Blackfin: drop unused reserve_pda() function
[linux-2.6.git] / arch / blackfin / mm / sram-alloc.c
1 /*
2  * File:         arch/blackfin/mm/sram-alloc.c
3  * Based on:
4  * Author:
5  *
6  * Created:
7  * Description:  SRAM allocator for Blackfin L1 and L2 memory
8  *
9  * Modified:
10  *               Copyright 2004-2008 Analog Devices Inc.
11  *
12  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see the file COPYING, or write
26  * to the Free Software Foundation, Inc.,
27  * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
28  */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include <asm/mem_map.h>
43 #include "blackfin_sram.h"
44
45 static DEFINE_PER_CPU(spinlock_t, l1sram_lock) ____cacheline_aligned_in_smp;
46 static DEFINE_PER_CPU(spinlock_t, l1_data_sram_lock) ____cacheline_aligned_in_smp;
47 static DEFINE_PER_CPU(spinlock_t, l1_inst_sram_lock) ____cacheline_aligned_in_smp;
48 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
49
50 /* the data structure for L1 scratchpad and DATA SRAM */
51 struct sram_piece {
52         void *paddr;
53         int size;
54         pid_t pid;
55         struct sram_piece *next;
56 };
57
58 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
59 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
60
61 #if L1_DATA_A_LENGTH != 0
62 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
63 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
64 #endif
65
66 #if L1_DATA_B_LENGTH != 0
67 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
68 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
69 #endif
70
71 #if L1_CODE_LENGTH != 0
72 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
73 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
74 #endif
75
76 #if L2_LENGTH != 0
77 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
78 #endif
79
80 static struct kmem_cache *sram_piece_cache;
81
82 /* L1 Scratchpad SRAM initialization function */
83 static void __init l1sram_init(void)
84 {
85         unsigned int cpu;
86         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
87                 per_cpu(free_l1_ssram_head, cpu).next =
88                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
89                 if (!per_cpu(free_l1_ssram_head, cpu).next) {
90                         printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
91                         return;
92                 }
93
94                 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu);
95                 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH;
96                 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
97                 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
98
99                 per_cpu(used_l1_ssram_head, cpu).next = NULL;
100
101                 /* mutex initialize */
102                 spin_lock_init(&per_cpu(l1sram_lock, cpu));
103                 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
104                         L1_SCRATCH_LENGTH >> 10);
105         }
106 }
107
108 static void __init l1_data_sram_init(void)
109 {
110 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
111         unsigned int cpu;
112 #endif
113 #if L1_DATA_A_LENGTH != 0
114         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
115                 per_cpu(free_l1_data_A_sram_head, cpu).next =
116                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
117                 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
118                         printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
119                         return;
120                 }
121
122                 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
123                         (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
124                 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
125                         L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
126                 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
127                 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
128
129                 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
130
131                 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
132                         L1_DATA_A_LENGTH >> 10,
133                         per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
134         }
135 #endif
136 #if L1_DATA_B_LENGTH != 0
137         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
138                 per_cpu(free_l1_data_B_sram_head, cpu).next =
139                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
140                 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
141                         printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
142                         return;
143                 }
144
145                 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
146                         (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
147                 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
148                         L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
149                 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
150                 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
151
152                 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
153
154                 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
