Blackfin: bf54x: drop unused legacy MMR names
[linux-2.6.git] / arch / blackfin / mm / sram-alloc.c
1 /*
2  * SRAM allocator for Blackfin on-chip memory
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/spinlock.h>
19 #include <linux/rtc.h>
20 #include <linux/slab.h>
21 #include <asm/blackfin.h>
22 #include <asm/mem_map.h>
23 #include "blackfin_sram.h"
24
25 /* the data structure for L1 scratchpad and DATA SRAM */
26 struct sram_piece {
27         void *paddr;
28         int size;
29         pid_t pid;
30         struct sram_piece *next;
31 };
32
33 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
34 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
35 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
36
37 #if L1_DATA_A_LENGTH != 0
38 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
39 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
40 #endif
41
42 #if L1_DATA_B_LENGTH != 0
43 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
44 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
45 #endif
46
47 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
48 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
49 #endif
50
51 #if L1_CODE_LENGTH != 0
52 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
53 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
54 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
55 #endif
56
57 #if L2_LENGTH != 0
58 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
59 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
60 #endif
61
62 static struct kmem_cache *sram_piece_cache;
63
64 /* L1 Scratchpad SRAM initialization function */
65 static void __init l1sram_init(void)
66 {
67         unsigned int cpu;
68         unsigned long reserve;
69
70 #ifdef CONFIG_SMP
71         reserve = 0;
72 #else
73         reserve = sizeof(struct l1_scratch_task_info);
74 #endif
75
76         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
77                 per_cpu(free_l1_ssram_head, cpu).next =
78                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
79                 if (!per_cpu(free_l1_ssram_head, cpu).next) {
80                         printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
81                         return;
82                 }
83
84                 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
85                 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
86                 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
87                 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
88
89                 per_cpu(used_l1_ssram_head, cpu).next = NULL;
90
91                 /* mutex initialize */
92                 spin_lock_init(&per_cpu(l1sram_lock, cpu));
93                 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
94                         L1_SCRATCH_LENGTH >> 10);
95         }
96 }
97
98 static void __init l1_data_sram_init(void)
99 {
100 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
101         unsigned int cpu;
102 #endif
103 #if L1_DATA_A_LENGTH != 0
104         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
105                 per_cpu(free_l1_data_A_sram_head, cpu).next =
106                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
107                 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
108                         printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
109                         return;
110                 }
111
112                 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
113                         (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
114                 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
115                         L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
116                 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
117                 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
118
119                 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
120
121                 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
122                         L1_DATA_A_LENGTH >> 10,
123                         per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
124         }
125 #endif
126 #if L1_DATA_B_LENGTH != 0
127         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
128                 per_cpu(free_l1_data_B_sram_head, cpu).next =
129                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
130                 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
131                         printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
132                         return;
133                 }
134
135                 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
136                         (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
137                 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
138                         L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
139                 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
140                 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
141
142                 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
143
144                 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
145                         L1_DATA_B_LENGTH >> 10,
146                         per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
147                 /* mutex initialize */
148         }
149 #endif
150
151 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
152         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
153                 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
154 #endif
155 }
156
