Blackfin arch: Faster C implementation of no-MPU CPLB handler
[linux-2.6.git] / arch / blackfin / kernel / setup.c
1 /*
2  * arch/blackfin/kernel/setup.c
3  *
4  * Copyright 2004-2006 Analog Devices Inc.
5  *
6  * Enter bugs at http://blackfin.uclinux.org/
7  *
8  * Licensed under the GPL-2 or later.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/tty.h>
19 #include <linux/pfn.h>
20
21 #include <linux/ext2_fs.h>
22 #include <linux/cramfs_fs.h>
23 #include <linux/romfs_fs.h>
24
25 #include <asm/cplb.h>
26 #include <asm/cacheflush.h>
27 #include <asm/blackfin.h>
28 #include <asm/cplbinit.h>
29 #include <asm/div64.h>
30 #include <asm/cpu.h>
31 #include <asm/fixed_code.h>
32 #include <asm/early_printk.h>
33
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
36
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
46
47 #ifdef CONFIG_MTD_UCLINUX
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM         1
62 #define BFIN_MEMMAP_RESERVED    2
63 struct bfin_memmap {
64         int nr_map;
65         struct bfin_memmap_entry {
66                 unsigned long long addr; /* start of memory segment */
67                 unsigned long long size;
68                 unsigned long type;
69         } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74         struct bfin_memmap_entry *pentry; /* pointer to original entry */
75         unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
88 {
89         unsigned int cpu;
90
91         generate_cplb_tables_all();
92         /* Generate per-CPU I&D CPLB tables */
93         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94                 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101         bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105         bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108         /*
109          * In cache coherence emulation mode, we need to have the
110          * D-cache enabled before running any atomic operation which
111          * might invove cache invalidation (i.e. spinlock, rwlock).
112          * So printk's are deferred until then.
113          */
114 #ifdef CONFIG_BFIN_ICACHE
115         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 #endif
117 #ifdef CONFIG_BFIN_DCACHE
118         printk(KERN_INFO "Data Cache Enabled for CPU%u"
119 # if defined CONFIG_BFIN_WB
120                 " (write-back)"
121 # elif defined CONFIG_BFIN_WT
122                 " (write-through)"
123 # endif
124                 "\n", cpu);
125 #endif
126 }
127
128 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
129 {
130         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
131
132         cpudata->idle = current;
133         cpudata->loops_per_jiffy = loops_per_jiffy;
134         cpudata->imemctl = bfin_read_IMEM_CONTROL();
135         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
136 }
137
138 void __init bfin_cache_init(void)
139 {
140 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
141         generate_cplb_tables();
142 #endif
143         bfin_setup_caches(0);
144 }
145
146 void __init bfin_relocate_l1_mem(void)
147 {
148         unsigned long l1_code_length;
149         unsigned long l1_data_a_length;
150         unsigned long l1_data_b_length;
151         unsigned long l2_length;
152
153         blackfin_dma_early_init();
154
155         l1_code_length = _etext_l1 - _stext_l1;
156         if (l1_code_length > L1_CODE_LENGTH)
157                 panic("L1 Instruction SRAM Overflow\n");
158         /* cannot complain as printk is not available as yet.
159          * But we can continue booting and complain later!
160          */
161
162         /* Copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
163         dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
164
165         l1_data_a_length = _sbss_l1 - _sdata_l1;
166         if (l1_data_a_length > L1_DATA_A_LENGTH)
167                 panic("L1 Data SRAM Bank A Overflow\n");
168
169         /* Copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
170         dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
171
172         l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
173         if (l1_data_b_length > L1_DATA_B_LENGTH)
174                 panic("L1 Data SRAM Bank B Overflow\n");
175
176         /* Copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
177         dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
178                         l1_data_a_length, l1_data_b_length);
179
180         if (L2_LENGTH != 0) {
181                 l2_length = _sbss_l2 - _stext_l2;
182                 if (l2_length > L2_LENGTH)
183                         panic("L2 SRAM Overflow\n");
184
185                 /* Copy _stext_l2 to _edata_l2 to L2 SRAM */
186                 dma_memcpy(_stext_l2, _l2_lma_start, l2_length);
187         }
188 }
189
190 /* add_memory_region to memmap */
191 static void __init add_memory_region(unsigned long long start,
192                               unsigned long long size, int type)
193 {
194         int i;
195
196         i = bfin_memmap.nr_map;
197
198         if (i == BFIN_MEMMAP_MAX) {
199                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
200                 return;
201         }
202
203         bfin_memmap.map[i].addr = start;
204         bfin_memmap.map[i].size = size;
205         bfin_memmap.map[i].type = type;
206         bfin_memmap.nr_map++;
207 }
208
209 /*
210  * Sanitize the boot memmap, removing overlaps.
