Blackfin arch: Move all the silicon rev handling to one place
[linux-2.6.git] / arch / blackfin / kernel / setup.c
1 /*
2  * arch/blackfin/kernel/setup.c
3  *
4  * Copyright 2004-2006 Analog Devices Inc.
5  *
6  * Enter bugs at http://blackfin.uclinux.org/
7  *
8  * Licensed under the GPL-2 or later.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/module.h>
17 #include <linux/tty.h>
18 #include <linux/pfn.h>
19
20 #include <linux/ext2_fs.h>
21 #include <linux/cramfs_fs.h>
22 #include <linux/romfs_fs.h>
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/fixed_code.h>
30 #include <asm/early_printk.h>
31
32 static DEFINE_PER_CPU(struct cpu, cpu_devices);
33
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
36
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45
46 #ifdef CONFIG_MTD_UCLINUX
47 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
48 unsigned long _ebss;
49 EXPORT_SYMBOL(memory_mtd_end);
50 EXPORT_SYMBOL(memory_mtd_start);
51 EXPORT_SYMBOL(mtd_size);
52 #endif
53
54 char __initdata command_line[COMMAND_LINE_SIZE];
55 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
56         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
57
58 /* boot memmap, for parsing "memmap=" */
59 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
60 #define BFIN_MEMMAP_RAM         1
61 #define BFIN_MEMMAP_RESERVED    2
62 struct bfin_memmap {
63         int nr_map;
64         struct bfin_memmap_entry {
65                 unsigned long long addr; /* start of memory segment */
66                 unsigned long long size;
67                 unsigned long type;
68         } map[BFIN_MEMMAP_MAX];
69 } bfin_memmap __initdata;
70
71 /* for memmap sanitization */
72 struct change_member {
73         struct bfin_memmap_entry *pentry; /* pointer to original entry */
74         unsigned long long addr; /* address for this change point */
75 };
76 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
77 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
80
81 void __init bfin_cache_init(void)
82 {
83 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
84         generate_cplb_tables();
85 #endif
86
87 #ifdef CONFIG_BFIN_ICACHE
88         bfin_icache_init();
89         printk(KERN_INFO "Instruction Cache Enabled\n");
90 #endif
91
92 #ifdef CONFIG_BFIN_DCACHE
93         bfin_dcache_init();
94         printk(KERN_INFO "Data Cache Enabled"
95 # if defined CONFIG_BFIN_WB
96                 " (write-back)"
97 # elif defined CONFIG_BFIN_WT
98                 " (write-through)"
99 # endif
100                 "\n");
101 #endif
102 }
103
104 void __init bfin_relocate_l1_mem(void)
105 {
106         unsigned long l1_code_length;
107         unsigned long l1_data_a_length;
108         unsigned long l1_data_b_length;
109         unsigned long l2_length;
110
111         l1_code_length = _etext_l1 - _stext_l1;
112         if (l1_code_length > L1_CODE_LENGTH)
113                 panic("L1 Instruction SRAM Overflow\n");
114         /* cannot complain as printk is not available as yet.
115          * But we can continue booting and complain later!
116          */
117
118         /* Copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
119         dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
120
121         l1_data_a_length = _ebss_l1 - _sdata_l1;
122         if (l1_data_a_length > L1_DATA_A_LENGTH)
123                 panic("L1 Data SRAM Bank A Overflow\n");
124
125         /* Copy _sdata_l1 to _ebss_l1 to L1 data bank A SRAM */
126         dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
127
128         l1_data_b_length = _ebss_b_l1 - _sdata_b_l1;
129         if (l1_data_b_length > L1_DATA_B_LENGTH)
130                 panic("L1 Data SRAM Bank B Overflow\n");
131
132         /* Copy _sdata_b_l1 to _ebss_b_l1 to L1 data bank B SRAM */
133         dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
134                         l1_data_a_length, l1_data_b_length);
135
136         if (L2_LENGTH != 0) {
137                 l2_length = _ebss_l2 - _stext_l2;
138                 if (l2_length > L2_LENGTH)
139                         panic("L2 SRAM Overflow\n");
140
141                 /* Copy _stext_l2 to _edata_l2 to L2 SRAM */
142                 dma_memcpy(_stext_l2, _l2_lma_start, l2_length);
143         }
144 }
145
146 /* add_memory_region to memmap */
147 static void __init add_memory_region(unsigned long long start,
148                               unsigned long long size, int type)
149 {
150         int i;
151
152         i = bfin_memmap.nr_map;
153
154         if (i == BFIN_MEMMAP_MAX) {
155                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
156                 return;
157         }
158
159         bfin_memmap.map[i].addr = start;
160         bfin_memmap.map[i].size = size;
161         bfin_memmap.map[i].type = type;
162         bfin_memmap.nr_map++;
163 }
164
165 /*
166  * Sanitize the boot memmap, removing overlaps.