157 static void __init l1_inst_sram_init(void)
158 {
159 #if L1_CODE_LENGTH != 0
160         unsigned int cpu;
161         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
162                 per_cpu(free_l1_inst_sram_head, cpu).next =
163                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
164                 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
165                         printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
166                         return;
167                 }
168
169                 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
170                         (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
171                 per_cpu(free_l1_inst_sram_head, cpu).next->size =
172                         L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
173                 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
174                 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
175
176                 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
177
178                 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
179                         L1_CODE_LENGTH >> 10,
180                         per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
181
182                 /* mutex initialize */
183                 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
184         }
185 #endif
186 }
187
188 static void __init l2_sram_init(void)
189 {
190 #if L2_LENGTH != 0
191         free_l2_sram_head.next =
192                 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
193         if (!free_l2_sram_head.next) {
194                 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
195                 return;
196         }
197
198         free_l2_sram_head.next->paddr =
199                 (void *)L2_START + (_ebss_l2 - _stext_l2);
200         free_l2_sram_head.next->size =
201                 L2_LENGTH - (_ebss_l2 - _stext_l2);
202         free_l2_sram_head.next->pid = 0;
203         free_l2_sram_head.next->next = NULL;
204
205         used_l2_sram_head.next = NULL;
206
207         printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
208                 L2_LENGTH >> 10,
209                 free_l2_sram_head.next->size >> 10);
210
211         /* mutex initialize */
212         spin_lock_init(&l2_sram_lock);
213 #endif
214 }
215
216 static int __init bfin_sram_init(void)
217 {
218         sram_piece_cache = kmem_cache_create("sram_piece_cache",
219                                 sizeof(struct sram_piece),
220                                 0, SLAB_PANIC, NULL);
221
222         l1sram_init();
223         l1_data_sram_init();
224         l1_inst_sram_init();
225         l2_sram_init();
226
227         return 0;
228 }
229 pure_initcall(bfin_sram_init);
230
231 /* SRAM allocate function */
232 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
233                 struct sram_piece *pused_head)
234 {
235         struct sram_piece *pslot, *plast, *pavail;
236
237         if (size <= 0 || !pfree_head || !pused_head)
238                 return NULL;
239
240         /* Align the size */
241         size = (size + 3) & ~3;
242
243         pslot = pfree_head->next;
244         plast = pfree_head;
245
246         /* search an available piece slot */
247         while (pslot != NULL && size > pslot->size) {
248                 plast = pslot;
249                 pslot = pslot->next;
250         }
251
252         if (!pslot)
253                 return NULL;
254
255         if (pslot->size == size) {
256                 plast->next = pslot->next;
257                 pavail = pslot;
258         } else {
259                 /* use atomic so our L1 allocator can be used atomically */
260                 pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
261
262                 if (!pavail)
263                         return NULL;
264
265                 pavail->paddr = pslot->paddr;
266                 pavail->size = size;
267                 pslot->paddr += size;
268                 pslot->size -= size;
269         }
270
271         pavail->pid = current->pid;
272
273         pslot = pused_head->next;
274         plast = pused_head;
275
276         /* insert new piece into used piece list !!! */
277         while (pslot != NULL && pavail->paddr < pslot->paddr) {
278                 plast = pslot;
279                 pslot = pslot->next;
280         }
281
282         pavail->next = pslot;
283         plast->next = pavail;
284
285         return pavail->paddr;
286 }
287
288 /* Allocate the largest available block.  */
289 static void *_sram_alloc_max(struct sram_piece *pfree_head,
290                                 struct sram_piece *pused_head,
291                                 unsigned long *psize)
292 {
293         struct sram_piece *pslot, *pmax;
294
295         if (!pfree_head || !pused_head)
296                 return NULL;
297
298         pmax = pslot = pfree_head->next;
299
300         /* search an available piece slot */
301         while (pslot != NULL) {
302                 if (pslot->size > pmax->size)
303                         pmax = pslot;
304                 pslot = pslot->next;
305         }
306
307         if (!pmax)
308                 return NULL;
309
310         *psize = pmax->size;
311
312         return _sram_alloc(*psize, pfree_head, pused_head);
313 }
314
315 /* SRAM free function */
316 static int _sram_free(const void *addr,
317                         struct sram_piece *pfree_head,
318                         struct sram_piece *pused_head)
319 {
320         struct sram_piece *pslot, *plast, *pavail;
321
322         if (!pfree_head || !pused_head)
323                 return -1;
324
325         /* search the relevant memory slot */
326         pslot = pused_head->next;