211  */
212 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
213 {
214         struct change_member *change_tmp;
215         unsigned long current_type, last_type;
216         unsigned long long last_addr;
217         int chgidx, still_changing;
218         int overlap_entries;
219         int new_entry;
220         int old_nr, new_nr, chg_nr;
221         int i;
222
223         /*
224                 Visually we're performing the following (1,2,3,4 = memory types)
225
226                 Sample memory map (w/overlaps):
227                    ____22__________________
228                    ______________________4_
229                    ____1111________________
230                    _44_____________________
231                    11111111________________
232                    ____________________33__
233                    ___________44___________
234                    __________33333_________
235                    ______________22________
236                    ___________________2222_
237                    _________111111111______
238                    _____________________11_
239                    _________________4______
240
241                 Sanitized equivalent (no overlap):
242                    1_______________________
243                    _44_____________________
244                    ___1____________________
245                    ____22__________________
246                    ______11________________
247                    _________1______________
248                    __________3_____________
249                    ___________44___________
250                    _____________33_________
251                    _______________2________
252                    ________________1_______
253                    _________________4______
254                    ___________________2____
255                    ____________________33__
256                    ______________________4_
257         */
258         /* if there's only one memory region, don't bother */
259         if (*pnr_map < 2)
260                 return -1;
261
262         old_nr = *pnr_map;
263
264         /* bail out if we find any unreasonable addresses in memmap */
265         for (i = 0; i < old_nr; i++)
266                 if (map[i].addr + map[i].size < map[i].addr)
267                         return -1;
268
269         /* create pointers for initial change-point information (for sorting) */
270         for (i = 0; i < 2*old_nr; i++)
271                 change_point[i] = &change_point_list[i];
272
273         /* record all known change-points (starting and ending addresses),
274            omitting those that are for empty memory regions */
275         chgidx = 0;
276         for (i = 0; i < old_nr; i++) {
277                 if (map[i].size != 0) {
278                         change_point[chgidx]->addr = map[i].addr;
279                         change_point[chgidx++]->pentry = &map[i];
280                         change_point[chgidx]->addr = map[i].addr + map[i].size;
281                         change_point[chgidx++]->pentry = &map[i];
282                 }
283         }
284         chg_nr = chgidx;        /* true number of change-points */
285
286         /* sort change-point list by memory addresses (low -> high) */
287         still_changing = 1;
288         while (still_changing) {
289                 still_changing = 0;
290                 for (i = 1; i < chg_nr; i++) {
291                         /* if <current_addr> > <last_addr>, swap */
292                         /* or, if current=<start_addr> & last=<end_addr>, swap */
293                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
294                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
295                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
296                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
297                            ) {
298                                 change_tmp = change_point[i];
299                                 change_point[i] = change_point[i-1];
300                                 change_point[i-1] = change_tmp;
301                                 still_changing = 1;
302                         }
303                 }
304         }
305
306         /* create a new memmap, removing overlaps */
307         overlap_entries = 0;    /* number of entries in the overlap table */
308         new_entry = 0;          /* index for creating new memmap entries */
309         last_type = 0;          /* start with undefined memory type */
310         last_addr = 0;          /* start with 0 as last starting address */
311         /* loop through change-points, determining affect on the new memmap */
312         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
313                 /* keep track of all overlapping memmap entries */
314                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
315                         /* add map entry to overlap list (> 1 entry implies an overlap) */
316                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
317                 } else {
318                         /* remove entry from list (order independent, so swap with last) */
319                         for (i = 0; i < overlap_entries; i++) {
320                                 if (overlap_list[i] == change_point[chgidx]->pentry)
321                                         overlap_list[i] = overlap_list[overlap_entries-1];
322                         }
323                         overlap_entries--;
324                 }
325                 /* if there are overlapping entries, decide which "type" to use */
326                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
327                 current_type = 0;
328                 for (i = 0; i < overlap_entries; i++)
329                         if (overlap_list[i]->type > current_type)
330                                 current_type = overlap_list[i]->type;
331                 /* continue building up new memmap based on this information */
332                 if (current_type != last_type) {
333                         if (last_type != 0) {
334                                 new_map[new_entry].size =
335                                         change_point[chgidx]->addr - last_addr;
336                                 /* move forward only if the new size was non-zero */
337                                 if (new_map[new_entry].size != 0)
338                                         if (++new_entry >= BFIN_MEMMAP_MAX)
339                                                 break;  /* no more space left for new entries */
340                         }
341                         if (current_type != 0) {