167  */
168 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
169 {
170         struct change_member *change_tmp;
171         unsigned long current_type, last_type;
172         unsigned long long last_addr;
173         int chgidx, still_changing;
174         int overlap_entries;
175         int new_entry;
176         int old_nr, new_nr, chg_nr;
177         int i;
178
179         /*
180                 Visually we're performing the following (1,2,3,4 = memory types)
181
182                 Sample memory map (w/overlaps):
183                    ____22__________________
184                    ______________________4_
185                    ____1111________________
186                    _44_____________________
187                    11111111________________
188                    ____________________33__
189                    ___________44___________
190                    __________33333_________
191                    ______________22________
192                    ___________________2222_
193                    _________111111111______
194                    _____________________11_
195                    _________________4______
196
197                 Sanitized equivalent (no overlap):
198                    1_______________________
199                    _44_____________________
200                    ___1____________________
201                    ____22__________________
202                    ______11________________
203                    _________1______________
204                    __________3_____________
205                    ___________44___________
206                    _____________33_________
207                    _______________2________
208                    ________________1_______
209                    _________________4______
210                    ___________________2____
211                    ____________________33__
212                    ______________________4_
213         */
214         /* if there's only one memory region, don't bother */
215         if (*pnr_map < 2)
216                 return -1;
217
218         old_nr = *pnr_map;
219
220         /* bail out if we find any unreasonable addresses in memmap */
221         for (i = 0; i < old_nr; i++)
222                 if (map[i].addr + map[i].size < map[i].addr)
223                         return -1;
224
225         /* create pointers for initial change-point information (for sorting) */
226         for (i = 0; i < 2*old_nr; i++)
227                 change_point[i] = &change_point_list[i];
228
229         /* record all known change-points (starting and ending addresses),
230            omitting those that are for empty memory regions */
231         chgidx = 0;
232         for (i = 0; i < old_nr; i++)    {
233                 if (map[i].size != 0) {
234                         change_point[chgidx]->addr = map[i].addr;
235                         change_point[chgidx++]->pentry = &map[i];
236                         change_point[chgidx]->addr = map[i].addr + map[i].size;
237                         change_point[chgidx++]->pentry = &map[i];
238                 }
239         }
240         chg_nr = chgidx;        /* true number of change-points */
241
242         /* sort change-point list by memory addresses (low -> high) */
243         still_changing = 1;
244         while (still_changing)  {
245                 still_changing = 0;
246                 for (i = 1; i < chg_nr; i++)  {
247                         /* if <current_addr> > <last_addr>, swap */
248                         /* or, if current=<start_addr> & last=<end_addr>, swap */
249                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
250                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
251                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
252                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
253                            ) {
254                                 change_tmp = change_point[i];
255                                 change_point[i] = change_point[i-1];
256                                 change_point[i-1] = change_tmp;
257                                 still_changing = 1;
258                         }
259                 }
260         }
261
262         /* create a new memmap, removing overlaps */
263         overlap_entries = 0;     /* number of entries in the overlap table */
264         new_entry = 0;   /* index for creating new memmap entries */
265         last_type = 0;           /* start with undefined memory type */
266         last_addr = 0;           /* start with 0 as last starting address */
267         /* loop through change-points, determining affect on the new memmap */
268         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
269                 /* keep track of all overlapping memmap entries */
270                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
271                         /* add map entry to overlap list (> 1 entry implies an overlap) */
272                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
273                 } else {
274                         /* remove entry from list (order independent, so swap with last) */
275                         for (i = 0; i < overlap_entries; i++) {
276                                 if (overlap_list[i] == change_point[chgidx]->pentry)
277                                         overlap_list[i] = overlap_list[overlap_entries-1];
278                         }
279                         overlap_entries--;
280                 }
281                 /* if there are overlapping entries, decide which "type" to use */