327         plast = pused_head;
328
329         /* search an available piece slot */
330         while (pslot != NULL && pslot->paddr != addr) {
331                 plast = pslot;
332                 pslot = pslot->next;
333         }
334
335         if (!pslot)
336                 return -1;
337
338         plast->next = pslot->next;
339         pavail = pslot;
340         pavail->pid = 0;
341
342         /* insert free pieces back to the free list */
343         pslot = pfree_head->next;
344         plast = pfree_head;
345
346         while (pslot != NULL && addr > pslot->paddr) {
347                 plast = pslot;
348                 pslot = pslot->next;
349         }
350
351         if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
352                 plast->size += pavail->size;
353                 kmem_cache_free(sram_piece_cache, pavail);
354         } else {
355                 pavail->next = plast->next;
356                 plast->next = pavail;
357                 plast = pavail;
358         }
359
360         if (pslot && plast->paddr + plast->size == pslot->paddr) {
361                 plast->size += pslot->size;
362                 plast->next = pslot->next;
363                 kmem_cache_free(sram_piece_cache, pslot);
364         }
365
366         return 0;
367 }
368
369 int sram_free(const void *addr)
370 {
371
372 #if L1_CODE_LENGTH != 0
373         if (addr >= (void *)get_l1_code_start()
374                  && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
375                 return l1_inst_sram_free(addr);
376         else
377 #endif
378 #if L1_DATA_A_LENGTH != 0
379         if (addr >= (void *)get_l1_data_a_start()
380                  && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
381                 return l1_data_A_sram_free(addr);
382         else
383 #endif
384 #if L1_DATA_B_LENGTH != 0
385         if (addr >= (void *)get_l1_data_b_start()
386                  && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
387                 return l1_data_B_sram_free(addr);
388         else
389 #endif
390 #if L2_LENGTH != 0
391         if (addr >= (void *)L2_START
392                  && addr < (void *)(L2_START + L2_LENGTH))
393                 return l2_sram_free(addr);
394         else
395 #endif
396                 return -1;
397 }
398 EXPORT_SYMBOL(sram_free);
399
400 void *l1_data_A_sram_alloc(size_t size)
401 {
402 #if L1_DATA_A_LENGTH != 0
403         unsigned long flags;
404         void *addr;
405         unsigned int cpu;
406
407         cpu = smp_processor_id();
408         /* add mutex operation */
409         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
410
411         addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
412                         &per_cpu(used_l1_data_A_sram_head, cpu));
413
414         /* add mutex operation */
415         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
416
417         pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
418                  (long unsigned int)addr, size);
419
420         return addr;
421 #else
422         return NULL;
423 #endif
424 }
425 EXPORT_SYMBOL(l1_data_A_sram_alloc);
426
427 int l1_data_A_sram_free(const void *addr)
428 {
429 #if L1_DATA_A_LENGTH != 0
430         unsigned long flags;
431         int ret;
432         unsigned int cpu;
433
434         cpu = smp_processor_id();
435         /* add mutex operation */
436         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
437
438         ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
439                         &per_cpu(used_l1_data_A_sram_head, cpu));
440
441         /* add mutex operation */
442         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
443
444         return ret;
445 #else
446         return -1;
447 #endif
448 }
449 EXPORT_SYMBOL(l1_data_A_sram_free);
450
451 void *l1_data_B_sram_alloc(size_t size)
452 {
453 #if L1_DATA_B_LENGTH != 0
454         unsigned long flags;
455         void *addr;
456         unsigned int cpu;
457
458         cpu = smp_processor_id();
459         /* add mutex operation */
460         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
461
462         addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
463                         &per_cpu(used_l1_data_B_sram_head, cpu));
464
465         /* add mutex operation */
466         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
467
468         pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
469                  (long unsigned int)addr, size);
470
471         return addr;
472 #else
473         return NULL;
474 #endif
475 }
476 EXPORT_SYMBOL(l1_data_B_sram_alloc);
477
478 int l1_data_B_sram_free(const void *addr)
479 {
480 #if L1_DATA_B_LENGTH != 0
481         unsigned long flags;
482         int ret;
483         unsigned int cpu;
484
485         cpu = smp_processor_id();
486         /* add mutex operation */
487         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
488
489         ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
490                         &per_cpu(used_l1_data_B_sram_head, cpu));
491
492         /* add mutex operation */
493         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
494
495         return ret;
496 #else
497         return -1;
498 #endif
499 }
500 EXPORT_SYMBOL(l1_data_B_sram_free);
501
502 void *l1_data_sram_alloc(size_t size)
503 {
504         void *addr = l1_data_A_sram_alloc(size);
505
506         if (!addr)
507                 addr = l1_data_B_sram_alloc(size);
508
509         return addr;
510 }
511 EXPORT_SYMBOL(l1_data_sram_alloc);
512
513 void *l1_data_sram_zalloc(size_t size)
514 {
515         void *addr = l1_data_sram_alloc(size);
516
517         if (addr)
518                 memset(addr, 0x00, size);
519