342                                 new_map[new_entry].addr = change_point[chgidx]->addr;
343                                 new_map[new_entry].type = current_type;
344                                 last_addr = change_point[chgidx]->addr;
345                         }
346                         last_type = current_type;
347                 }
348         }
349         new_nr = new_entry;     /* retain count for new entries */
350
351         /* copy new mapping into original location */
352         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
353         *pnr_map = new_nr;
354
355         return 0;
356 }
357
358 static void __init print_memory_map(char *who)
359 {
360         int i;
361
362         for (i = 0; i < bfin_memmap.nr_map; i++) {
363                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
364                         bfin_memmap.map[i].addr,
365                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
366                 switch (bfin_memmap.map[i].type) {
367                 case BFIN_MEMMAP_RAM:
368                                 printk("(usable)\n");
369                                 break;
370                 case BFIN_MEMMAP_RESERVED:
371                                 printk("(reserved)\n");
372                                 break;
373                 default:        printk("type %lu\n", bfin_memmap.map[i].type);
374                                 break;
375                 }
376         }
377 }
378
379 static __init int parse_memmap(char *arg)
380 {
381         unsigned long long start_at, mem_size;
382
383         if (!arg)
384                 return -EINVAL;
385
386         mem_size = memparse(arg, &arg);
387         if (*arg == '@') {
388                 start_at = memparse(arg+1, &arg);
389                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
390         } else if (*arg == '$') {
391                 start_at = memparse(arg+1, &arg);
392                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
393         }
394
395         return 0;
396 }
397
398 /*
399  * Initial parsing of the command line.  Currently, we support:
400  *  - Controlling the linux memory size: mem=xxx[KMG]
401  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
402  *       $ -> reserved memory is dcacheable
403  *       # -> reserved memory is icacheable
404  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
405  *       @ from <start> to <start>+<mem>, type RAM
406  *       $ from <start> to <start>+<mem>, type RESERVED
407  */
408 static __init void parse_cmdline_early(char *cmdline_p)
409 {
410         char c = ' ', *to = cmdline_p;
411         unsigned int memsize;
412         for (;;) {
413                 if (c == ' ') {
414                         if (!memcmp(to, "mem=", 4)) {
415                                 to += 4;
416                                 memsize = memparse(to, &to);
417                                 if (memsize)
418                                         _ramend = memsize;
419
420                         } else if (!memcmp(to, "max_mem=", 8)) {
421                                 to += 8;
422                                 memsize = memparse(to, &to);
423                                 if (memsize) {
424                                         physical_mem_end = memsize;
425                                         if (*to != ' ') {
426                                                 if (*to == '$'
427                                                     || *(to + 1) == '$')
428                                                         reserved_mem_dcache_on = 1;
429                                                 if (*to == '#'
430                                                     || *(to + 1) == '#')
431                                                         reserved_mem_icache_on = 1;
432                                         }
433                                 }
434                         } else if (!memcmp(to, "clkin_hz=", 9)) {
435                                 to += 9;
436                                 early_init_clkin_hz(to);
437                         } else if (!memcmp(to, "earlyprintk=", 12)) {
438                                 to += 12;
439                                 setup_early_printk(to);
440                         } else if (!memcmp(to, "memmap=", 7)) {
441                                 to += 7;
442                                 parse_memmap(to);
443                         }
444                 }
445                 c = *(to++);
446                 if (!c)
447                         break;
448         }
449 }
450
451 /*
452  * Setup memory defaults from user config.
453  * The physical memory layout looks like:
454  *
455  *  [_rambase, _ramstart]:              kernel image
456  *  [memory_start, memory_end]:         dynamic memory managed by kernel
457  *  [memory_end, _ramend]:              reserved memory
458  *      [memory_mtd_start(memory_end),
459  *              memory_mtd_start + mtd_size]:   rootfs (if any)
460  *      [_ramend - DMA_UNCACHED_REGION,
461  *              _ramend]:                       uncached DMA region
462  *  [_ramend, physical_mem_end]:        memory not managed by kernel
463  */
464 static __init void memory_setup(void)
465 {
466 #ifdef CONFIG_MTD_UCLINUX
467         unsigned long mtd_phys = 0;
468 #endif
469
470         _rambase = (unsigned long)_stext;
471         _ramstart = (unsigned long)_end;
472
473         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
474                 console_init();
475                 panic("DMA region exceeds memory limit: %lu.\n",
476                         _ramend - _ramstart);
477         }
478         memory_end = _ramend - DMA_UNCACHED_REGION;
479
480 #ifdef CONFIG_MPU
481         /* Round up to multiple of 4MB */
482         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
483 #else
484         memory_start = PAGE_ALIGN(_ramstart);
485 #endif
486
487 #if defined(CONFIG_MTD_UCLINUX)
488         /* generic memory mapped MTD driver */
489         memory_mtd_end = memory_end;
490
491         mtd_phys = _ramstart;
492         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
493
494 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
495         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
496                 mtd_size =
497                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
498 # endif
499
500 # if defined(CONFIG_CRAMFS)
501         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
502                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
503 # endif
504
505 # if defined(CONFIG_ROMFS_FS)