282                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
283                 current_type = 0;
284                 for (i = 0; i < overlap_entries; i++)
285                         if (overlap_list[i]->type > current_type)
286                                 current_type = overlap_list[i]->type;
287                 /* continue building up new memmap based on this information */
288                 if (current_type != last_type)  {
289                         if (last_type != 0) {
290                                 new_map[new_entry].size =
291                                         change_point[chgidx]->addr - last_addr;
292                                 /* move forward only if the new size was non-zero */
293                                 if (new_map[new_entry].size != 0)
294                                         if (++new_entry >= BFIN_MEMMAP_MAX)
295                                                 break;  /* no more space left for new entries */
296                         }
297                         if (current_type != 0) {
298                                 new_map[new_entry].addr = change_point[chgidx]->addr;
299                                 new_map[new_entry].type = current_type;
300                                 last_addr = change_point[chgidx]->addr;
301                         }
302                         last_type = current_type;
303                 }
304         }
305         new_nr = new_entry;   /* retain count for new entries */
306
307         /* copy new  mapping into original location */
308         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
309         *pnr_map = new_nr;
310
311         return 0;
312 }
313
314 static void __init print_memory_map(char *who)
315 {
316         int i;
317
318         for (i = 0; i < bfin_memmap.nr_map; i++) {
319                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
320                         bfin_memmap.map[i].addr,
321                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
322                 switch (bfin_memmap.map[i].type) {
323                 case BFIN_MEMMAP_RAM:
324                                 printk("(usable)\n");
325                                 break;
326                 case BFIN_MEMMAP_RESERVED:
327                                 printk("(reserved)\n");
328                                 break;
329                 default:        printk("type %lu\n", bfin_memmap.map[i].type);
330                                 break;
331                 }
332         }
333 }
334
335 static __init int parse_memmap(char *arg)
336 {
337         unsigned long long start_at, mem_size;
338
339         if (!arg)
340                 return -EINVAL;
341
342         mem_size = memparse(arg, &arg);
343         if (*arg == '@') {
344                 start_at = memparse(arg+1, &arg);
345                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
346         } else if (*arg == '$') {
347                 start_at = memparse(arg+1, &arg);
348                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
349         }
350
351         return 0;
352 }
353
354 /*
355  * Initial parsing of the command line.  Currently, we support:
356  *  - Controlling the linux memory size: mem=xxx[KMG]
357  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
358  *       $ -> reserved memory is dcacheable
359  *       # -> reserved memory is icacheable
360  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
361  *       @ from <start> to <start>+<mem>, type RAM
362  *       $ from <start> to <start>+<mem>, type RESERVED
363  *
364  */
365 static __init void parse_cmdline_early(char *cmdline_p)
366 {
367         char c = ' ', *to = cmdline_p;
368         unsigned int memsize;
369         for (;;) {
370                 if (c == ' ') {
371                         if (!memcmp(to, "mem=", 4)) {
372                                 to += 4;
373                                 memsize = memparse(to, &to);
374                                 if (memsize)
375                                         _ramend = memsize;
376
377                         } else if (!memcmp(to, "max_mem=", 8)) {
378                                 to += 8;
379                                 memsize = memparse(to, &to);
380                                 if (memsize) {
381                                         physical_mem_end = memsize;
382                                         if (*to != ' ') {
383                                                 if (*to == '$'
384                                                     || *(to + 1) == '$')
385                                                         reserved_mem_dcache_on =
386                                                             1;
387                                                 if (*to == '#'
388                                                     || *(to + 1) == '#')
389                                                         reserved_mem_icache_on =
390                                                             1;
391                                         }
392                                 }
393                         } else if (!memcmp(to, "earlyprintk=", 12)) {
394                                 to += 12;
395                                 setup_early_printk(to);
396                         } else if (!memcmp(to, "memmap=", 7)) {
397                                 to += 7;
398                                 parse_memmap(to);
399                         }
400                 }
401                 c = *(to++);
402                 if (!c)
403                         break;
404         }
405 }
406
407 /*
408  * Setup memory defaults from user config.