155                         L1_DATA_B_LENGTH >> 10,
156                         per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
157                 /* mutex initialize */
158         }
159 #endif
160
161 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
162         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
163                 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
164 #endif
165 }
166
167 static void __init l1_inst_sram_init(void)
168 {
169 #if L1_CODE_LENGTH != 0
170         unsigned int cpu;
171         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
172                 per_cpu(free_l1_inst_sram_head, cpu).next =
173                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
174                 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
175                         printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
176                         return;
177                 }
178
179                 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
180                         (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
181                 per_cpu(free_l1_inst_sram_head, cpu).next->size =
182                         L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
183                 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
184                 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
185
186                 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
187
188                 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
189                         L1_CODE_LENGTH >> 10,
190                         per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
191
192                 /* mutex initialize */
193                 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
194         }
195 #endif
196 }
197
198 static void __init l2_sram_init(void)
199 {
200 #if L2_LENGTH != 0
201         free_l2_sram_head.next =
202                 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
203         if (!free_l2_sram_head.next) {
204                 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
205                 return;
206         }
207
208         free_l2_sram_head.next->paddr =
209                 (void *)L2_START + (_ebss_l2 - _stext_l2);
210         free_l2_sram_head.next->size =
211                 L2_LENGTH - (_ebss_l2 - _stext_l2);
212         free_l2_sram_head.next->pid = 0;
213         free_l2_sram_head.next->next = NULL;
214
215         used_l2_sram_head.next = NULL;
216
217         printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
218                 L2_LENGTH >> 10,
219                 free_l2_sram_head.next->size >> 10);
220 #endif
221
222         /* mutex initialize */
223         spin_lock_init(&l2_sram_lock);
224 }
225
226 void __init bfin_sram_init(void)
227 {
228         sram_piece_cache = kmem_cache_create("sram_piece_cache",
229                                 sizeof(struct sram_piece),
230                                 0, SLAB_PANIC, NULL);
231
232         l1sram_init();
233         l1_data_sram_init();
234         l1_inst_sram_init();
235         l2_sram_init();
236 }
237
238 /* SRAM allocate function */
239 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
240                 struct sram_piece *pused_head)
241 {
242         struct sram_piece *pslot, *plast, *pavail;
243
244         if (size <= 0 || !pfree_head || !pused_head)
245                 return NULL;
246
247         /* Align the size */
248         size = (size + 3) & ~3;
249
250         pslot = pfree_head->next;
251         plast = pfree_head;
252
253         /* search an available piece slot */
254         while (pslot != NULL && size > pslot->size) {
255                 plast = pslot;
256                 pslot = pslot->next;
257         }
258
259         if (!pslot)
260                 return NULL;
261
262         if (pslot->size == size) {
263                 plast->next = pslot->next;
264                 pavail = pslot;
265         } else {
266                 pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
267
268                 if (!pavail)
269                         return NULL;
270
271                 pavail->paddr = pslot->paddr;
272                 pavail->size = size;
273                 pslot->paddr += size;
274                 pslot->size -= size;
275         }
276
277         pavail->pid = current->pid;
278
279         pslot = pused_head->next;
280         plast = pused_head;
281
282         /* insert new piece into used piece list !!! */
283         while (pslot != NULL && pavail->paddr < pslot->paddr) {
284                 plast = pslot;
285                 pslot = pslot->next;
286         }
287
288         pavail->next = pslot;
289         plast->next = pavail;
290
291         return pavail->paddr;
292 }
293
294 /* Allocate the largest available block.  */
295 static void *_sram_alloc_max(struct sram_piece *pfree_head,
296                                 struct sram_piece *pused_head,
297                                 unsigned long *psize)
298 {
299         struct sram_piece *pslot, *pmax;
300
301         if (!pfree_head || !pused_head)
302                 return NULL;
303
304         pmax = pslot = pfree_head->next;
305
306         /* search an available piece slot */
307         while (pslot != NULL) {
308                 if (pslot->size > pmax->size)
309                         pmax = pslot;
310                 pslot = pslot->next;
311         }
312
313         if (!pmax)