506         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
507             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
508                 mtd_size =
509                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
510 #  if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
511         /* Due to a Hardware Anomaly we need to limit the size of usable
512          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
513          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
514          */
515 #   if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
516         if (memory_end >= 56 * 1024 * 1024)
517                 memory_end = 56 * 1024 * 1024;
518 #   else
519         if (memory_end >= 60 * 1024 * 1024)
520                 memory_end = 60 * 1024 * 1024;
521 #   endif                               /* CONFIG_DEBUG_HUNT_FOR_ZERO */
522 #  endif                                /* ANOMALY_05000263 */
523 # endif                         /* CONFIG_ROMFS_FS */
524
525         memory_end -= mtd_size;
526
527         if (mtd_size == 0) {
528                 console_init();
529                 panic("Don't boot kernel without rootfs attached.\n");
530         }
531
532         /* Relocate MTD image to the top of memory after the uncached memory area */
533         dma_memcpy((char *)memory_end, _end, mtd_size);
534
535         memory_mtd_start = memory_end;
536         _ebss = memory_mtd_start;       /* define _ebss for compatible */
537 #endif                          /* CONFIG_MTD_UCLINUX */
538
539 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
540         /* Due to a Hardware Anomaly we need to limit the size of usable
541          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
542          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
543          */
544 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
545         if (memory_end >= 56 * 1024 * 1024)
546                 memory_end = 56 * 1024 * 1024;
547 #else
548         if (memory_end >= 60 * 1024 * 1024)
549                 memory_end = 60 * 1024 * 1024;
550 #endif                          /* CONFIG_DEBUG_HUNT_FOR_ZERO */
551         printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
552 #endif                          /* ANOMALY_05000263 */
553
554 #ifdef CONFIG_MPU
555         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
556         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
557 #endif
558
559 #if !defined(CONFIG_MTD_UCLINUX)
560         /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
561         memory_end -= SIZE_4K;
562 #endif
563
564         init_mm.start_code = (unsigned long)_stext;
565         init_mm.end_code = (unsigned long)_etext;
566         init_mm.end_data = (unsigned long)_edata;
567         init_mm.brk = (unsigned long)0;
568
569         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
570         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
571
572         printk(KERN_INFO "Memory map:\n"
573                 KERN_INFO "  fixedcode = 0x%p-0x%p\n"
574                 KERN_INFO "  text      = 0x%p-0x%p\n"
575                 KERN_INFO "  rodata    = 0x%p-0x%p\n"
576                 KERN_INFO "  bss       = 0x%p-0x%p\n"
577                 KERN_INFO "  data      = 0x%p-0x%p\n"
578                 KERN_INFO "    stack   = 0x%p-0x%p\n"
579                 KERN_INFO "  init      = 0x%p-0x%p\n"
580                 KERN_INFO "  available = 0x%p-0x%p\n"
581 #ifdef CONFIG_MTD_UCLINUX
582                 KERN_INFO "  rootfs    = 0x%p-0x%p\n"
583 #endif
584 #if DMA_UNCACHED_REGION > 0
585                 KERN_INFO "  DMA Zone  = 0x%p-0x%p\n"
586 #endif
587                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
588                 _stext, _etext,
589                 __start_rodata, __end_rodata,
590                 __bss_start, __bss_stop,
591                 _sdata, _edata,
592                 (void *)&init_thread_union,
593                 (void *)((int)(&init_thread_union) + 0x2000),
594                 __init_begin, __init_end,
595                 (void *)_ramstart, (void *)memory_end
596 #ifdef CONFIG_MTD_UCLINUX
597                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
598 #endif
599 #if DMA_UNCACHED_REGION > 0
600                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
601 #endif
602                 );
603 }
604
605 /*
606  * Find the lowest, highest page frame number we have available
607  */
608 void __init find_min_max_pfn(void)
609 {
610         int i;
611
612         max_pfn = 0;
613         min_low_pfn = memory_end;
614
615         for (i = 0; i < bfin_memmap.nr_map; i++) {
616                 unsigned long start, end;
617                 /* RAM? */
618                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
619                         continue;
620                 start = PFN_UP(bfin_memmap.map[i].addr);
621                 end = PFN_DOWN(bfin_memmap.map[i].addr +
622                                 bfin_memmap.map[i].size);
623                 if (start >= end)
624                         continue;
625                 if (end > max_pfn)
626                         max_pfn = end;
627                 if (start < min_low_pfn)
628                         min_low_pfn = start;
629         }
630 }
631
632 static __init void setup_bootmem_allocator(void)
633 {
634         int bootmap_size;
635         int i;
636         unsigned long start_pfn, end_pfn;
637         unsigned long curr_pfn, last_pfn, size;
638
639         /* mark memory between memory_start and memory_end usable */
640         add_memory_region(memory_start,
641                 memory_end - memory_start, BFIN_MEMMAP_RAM);
642         /* sanity check for overlap */
643         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
644         print_memory_map("boot memmap");
645
646         /* intialize globals in linux/bootmem.h */
647         find_min_max_pfn();
648         /* pfn of the last usable page frame */
649         if (max_pfn > memory_end >> PAGE_SHIFT)
650                 max_pfn = memory_end >> PAGE_SHIFT;
651         /* pfn of last page frame directly mapped by kernel */
652         max_low_pfn = max_pfn;
653         /* pfn of the first usable page frame after kernel image*/
654         if (min_low_pfn < memory_start >> PAGE_SHIFT)
655                 min_low_pfn = memory_start >> PAGE_SHIFT;
656
657         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
658         end_pfn = memory_end >> PAGE_SHIFT;
659
660         /*
661          * give all the memory to the bootmap allocator, tell it to put the
662          * boot mem_map at the start of memory.