409  * The physical memory layout looks like:
410  *
411  *  [_rambase, _ramstart]:              kernel image
412  *  [memory_start, memory_end]:         dynamic memory managed by kernel
413  *  [memory_end, _ramend]:              reserved memory
414  *      [meory_mtd_start(memory_end),
415  *              memory_mtd_start + mtd_size]:   rootfs (if any)
416  *      [_ramend - DMA_UNCACHED_REGION,
417  *              _ramend]:                       uncached DMA region
418  *  [_ramend, physical_mem_end]:        memory not managed by kernel
419  *
420  */
421 static __init void  memory_setup(void)
422 {
423 #ifdef CONFIG_MTD_UCLINUX
424         unsigned long mtd_phys = 0;
425 #endif
426
427         _rambase = (unsigned long)_stext;
428         _ramstart = (unsigned long)_end;
429
430         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
431                 console_init();
432                 panic("DMA region exceeds memory limit: %lu.\n",
433                         _ramend - _ramstart);
434         }
435         memory_end = _ramend - DMA_UNCACHED_REGION;
436
437 #ifdef CONFIG_MPU
438         /* Round up to multiple of 4MB.  */
439         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
440 #else
441         memory_start = PAGE_ALIGN(_ramstart);
442 #endif
443
444 #if defined(CONFIG_MTD_UCLINUX)
445         /* generic memory mapped MTD driver */
446         memory_mtd_end = memory_end;
447
448         mtd_phys = _ramstart;
449         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
450
451 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
452         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
453                 mtd_size =
454                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
455 # endif
456
457 # if defined(CONFIG_CRAMFS)
458         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
459                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
460 # endif
461
462 # if defined(CONFIG_ROMFS_FS)
463         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
464             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
465                 mtd_size =
466                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
467 #  if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
468         /* Due to a Hardware Anomaly we need to limit the size of usable
469          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
470          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
471          */
472 #   if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
473         if (memory_end >= 56 * 1024 * 1024)
474                 memory_end = 56 * 1024 * 1024;
475 #   else
476         if (memory_end >= 60 * 1024 * 1024)
477                 memory_end = 60 * 1024 * 1024;
478 #   endif                               /* CONFIG_DEBUG_HUNT_FOR_ZERO */
479 #  endif                                /* ANOMALY_05000263 */
480 # endif                         /* CONFIG_ROMFS_FS */
481
482         memory_end -= mtd_size;
483
484         if (mtd_size == 0) {
485                 console_init();
486                 panic("Don't boot kernel without rootfs attached.\n");
487         }
488
489         /* Relocate MTD image to the top of memory after the uncached memory area */
490         dma_memcpy((char *)memory_end, _end, mtd_size);
491
492         memory_mtd_start = memory_end;
493         _ebss = memory_mtd_start;       /* define _ebss for compatible */
494 #endif                          /* CONFIG_MTD_UCLINUX */
495
496 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
497         /* Due to a Hardware Anomaly we need to limit the size of usable
498          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
499          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
500          */
501 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
502         if (memory_end >= 56 * 1024 * 1024)
503                 memory_end = 56 * 1024 * 1024;
504 #else
505         if (memory_end >= 60 * 1024 * 1024)
506                 memory_end = 60 * 1024 * 1024;
507 #endif                          /* CONFIG_DEBUG_HUNT_FOR_ZERO */
508         printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
509 #endif                          /* ANOMALY_05000263 */
510
511 #ifdef CONFIG_MPU
512         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
513         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
514 #endif
515
516 #if !defined(CONFIG_MTD_UCLINUX)
517         /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
518         memory_end -= SIZE_4K;
519 #endif
520
521         init_mm.start_code = (unsigned long)_stext;
522         init_mm.end_code = (unsigned long)_etext;
523         init_mm.end_data = (unsigned long)_edata;
524         init_mm.brk = (unsigned long)0;
525
526         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
527         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
528
529         printk(KERN_INFO "Memory map:\n"