520         return addr;
521 }
522 EXPORT_SYMBOL(l1_data_sram_zalloc);
523
524 int l1_data_sram_free(const void *addr)
525 {
526         int ret;
527         ret = l1_data_A_sram_free(addr);
528         if (ret == -1)
529                 ret = l1_data_B_sram_free(addr);
530         return ret;
531 }
532 EXPORT_SYMBOL(l1_data_sram_free);
533
534 void *l1_inst_sram_alloc(size_t size)
535 {
536 #if L1_CODE_LENGTH != 0
537         unsigned long flags;
538         void *addr;
539         unsigned int cpu;
540
541         cpu = smp_processor_id();
542         /* add mutex operation */
543         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
544
545         addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
546                         &per_cpu(used_l1_inst_sram_head, cpu));
547
548         /* add mutex operation */
549         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
550
551         pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
552                  (long unsigned int)addr, size);
553
554         return addr;
555 #else
556         return NULL;
557 #endif
558 }
559 EXPORT_SYMBOL(l1_inst_sram_alloc);
560
561 int l1_inst_sram_free(const void *addr)
562 {
563 #if L1_CODE_LENGTH != 0
564         unsigned long flags;
565         int ret;
566         unsigned int cpu;
567
568         cpu = smp_processor_id();
569         /* add mutex operation */
570         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
571
572         ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
573                         &per_cpu(used_l1_inst_sram_head, cpu));
574
575         /* add mutex operation */
576         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
577
578         return ret;
579 #else
580         return -1;
581 #endif
582 }
583 EXPORT_SYMBOL(l1_inst_sram_free);
584
585 /* L1 Scratchpad memory allocate function */
586 void *l1sram_alloc(size_t size)
587 {
588         unsigned long flags;
589         void *addr;
590         unsigned int cpu;
591
592         cpu = smp_processor_id();
593         /* add mutex operation */
594         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
595
596         addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
597                         &per_cpu(used_l1_ssram_head, cpu));
598
599         /* add mutex operation */
600         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
601
602         return addr;
603 }
604
605 /* L1 Scratchpad memory allocate function */
606 void *l1sram_alloc_max(size_t *psize)
607 {
608         unsigned long flags;
609         void *addr;
610         unsigned int cpu;
611
612         cpu = smp_processor_id();
613         /* add mutex operation */
614         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
615
616         addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
617                         &per_cpu(used_l1_ssram_head, cpu), psize);
618
619         /* add mutex operation */
620         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
621
622         return addr;
623 }
624
625 /* L1 Scratchpad memory free function */
626 int l1sram_free(const void *addr)
627 {
628         unsigned long flags;
629         int ret;
630         unsigned int cpu;
631
632         cpu = smp_processor_id();
633         /* add mutex operation */
634         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
635
636         ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
637                         &per_cpu(used_l1_ssram_head, cpu));
638
639         /* add mutex operation */
640         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
641
642         return ret;
643 }
644
645 void *l2_sram_alloc(size_t size)
646 {
647 #if L2_LENGTH != 0
648         unsigned long flags;
649         void *addr;
650
651         /* add mutex operation */
652         spin_lock_irqsave(&l2_sram_lock, flags);
653
654         addr = _sram_alloc(size, &free_l2_sram_head,
655                         &used_l2_sram_head);
656
657         /* add mutex operation */
658         spin_unlock_irqrestore(&l2_sram_lock, flags);
659
660         pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
661                  (long unsigned int)addr, size);
662
663         return addr;
664 #else
665         return NULL;
666 #endif
667 }
668 EXPORT_SYMBOL(l2_sram_alloc);
669
670 void *l2_sram_zalloc(size_t size)
671 {
672         void *addr = l2_sram_alloc(size);
673
674         if (addr)
675                 memset(addr, 0x00, size);
676
677         return addr;
678 }
679 EXPORT_SYMBOL(l2_sram_zalloc);
680
681 int l2_sram_free(const void *addr)
682 {
683 #if L2_LENGTH != 0
684         unsigned long flags;
685         int ret;
686
687         /* add mutex operation */
688         spin_lock_irqsave(&l2_sram_lock, flags);
689
690         ret = _sram_free(addr, &free_l2_sram_head,
691                         &used_l2_sram_head);
692
693         /* add mutex operation */
694         spin_unlock_irqrestore(&l2_sram_lock, flags);
695
696         return ret;
697 #else
698         return -1;
699 #endif
700 }
701 EXPORT_SYMBOL(l2_sram_free);
702
703 int sram_free_with_lsl(const void *addr)
704 {
705         struct sram_list_struct *lsl, **tmp;
706         struct mm_struct *mm = current->mm;
707
708         for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
709                 if ((*tmp)->addr == addr)
710                         goto found;
711         return -1;
712 found:
713         lsl = *tmp;
714         sram_free(addr);
715         *tmp = lsl->next;
716         kfree(lsl);
717
718         return 0;
719 }
720 EXPORT_SYMBOL(sram_free_with_lsl);
721
722 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
723  * tracked.  These are designed for userspace so that when a process exits,
724  * we can safely reap their resources.