663          */
664         bootmap_size = init_bootmem_node(NODE_DATA(0),
665                         memory_start >> PAGE_SHIFT,     /* map goes here */
666                         start_pfn, end_pfn);
667
668         /* register the memmap regions with the bootmem allocator */
669         for (i = 0; i < bfin_memmap.nr_map; i++) {
670                 /*
671                  * Reserve usable memory
672                  */
673                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
674                         continue;
675                 /*
676                  * We are rounding up the start address of usable memory:
677                  */
678                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
679                 if (curr_pfn >= end_pfn)
680                         continue;
681                 /*
682                  * ... and at the end of the usable range downwards:
683                  */
684                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
685                                          bfin_memmap.map[i].size);
686
687                 if (last_pfn > end_pfn)
688                         last_pfn = end_pfn;
689
690                 /*
691                  * .. finally, did all the rounding and playing
692                  * around just make the area go away?
693                  */
694                 if (last_pfn <= curr_pfn)
695                         continue;
696
697                 size = last_pfn - curr_pfn;
698                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
699         }
700
701         /* reserve memory before memory_start, including bootmap */
702         reserve_bootmem(PAGE_OFFSET,
703                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
704                 BOOTMEM_DEFAULT);
705 }
706
707 #define EBSZ_TO_MEG(ebsz) \
708 ({ \
709         int meg = 0; \
710         switch (ebsz & 0xf) { \
711                 case 0x1: meg =  16; break; \
712                 case 0x3: meg =  32; break; \
713                 case 0x5: meg =  64; break; \
714                 case 0x7: meg = 128; break; \
715                 case 0x9: meg = 256; break; \
716                 case 0xb: meg = 512; break; \
717         } \
718         meg; \
719 })
720 static inline int __init get_mem_size(void)
721 {
722 #if defined(EBIU_SDBCTL)
723 # if defined(BF561_FAMILY)
724         int ret = 0;
725         u32 sdbctl = bfin_read_EBIU_SDBCTL();
726         ret += EBSZ_TO_MEG(sdbctl >>  0);
727         ret += EBSZ_TO_MEG(sdbctl >>  8);
728         ret += EBSZ_TO_MEG(sdbctl >> 16);
729         ret += EBSZ_TO_MEG(sdbctl >> 24);
730         return ret;
731 # else
732         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
733 # endif
734 #elif defined(EBIU_DDRCTL1)
735         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
736         int ret = 0;
737         switch (ddrctl & 0xc0000) {
738                 case DEVSZ_64:  ret = 64 / 8;
739                 case DEVSZ_128: ret = 128 / 8;
740                 case DEVSZ_256: ret = 256 / 8;
741                 case DEVSZ_512: ret = 512 / 8;
742         }
743         switch (ddrctl & 0x30000) {
744                 case DEVWD_4:  ret *= 2;
745                 case DEVWD_8:  ret *= 2;
746                 case DEVWD_16: break;
747         }
748         if ((ddrctl & 0xc000) == 0x4000)
749                 ret *= 2;
750         return ret;
751 #endif
752         BUG();
753 }
754
755 void __init setup_arch(char **cmdline_p)
756 {
757         unsigned long sclk, cclk;
758
759 #ifdef CONFIG_DUMMY_CONSOLE
760         conswitchp = &dummy_con;
761 #endif
762
763 #if defined(CONFIG_CMDLINE_BOOL)
764         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
765         command_line[sizeof(command_line) - 1] = 0;
766 #endif
767
768         /* Keep a copy of command line */
769         *cmdline_p = &command_line[0];
770         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
771         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
772
773         /* setup memory defaults from the user config */
774         physical_mem_end = 0;
775         _ramend = get_mem_size() * 1024 * 1024;
776
777         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
778
779         parse_cmdline_early(&command_line[0]);
780
781         if (physical_mem_end == 0)
782                 physical_mem_end = _ramend;
783
784         memory_setup();
785
786         /* Initialize Async memory banks */
787         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
788         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
789         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
790 #ifdef CONFIG_EBIU_MBSCTLVAL
791         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
792         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