530                 KERN_INFO "  fixedcode = 0x%p-0x%p\n"
531                 KERN_INFO "  text      = 0x%p-0x%p\n"
532                 KERN_INFO "  rodata    = 0x%p-0x%p\n"
533                 KERN_INFO "  bss       = 0x%p-0x%p\n"
534                 KERN_INFO "  data      = 0x%p-0x%p\n"
535                 KERN_INFO "    stack   = 0x%p-0x%p\n"
536                 KERN_INFO "  init      = 0x%p-0x%p\n"
537                 KERN_INFO "  available = 0x%p-0x%p\n"
538 #ifdef CONFIG_MTD_UCLINUX
539                 KERN_INFO "  rootfs    = 0x%p-0x%p\n"
540 #endif
541 #if DMA_UNCACHED_REGION > 0
542                 KERN_INFO "  DMA Zone  = 0x%p-0x%p\n"
543 #endif
544                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
545                 _stext, _etext,
546                 __start_rodata, __end_rodata,
547                 __bss_start, __bss_stop,
548                 _sdata, _edata,
549                 (void *)&init_thread_union,
550                 (void *)((int)(&init_thread_union) + 0x2000),
551                 __init_begin, __init_end,
552                 (void *)_ramstart, (void *)memory_end
553 #ifdef CONFIG_MTD_UCLINUX
554                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
555 #endif
556 #if DMA_UNCACHED_REGION > 0
557                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
558 #endif
559                 );
560 }
561
562 /*
563  * Find the lowest, highest page frame number we have available
564  */
565 void __init find_min_max_pfn(void)
566 {
567         int i;
568
569         max_pfn = 0;
570         min_low_pfn = memory_end;
571
572         for (i = 0; i < bfin_memmap.nr_map; i++) {
573                 unsigned long start, end;
574                 /* RAM? */
575                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
576                         continue;
577                 start = PFN_UP(bfin_memmap.map[i].addr);
578                 end = PFN_DOWN(bfin_memmap.map[i].addr +
579                                 bfin_memmap.map[i].size);
580                 if (start >= end)
581                         continue;
582                 if (end > max_pfn)
583                         max_pfn = end;
584                 if (start < min_low_pfn)
585                         min_low_pfn = start;
586         }
587 }
588
589 static __init void setup_bootmem_allocator(void)
590 {
591         int bootmap_size;
592         int i;
593         unsigned long start_pfn, end_pfn;
594         unsigned long curr_pfn, last_pfn, size;
595
596         /* mark memory between memory_start and memory_end usable */
597         add_memory_region(memory_start,
598                 memory_end - memory_start, BFIN_MEMMAP_RAM);
599         /* sanity check for overlap */
600         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
601         print_memory_map("boot memmap");
602
603         /* intialize globals in linux/bootmem.h */
604         find_min_max_pfn();
605         /* pfn of the last usable page frame */
606         if (max_pfn > memory_end >> PAGE_SHIFT)
607                 max_pfn = memory_end >> PAGE_SHIFT;
608         /* pfn of last page frame directly mapped by kernel */
609         max_low_pfn = max_pfn;
610         /* pfn of the first usable page frame after kernel image*/
611         if (min_low_pfn < memory_start >> PAGE_SHIFT)
612                 min_low_pfn = memory_start >> PAGE_SHIFT;
613
614         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
615         end_pfn = memory_end >> PAGE_SHIFT;
616
617         /*
618          * give all the memory to the bootmap allocator,  tell it to put the
619          * boot mem_map at the start of memory.
620          */
621         bootmap_size = init_bootmem_node(NODE_DATA(0),
622                         memory_start >> PAGE_SHIFT,     /* map goes here */
623                         start_pfn, end_pfn);
624
625         /* register the memmap regions with the bootmem allocator */
626         for (i = 0; i < bfin_memmap.nr_map; i++) {
627                 /*
628                  * Reserve usable memory
629                  */
630                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
631                         continue;
632                 /*
633                  * We are rounding up the start address of usable memory:
634                  */
635                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
636                 if (curr_pfn >= end_pfn)
637                         continue;
638                 /*
639                  * ... and at the end of the usable range downwards:
640                  */
641                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
642                                          bfin_memmap.map[i].size);
643
644                 if (last_pfn > end_pfn)
645                         last_pfn = end_pfn;
646
647                 /*
648                  * .. finally, did all the rounding and playing
649                  * around just make the area go away?