314                 return NULL;
315
316         *psize = pmax->size;
317
318         return _sram_alloc(*psize, pfree_head, pused_head);
319 }
320
321 /* SRAM free function */
322 static int _sram_free(const void *addr,
323                         struct sram_piece *pfree_head,
324                         struct sram_piece *pused_head)
325 {
326         struct sram_piece *pslot, *plast, *pavail;
327
328         if (!pfree_head || !pused_head)
329                 return -1;
330
331         /* search the relevant memory slot */
332         pslot = pused_head->next;
333         plast = pused_head;
334
335         /* search an available piece slot */
336         while (pslot != NULL && pslot->paddr != addr) {
337                 plast = pslot;
338                 pslot = pslot->next;
339         }
340
341         if (!pslot)
342                 return -1;
343
344         plast->next = pslot->next;
345         pavail = pslot;
346         pavail->pid = 0;
347
348         /* insert free pieces back to the free list */
349         pslot = pfree_head->next;
350         plast = pfree_head;
351
352         while (pslot != NULL && addr > pslot->paddr) {
353                 plast = pslot;
354                 pslot = pslot->next;
355         }
356
357         if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
358                 plast->size += pavail->size;
359                 kmem_cache_free(sram_piece_cache, pavail);
360         } else {
361                 pavail->next = plast->next;
362                 plast->next = pavail;
363                 plast = pavail;
364         }
365
366         if (pslot && plast->paddr + plast->size == pslot->paddr) {
367                 plast->size += pslot->size;
368                 plast->next = pslot->next;
369                 kmem_cache_free(sram_piece_cache, pslot);
370         }
371
372         return 0;
373 }
374
375 int sram_free(const void *addr)
376 {
377
378 #if L1_CODE_LENGTH != 0
379         if (addr >= (void *)get_l1_code_start()
380                  && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
381                 return l1_inst_sram_free(addr);
382         else
383 #endif
384 #if L1_DATA_A_LENGTH != 0
385         if (addr >= (void *)get_l1_data_a_start()
386                  && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
387                 return l1_data_A_sram_free(addr);
388         else
389 #endif
390 #if L1_DATA_B_LENGTH != 0
391         if (addr >= (void *)get_l1_data_b_start()
392                  && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
393                 return l1_data_B_sram_free(addr);
394         else
395 #endif
396 #if L2_LENGTH != 0
397         if (addr >= (void *)L2_START
398                  && addr < (void *)(L2_START + L2_LENGTH))
399                 return l2_sram_free(addr);
400         else
401 #endif
402                 return -1;
403 }
404 EXPORT_SYMBOL(sram_free);
405
406 void *l1_data_A_sram_alloc(size_t size)
407 {
408         unsigned long flags;
409         void *addr = NULL;
410         unsigned int cpu;
411
412         cpu = get_cpu();
413         /* add mutex operation */
414         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
415
416 #if L1_DATA_A_LENGTH != 0
417         addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
418                         &per_cpu(used_l1_data_A_sram_head, cpu));
419 #endif
420
421         /* add mutex operation */
422         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
423         put_cpu();
424
425         pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
426                  (long unsigned int)addr, size);
427
428         return addr;
429 }
430 EXPORT_SYMBOL(l1_data_A_sram_alloc);
431
432 int l1_data_A_sram_free(const void *addr)
433 {
434         unsigned long flags;
435         int ret;
436         unsigned int cpu;
437
438         cpu = get_cpu();
439         /* add mutex operation */
440         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
441
442 #if L1_DATA_A_LENGTH != 0
443         ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
444                         &per_cpu(used_l1_data_A_sram_head, cpu));
445 #else
446         ret = -1;
447 #endif
448
449         /* add mutex operation */
450         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
451         put_cpu();
452
453         return ret;
454 }
455 EXPORT_SYMBOL(l1_data_A_sram_free);
456
457 void *l1_data_B_sram_alloc(size_t size)
458 {
459 #if L1_DATA_B_LENGTH != 0
460         unsigned long flags;
461         void *addr;
462         unsigned int cpu;
463
464         cpu = get_cpu();
465         /* add mutex operation */
466         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
467
468         addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
469                         &per_cpu(used_l1_data_B_sram_head, cpu));
470
471         /* add mutex operation */
472         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
473         put_cpu();
474
475         pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
476                  (long unsigned int)addr, size);
477
478         return addr;
479 #else
480         return NULL;
481 #endif
482 }
483 EXPORT_SYMBOL(l1_data_B_sram_alloc);
484
485 int l1_data_B_sram_free(const void *addr)
486 {
487 #if L1_DATA_B_LENGTH != 0
488         unsigned long flags;
489         int ret;
490         unsigned int cpu;
491
492         cpu = get_cpu();
493         /* add mutex operation */
494         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