793         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
794 #endif
795
796         cclk = get_cclk();
797         sclk = get_sclk();
798
799 #if !defined(CONFIG_BFIN_KERNEL_CLOCK)
800         if (ANOMALY_05000273 && cclk == sclk)
801                 panic("ANOMALY 05000273, SCLK can not be same as CCLK");
802 #endif
803
804 #ifdef BF561_FAMILY
805         if (ANOMALY_05000266) {
806                 bfin_read_IMDMA_D0_IRQ_STATUS();
807                 bfin_read_IMDMA_D1_IRQ_STATUS();
808         }
809 #endif
810         printk(KERN_INFO "Hardware Trace ");
811         if (bfin_read_TBUFCTL() & 0x1)
812                 printk("Active ");
813         else
814                 printk("Off ");
815         if (bfin_read_TBUFCTL() & 0x2)
816                 printk("and Enabled\n");
817         else
818         printk("and Disabled\n");
819
820 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
821         /* we need to initialize the Flashrom device here since we might
822          * do things with flash early on in the boot
823          */
824         flash_probe();
825 #endif
826
827         _bfin_swrst = bfin_read_SWRST();
828
829 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
830         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
831 #endif
832 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
833         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
834 #endif
835
836 #ifdef CONFIG_SMP
837         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
838 #else
839         if (_bfin_swrst & RESET_DOUBLE) {
840 #endif
841                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
842 #ifdef CONFIG_DEBUG_DOUBLEFAULT
843                 /* We assume the crashing kernel, and the current symbol table match */
844                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
845                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
846                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
847                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
848 #endif
849                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
850                         init_retx);
851         } else if (_bfin_swrst & RESET_WDOG)
852                 printk(KERN_INFO "Recovering from Watchdog event\n");
853         else if (_bfin_swrst & RESET_SOFTWARE)
854                 printk(KERN_NOTICE "Reset caused by Software reset\n");
855
856         printk(KERN_INFO "Blackfin support (C) 2004-2008 Analog Devices, Inc.\n");
857         if (bfin_compiled_revid() == 0xffff)
858                 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
859         else if (bfin_compiled_revid() == -1)
860                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
861         else
862                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
863
864         if (unlikely(CPUID != bfin_cpuid()))
865                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
866                         CPU, bfin_cpuid(), bfin_revid());
867         else {
868                 if (bfin_revid() != bfin_compiled_revid()) {
869                         if (bfin_compiled_revid() == -1)
870                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
871                                        bfin_revid());
872                         else if (bfin_compiled_revid() != 0xffff) {
873                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
874                                        bfin_compiled_revid(), bfin_revid());
875                                 if (bfin_compiled_revid() > bfin_revid())
876                                         panic("Error: you are missing anomaly workarounds for this rev\n");
877                         }
878                 }
879                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
880                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
881                                CPU, bfin_revid());
882         }
883
884         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
885
886         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
887                cclk / 1000000, sclk / 1000000);
888
889         if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
890                 printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
891
892         setup_bootmem_allocator();
893
894         paging_init();
895
896         /* Copy atomic sequences to their fixed location, and sanity check that
897            these locations are the ones that we advertise to userspace.  */
898         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
899                FIXED_CODE_END - FIXED_CODE_START);
900         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
901                != SIGRETURN_STUB - FIXED_CODE_START);