725  */
726 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
727 {
728         void *addr = NULL;
729         struct sram_list_struct *lsl = NULL;
730         struct mm_struct *mm = current->mm;
731
732         lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
733         if (!lsl)
734                 return NULL;
735
736         if (flags & L1_INST_SRAM)
737                 addr = l1_inst_sram_alloc(size);
738
739         if (addr == NULL && (flags & L1_DATA_A_SRAM))
740                 addr = l1_data_A_sram_alloc(size);
741
742         if (addr == NULL && (flags & L1_DATA_B_SRAM))
743                 addr = l1_data_B_sram_alloc(size);
744
745         if (addr == NULL && (flags & L2_SRAM))
746                 addr = l2_sram_alloc(size);
747
748         if (addr == NULL) {
749                 kfree(lsl);
750                 return NULL;
751         }
752         lsl->addr = addr;
753         lsl->length = size;
754         lsl->next = mm->context.sram_list;
755         mm->context.sram_list = lsl;
756         return addr;
757 }
758 EXPORT_SYMBOL(sram_alloc_with_lsl);
759
760 #ifdef CONFIG_PROC_FS
761 /* Once we get a real allocator, we'll throw all of this away.
762  * Until then, we need some sort of visibility into the L1 alloc.
763  */
764 /* Need to keep line of output the same.  Currently, that is 44 bytes
765  * (including newline).
766  */
767 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
768                 struct sram_piece *pfree_head,
769                 struct sram_piece *pused_head)
770 {
771         struct sram_piece *pslot;
772
773         if (!pfree_head || !pused_head)
774                 return -1;
775
776         *len += sprintf(&buf[*len], "--- SRAM %-14s Size   PID State     \n", desc);
777
778         /* search the relevant memory slot */
779         pslot = pused_head->next;
780
781         while (pslot != NULL) {
782                 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
783                         pslot->paddr, pslot->paddr + pslot->size,
784                         pslot->size, pslot->pid, "ALLOCATED");
785
786                 pslot = pslot->next;
787         }
788
789         pslot = pfree_head->next;
790
791         while (pslot != NULL) {
792                 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
793                         pslot->paddr, pslot->paddr + pslot->size,
794                         pslot->size, pslot->pid, "FREE");
795
796                 pslot = pslot->next;
797         }
798
799         return 0;
800 }
801 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
802                 int *eof, void *data)
803 {
804         int len = 0;
805         unsigned int cpu;
806
807         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
808                 if (_sram_proc_read(buf, &len, count, "Scratchpad",
809                         &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
810                         goto not_done;
811 #if L1_DATA_A_LENGTH != 0
812                 if (_sram_proc_read(buf, &len, count, "L1 Data A",
813                         &per_cpu(free_l1_data_A_sram_head, cpu),
814                         &per_cpu(used_l1_data_A_sram_head, cpu)))
815                         goto not_done;
816 #endif
817 #if L1_DATA_B_LENGTH != 0
818                 if (_sram_proc_read(buf, &len, count, "L1 Data B",
819                         &per_cpu(free_l1_data_B_sram_head, cpu),
820                         &per_cpu(used_l1_data_B_sram_head, cpu)))
821                         goto not_done;
822 #endif
823 #if L1_CODE_LENGTH != 0
824                 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
825                         &per_cpu(free_l1_inst_sram_head, cpu),
826                         &per_cpu(used_l1_inst_sram_head, cpu)))
827                         goto not_done;
828 #endif
829         }
830 #if L2_LENGTH != 0
831         if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
832                 &used_l2_sram_head))
833                 goto not_done;
834 #endif
835         *eof = 1;
836  not_done:
837         return len;
838 }
839
840 static int __init sram_proc_init(void)
841 {
842         struct proc_dir_entry *ptr;
843         ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
844         if (!ptr) {
845                 printk(KERN_WARNING "unable to create /proc/sram\n");
846                 return -1;
847         }
848         ptr->read_proc = sram_proc_read;
849         return 0;
850 }
851 late_initcall(sram_proc_init);
852 #endif