495
496         ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
497                         &per_cpu(used_l1_data_B_sram_head, cpu));
498
499         /* add mutex operation */
500         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
501         put_cpu();
502
503         return ret;
504 #else
505         return -1;
506 #endif
507 }
508 EXPORT_SYMBOL(l1_data_B_sram_free);
509
510 void *l1_data_sram_alloc(size_t size)
511 {
512         void *addr = l1_data_A_sram_alloc(size);
513
514         if (!addr)
515                 addr = l1_data_B_sram_alloc(size);
516
517         return addr;
518 }
519 EXPORT_SYMBOL(l1_data_sram_alloc);
520
521 void *l1_data_sram_zalloc(size_t size)
522 {
523         void *addr = l1_data_sram_alloc(size);
524
525         if (addr)
526                 memset(addr, 0x00, size);
527
528         return addr;
529 }
530 EXPORT_SYMBOL(l1_data_sram_zalloc);
531
532 int l1_data_sram_free(const void *addr)
533 {
534         int ret;
535         ret = l1_data_A_sram_free(addr);
536         if (ret == -1)
537                 ret = l1_data_B_sram_free(addr);
538         return ret;
539 }
540 EXPORT_SYMBOL(l1_data_sram_free);
541
542 void *l1_inst_sram_alloc(size_t size)
543 {
544 #if L1_CODE_LENGTH != 0
545         unsigned long flags;
546         void *addr;
547         unsigned int cpu;
548
549         cpu = get_cpu();
550         /* add mutex operation */
551         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
552
553         addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
554                         &per_cpu(used_l1_inst_sram_head, cpu));
555
556         /* add mutex operation */
557         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
558         put_cpu();
559
560         pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
561                  (long unsigned int)addr, size);
562
563         return addr;
564 #else
565         return NULL;
566 #endif
567 }
568 EXPORT_SYMBOL(l1_inst_sram_alloc);
569
570 int l1_inst_sram_free(const void *addr)
571 {
572 #if L1_CODE_LENGTH != 0
573         unsigned long flags;
574         int ret;
575         unsigned int cpu;
576
577         cpu = get_cpu();
578         /* add mutex operation */
579         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
580
581         ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
582                         &per_cpu(used_l1_inst_sram_head, cpu));
583
584         /* add mutex operation */
585         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
586         put_cpu();
587
588         return ret;
589 #else
590         return -1;
591 #endif
592 }
593 EXPORT_SYMBOL(l1_inst_sram_free);
594
595 /* L1 Scratchpad memory allocate function */
596 void *l1sram_alloc(size_t size)
597 {
598         unsigned long flags;
599         void *addr;
600         unsigned int cpu;
601
602         cpu = get_cpu();
603         /* add mutex operation */
604         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
605
606         addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
607                         &per_cpu(used_l1_ssram_head, cpu));
608
609         /* add mutex operation */
610         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
611         put_cpu();
612
613         return addr;
614 }
615
616 /* L1 Scratchpad memory allocate function */
617 void *l1sram_alloc_max(size_t *psize)
618 {
619         unsigned long flags;
620         void *addr;
621         unsigned int cpu;
622
623         cpu = get_cpu();
624         /* add mutex operation */
625         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
626
627         addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
628                         &per_cpu(used_l1_ssram_head, cpu), psize);
629
630         /* add mutex operation */
631         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
632         put_cpu();
633
634         return addr;
635 }
636
637 /* L1 Scratchpad memory free function */
638 int l1sram_free(const void *addr)
639 {
640         unsigned long flags;
641         int ret;
642         unsigned int cpu;
643
644         cpu = get_cpu();
645         /* add mutex operation */
646         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
647
648         ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
649                         &per_cpu(used_l1_ssram_head, cpu));
650
651         /* add mutex operation */
652         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
653         put_cpu();
654
655         return ret;
656 }
657
658 void *l2_sram_alloc(size_t size)
659 {
660 #if L2_LENGTH != 0
661         unsigned long flags;
662         void *addr;
663
664         /* add mutex operation */
665         spin_lock_irqsave(&l2_sram_lock, flags);
666
667         addr = _sram_alloc(size, &free_l2_sram_head,
668                         &used_l2_sram_head);
669
670         /* add mutex operation */
671         spin_unlock_irqrestore(&l2_sram_lock, flags);
672
673         pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
674                  (long unsigned int)addr, size);
675
676         return addr;
677 #else
678         return NULL;
679 #endif
680 }
681 EXPORT_SYMBOL(l2_sram_alloc);
682
683 void *l2_sram_zalloc(size_t size)
684 {
685         void *addr = l2_sram_alloc(size);
686
687         if (addr)
688                 memset(addr, 0x00, size);
689
690         return addr;
691 }
692 EXPORT_SYMBOL(l2_sram_zalloc);
693
694 int l2_sram_free(const void *addr)
695 {