902         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
903                != ATOMIC_XCHG32 - FIXED_CODE_START);
904         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
905                != ATOMIC_CAS32 - FIXED_CODE_START);
906         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
907                != ATOMIC_ADD32 - FIXED_CODE_START);
908         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
909                != ATOMIC_SUB32 - FIXED_CODE_START);
910         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
911                != ATOMIC_IOR32 - FIXED_CODE_START);
912         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
913                != ATOMIC_AND32 - FIXED_CODE_START);
914         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
915                != ATOMIC_XOR32 - FIXED_CODE_START);
916         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
917                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
918
919 #ifdef CONFIG_SMP
920         platform_init_cpus();
921 #endif
922         init_exception_vectors();
923         bfin_cache_init();      /* Initialize caches for the boot CPU */
924 }
925
926 static int __init topology_init(void)
927 {
928         unsigned int cpu;
929         /* Record CPU-private information for the boot processor. */
930         bfin_setup_cpudata(0);
931
932         for_each_possible_cpu(cpu) {
933                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
934         }
935
936         return 0;
937 }
938
939 subsys_initcall(topology_init);
940
941 /* Get the input clock frequency */
942 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
943 static u_long get_clkin_hz(void)
944 {
945         return cached_clkin_hz;
946 }
947 static int __init early_init_clkin_hz(char *buf)
948 {
949         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
950 #ifdef BFIN_KERNEL_CLOCK
951         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
952                 panic("cannot change clkin_hz when reprogramming clocks");
953 #endif
954         return 1;
955 }
956 early_param("clkin_hz=", early_init_clkin_hz);
957
958 /* Get the voltage input multiplier */
959 static u_long cached_vco_pll_ctl, cached_vco;
960 static u_long get_vco(void)
961 {
962         u_long msel;
963
964         u_long pll_ctl = bfin_read_PLL_CTL();
965         if (pll_ctl == cached_vco_pll_ctl)
966                 return cached_vco;
967         else
968                 cached_vco_pll_ctl = pll_ctl;
969
970         msel = (pll_ctl >> 9) & 0x3F;
971         if (0 == msel)
972                 msel = 64;
973
974         cached_vco = get_clkin_hz();
975         cached_vco >>= (1 & pll_ctl);   /* DF bit */
976         cached_vco *= msel;
977         return cached_vco;
978 }
979
980 /* Get the Core clock */
981 static u_long cached_cclk_pll_div, cached_cclk;
982 u_long get_cclk(void)
983 {
984         u_long csel, ssel;
985
986         if (bfin_read_PLL_STAT() & 0x1)
987                 return get_clkin_hz();
988
989         ssel = bfin_read_PLL_DIV();
990         if (ssel == cached_cclk_pll_div)
991                 return cached_cclk;
992         else
993                 cached_cclk_pll_div = ssel;
994
995         csel = ((ssel >> 4) & 0x03);
996         ssel &= 0xf;
997         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
998                 cached_cclk = get_vco() / ssel;
999         else
1000                 cached_cclk = get_vco() >> csel;
1001         return cached_cclk;
1002 }
1003 EXPORT_SYMBOL(get_cclk);
1004
1005 /* Get the System clock */
1006 static u_long cached_sclk_pll_div, cached_sclk;
1007 u_long get_sclk(void)
1008 {
1009         u_long ssel;
1010
1011         if (bfin_read_PLL_STAT() & 0x1)
1012                 return get_clkin_hz();
1013
1014         ssel = bfin_read_PLL_DIV();
1015         if (ssel == cached_sclk_pll_div)
1016                 return cached_sclk;
1017         else
1018                 cached_sclk_pll_div = ssel;
1019
1020         ssel &= 0xf;
1021         if (0 == ssel) {
1022                 printk(KERN_WARNING "Invalid System Clock\n");
1023                 ssel = 1;
1024         }
1025
1026         cached_sclk = get_vco() / ssel;
1027         return cached_sclk;
1028 }
1029 EXPORT_SYMBOL(get_sclk);
1030
1031 unsigned long sclk_to_usecs(unsigned long sclk)
1032 {
1033         u64 tmp = USEC_PER_SEC * (u64)sclk;
1034         do_div(tmp, get_sclk());
1035         return tmp;
1036 }
1037 EXPORT_SYMBOL(sclk_to_usecs);
1038
1039 unsigned long usecs_to_sclk(unsigned long usecs)
1040 {
1041         u64 tmp = get_sclk() * (u64)usecs;
1042         do_div(tmp, USEC_PER_SEC);
1043         return tmp;
1044 }
1045 EXPORT_SYMBOL(usecs_to_sclk);
1046
1047 /*
1048  *      Get CPU information for use by the procfs.
