                 }
1254         }
1255
1256         if (ret == 0)
1257                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1258
1259         return ret;
1260 }
1261 #endif