696 #if L2_LENGTH != 0
697         unsigned long flags;
698         int ret;
699
700         /* add mutex operation */
701         spin_lock_irqsave(&l2_sram_lock, flags);
702
703         ret = _sram_free(addr, &free_l2_sram_head,
704                         &used_l2_sram_head);
705
706         /* add mutex operation */
707         spin_unlock_irqrestore(&l2_sram_lock, flags);
708
709         return ret;
710 #else
711         return -1;
712 #endif
713 }
714 EXPORT_SYMBOL(l2_sram_free);
715
716 int sram_free_with_lsl(const void *addr)
717 {
718         struct sram_list_struct *lsl, **tmp;
719         struct mm_struct *mm = current->mm;
720
721         for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
722                 if ((*tmp)->addr == addr)
723                         goto found;
724         return -1;
725 found:
726         lsl = *tmp;
727         sram_free(addr);
728         *tmp = lsl->next;
729         kfree(lsl);
730
731         return 0;
732 }
733 EXPORT_SYMBOL(sram_free_with_lsl);
734
735 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
736 {
737         void *addr = NULL;
738         struct sram_list_struct *lsl = NULL;
739         struct mm_struct *mm = current->mm;
740
741         lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
742         if (!lsl)
743                 return NULL;
744
745         if (flags & L1_INST_SRAM)
746                 addr = l1_inst_sram_alloc(size);
747
748         if (addr == NULL && (flags & L1_DATA_A_SRAM))
749                 addr = l1_data_A_sram_alloc(size);
750
751         if (addr == NULL && (flags & L1_DATA_B_SRAM))
752                 addr = l1_data_B_sram_alloc(size);
753
754         if (addr == NULL && (flags & L2_SRAM))
755                 addr = l2_sram_alloc(size);
756
757         if (addr == NULL) {
758                 kfree(lsl);
759                 return NULL;
760         }
761         lsl->addr = addr;
762         lsl->length = size;
763         lsl->next = mm->context.sram_list;
764         mm->context.sram_list = lsl;
765         return addr;
766 }
767 EXPORT_SYMBOL(sram_alloc_with_lsl);
768
769 #ifdef CONFIG_PROC_FS
770 /* Once we get a real allocator, we'll throw all of this away.
771  * Until then, we need some sort of visibility into the L1 alloc.
772  */
773 /* Need to keep line of output the same.  Currently, that is 44 bytes
774  * (including newline).
775  */
776 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
777                 struct sram_piece *pfree_head,
778                 struct sram_piece *pused_head)
779 {
780         struct sram_piece *pslot;
781
782         if (!pfree_head || !pused_head)
783                 return -1;
784
785         *len += sprintf(&buf[*len], "--- SRAM %-14s Size   PID State     \n", desc);
786
787         /* search the relevant memory slot */
788         pslot = pused_head->next;
789
790         while (pslot != NULL) {
791                 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
792                         pslot->paddr, pslot->paddr + pslot->size,
793                         pslot->size, pslot->pid, "ALLOCATED");
794
795                 pslot = pslot->next;
796         }
797
798         pslot = pfree_head->next;
799
800         while (pslot != NULL) {
801                 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
802                         pslot->paddr, pslot->paddr + pslot->size,
803                         pslot->size, pslot->pid, "FREE");
804
805                 pslot = pslot->next;
806         }
807
808         return 0;
809 }
810 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
811                 int *eof, void *data)
812 {
813         int len = 0;
814         unsigned int cpu;
815
816         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
817                 if (_sram_proc_read(buf, &len, count, "Scratchpad",
818                         &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
819                         goto not_done;
820 #if L1_DATA_A_LENGTH != 0
821                 if (_sram_proc_read(buf, &len, count, "L1 Data A",
822                         &per_cpu(free_l1_data_A_sram_head, cpu),
823                         &per_cpu(used_l1_data_A_sram_head, cpu)))
824                         goto not_done;
825 #endif
826 #if L1_DATA_B_LENGTH != 0
827                 if (_sram_proc_read(buf, &len, count, "L1 Data B",
828                         &per_cpu(free_l1_data_B_sram_head, cpu),
829                         &per_cpu(used_l1_data_B_sram_head, cpu)))
830                         goto not_done;
831 #endif
832 #if L1_CODE_LENGTH != 0
833                 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
834                         &per_cpu(free_l1_inst_sram_head, cpu),
835                         &per_cpu(used_l1_inst_sram_head, cpu)))
836                         goto not_done;
837 #endif
838         }
839 #if L2_LENGTH != 0
840         if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
841                 &used_l2_sram_head))
842                 goto not_done;
843 #endif
844         *eof = 1;
845  not_done:
846         return len;
847 }
848
849 static int __init sram_proc_init(void)
850 {
851         struct proc_dir_entry *ptr;
852         ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
853         if (!ptr) {
854                 printk(KERN_WARNING "unable to create /proc/sram\n");
855                 return -1;
856         }
857         ptr->read_proc = sram_proc_read;
858         return 0;
859 }
860 late_initcall(sram_proc_init);
861 #endif