1049  */
1050 static int show_cpuinfo(struct seq_file *m, void *v)
1051 {
1052         char *cpu, *mmu, *fpu, *vendor, *cache;
1053         uint32_t revid;
1054         int cpu_num = *(unsigned int *)v;
1055         u_long sclk, cclk;
1056         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1057         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1058
1059         cpu = CPU;
1060         mmu = "none";
1061         fpu = "none";
1062         revid = bfin_revid();
1063
1064         sclk = get_sclk();
1065         cclk = get_cclk();
1066
1067         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1068         case 0xca:
1069                 vendor = "Analog Devices";
1070                 break;
1071         default:
1072                 vendor = "unknown";
1073                 break;
1074         }
1075
1076         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1077
1078         if (CPUID == bfin_cpuid())
1079                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1080         else
1081                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1082                         CPUID, bfin_cpuid());
1083
1084         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1085                 "stepping\t: %d\n",
1086                 cpu, cclk/1000000, sclk/1000000,
1087 #ifdef CONFIG_MPU
1088                 "mpu on",
1089 #else
1090                 "mpu off",
1091 #endif
1092                 revid);
1093
1094         seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1095                 cclk/1000000, cclk%1000000,
1096                 sclk/1000000, sclk%1000000);
1097         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1098                 "Calibration\t: %lu loops\n",
1099                 (cpudata->loops_per_jiffy * HZ) / 500000,
1100                 ((cpudata->loops_per_jiffy * HZ) / 5000) % 100,
1101                 (cpudata->loops_per_jiffy * HZ));
1102
1103         /* Check Cache configutation */
1104         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1105         case ACACHE_BSRAM:
1106                 cache = "dbank-A/B\t: cache/sram";
1107                 dcache_size = 16;
1108                 dsup_banks = 1;
1109                 break;
1110         case ACACHE_BCACHE:
1111                 cache = "dbank-A/B\t: cache/cache";
1112                 dcache_size = 32;
1113                 dsup_banks = 2;
1114                 break;
1115         case ASRAM_BSRAM:
1116                 cache = "dbank-A/B\t: sram/sram";
1117                 dcache_size = 0;
1118                 dsup_banks = 0;
1119                 break;
1120         default:
1121                 cache = "unknown";
1122                 dcache_size = 0;
1123                 dsup_banks = 0;
1124                 break;
1125         }
1126
1127         /* Is it turned on? */
1128         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1129                 dcache_size = 0;
1130
1131         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1132                 icache_size = 0;
1133
1134         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1135                 "%d KB(L1 dcache-%s) %d KB(L2 cache)\n",
1136                 icache_size, dcache_size,
1137 #if defined CONFIG_BFIN_WB
1138                 "wb"
1139 #elif defined CONFIG_BFIN_WT
1140                 "wt"
1141 #endif
1142                 "", 0);
1143
1144         seq_printf(m, "%s\n", cache);
1145
1146         if (icache_size)
1147                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1148                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1149         else
1150                 seq_printf(m, "icache setup\t: off\n");
1151
1152         seq_printf(m,
1153                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1154                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1155                    BFIN_DLINES);
1156 #ifdef __ARCH_SYNC_CORE_DCACHE
1157         seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1158 #endif
1159 #ifdef CONFIG_BFIN_ICACHE_LOCK
1160         switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1161         case WAY0_L:
1162                 seq_printf(m, "Way0 Locked-Down\n");
1163                 break;
1164         case WAY1_L:
1165                 seq_printf(m, "Way1 Locked-Down\n");
1166                 break;
1167         case WAY01_L:
1168                 seq_printf(m, "Way0,Way1 Locked-Down\n");
1169                 break;
1170         case WAY2_L:
1171                 seq_printf(m, "Way2 Locked-Down\n");
1172                 break;
1173         case WAY02_L:
1174                 seq_printf(m, "Way0,Way2 Locked-Down\n");
1175                 break;
1176         case WAY12_L:
1177                 seq_printf(m, "Way1,Way2 Locked-Down\n");
1178                 break;
1179         case WAY012_L:
1180                 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1181                 break;
1182         case WAY3_L:
1183                 seq_printf(m, "Way3 Locked-Down\n");
1184                 break;
1185         case WAY03_L:
1186                 seq_printf(m, "Way0,Way3 Locked-Down\n");
1187                 break;
1188         case WAY13_L:
1189                 seq_printf(m, "Way1,Way3 Locked-Down\n");
1190                 break;
1191         case WAY013_L:
1192                 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1193                 break;
1194         case WAY32_L:
1195                 seq_printf(m, "Way3,Way2 Locked-Down\n");
1196                 break;
1197         case WAY320_L:
1198                 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1199                 break;
1200         case WAY321_L:
1201                 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1202                 break;
1203         case WAYALL_L:
1204                 seq_printf(m, "All Ways are locked\n");
1205                 break;
1206         default:
1207                 seq_printf(m, "No Ways are locked\n");
1208         }
1209 #endif
1210
1211         if (cpu_num != num_possible_cpus() - 1)
1212                 return 0;
1213
1214         if (L2_LENGTH)
1215                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1216         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1217         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1218                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1219         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1220                 ((int)memory_end - (int)_stext) >> 10,
1221                 _stext,
1222                 (void *)memory_end);
1223         seq_printf(m, "\n");
1224
1225         return 0;
1226 }
1227
1228 static void *c_start(struct seq_file *m, loff_t *pos)
1229 {
1230         if (*pos == 0)
1231                 *pos = first_cpu(cpu_online_map);
1232         if (*pos >= num_online_cpus())
1233                 return NULL;
1234
1235         return pos;
1236 }
1237
1238 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1239 {
1240         *pos = next_cpu(*pos, cpu_online_map);
1241
1242         return c_start(m, pos);
1243 }
1244
1245 static void c_stop(struct seq_file *m, void *v)
1246 {
1247 }
1248
1249 const struct seq_operations cpuinfo_op = {
1250         .start = c_start,
1251         .next = c_next,
1252         .stop = c_stop,
1253         .show = show_cpuinfo,
1254 };
1255
1256 void __init cmdline_init(const char *r0)
1257 {
1258         if (r0)
1259                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1260 }