650                  */
651                 if (last_pfn <= curr_pfn)
652                         continue;
653
654                 size = last_pfn - curr_pfn;
655                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
656         }
657
658         /* reserve memory before memory_start, including bootmap */
659         reserve_bootmem(PAGE_OFFSET,
660                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
661                 BOOTMEM_DEFAULT);
662 }
663
664 #define EBSZ_TO_MEG(ebsz) \
665 ({ \
666         int meg = 0; \
667         switch (ebsz & 0xf) { \
668                 case 0x1: meg =  16; break; \
669                 case 0x3: meg =  32; break; \
670                 case 0x5: meg =  64; break; \
671                 case 0x7: meg = 128; break; \
672                 case 0x9: meg = 256; break; \
673                 case 0xb: meg = 512; break; \
674         } \
675         meg; \
676 })
677 static inline int __init get_mem_size(void)
678 {
679 #if defined(EBIU_SDBCTL)
680 # if defined(BF561_FAMILY)
681         int ret = 0;
682         u32 sdbctl = bfin_read_EBIU_SDBCTL();
683         ret += EBSZ_TO_MEG(sdbctl >>  0);
684         ret += EBSZ_TO_MEG(sdbctl >>  8);
685         ret += EBSZ_TO_MEG(sdbctl >> 16);
686         ret += EBSZ_TO_MEG(sdbctl >> 24);
687         return ret;
688 # else
689         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
690 # endif
691 #elif defined(EBIU_DDRCTL1)
692         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
693         int ret = 0;
694         switch (ddrctl & 0xc0000) {
695                 case DEVSZ_64:  ret = 64 / 8;
696                 case DEVSZ_128: ret = 128 / 8;
697                 case DEVSZ_256: ret = 256 / 8;
698                 case DEVSZ_512: ret = 512 / 8;
699         }
700         switch (ddrctl & 0x30000) {
701                 case DEVWD_4:  ret *= 2;
702                 case DEVWD_8:  ret *= 2;
703                 case DEVWD_16: break;
704         }
705         if ((ddrctl & 0xc000) == 0x4000)
706                 ret *= 2;
707         return ret;
708 #endif
709         BUG();
710 }
711
712 void __init setup_arch(char **cmdline_p)
713 {
714         unsigned long sclk, cclk;
715
716 #ifdef CONFIG_DUMMY_CONSOLE
717         conswitchp = &dummy_con;
718 #endif
719
720 #if defined(CONFIG_CMDLINE_BOOL)
721         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
722         command_line[sizeof(command_line) - 1] = 0;
723 #endif
724
725         /* Keep a copy of command line */
726         *cmdline_p = &command_line[0];
727         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
728         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
729
730         /* setup memory defaults from the user config */
731         physical_mem_end = 0;
732         _ramend = get_mem_size() * 1024 * 1024;
733
734         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
735
736         parse_cmdline_early(&command_line[0]);
737
738         if (physical_mem_end == 0)
739                 physical_mem_end = _ramend;
740
741         memory_setup();
742
743         /* Initialize Async memory banks */
744         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
745         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
746         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
747 #ifdef CONFIG_EBIU_MBSCTLVAL
748         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
749         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
750         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
751 #endif
752
753         cclk = get_cclk();
754         sclk = get_sclk();
755
756 #if !defined(CONFIG_BFIN_KERNEL_CLOCK)
757         if (ANOMALY_05000273 && cclk == sclk)
758                 panic("ANOMALY 05000273, SCLK can not be same as CCLK");
759 #endif
760
761 #ifdef BF561_FAMILY
762         if (ANOMALY_05000266) {
763                 bfin_read_IMDMA_D0_IRQ_STATUS();
764                 bfin_read_IMDMA_D1_IRQ_STATUS();
765         }
766 #endif
767         printk(KERN_INFO "Hardware Trace ");
768         if (bfin_read_TBUFCTL() & 0x1)
769                 printk("Active ");
770         else
771                 printk("Off ");
772         if (bfin_read_TBUFCTL() & 0x2)
773                 printk("and Enabled\n");
774         else
775         printk("and Disabled\n");
776
777 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
778         /* we need to initialize the Flashrom device here since we might
779          * do things with flash early on in the boot
780          */
781         flash_probe();
782 #endif
783
784         _bfin_swrst = bfin_read_SWRST();
785
786 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
787         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
788 #endif
789 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
790         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
791 #endif
792
793         if (_bfin_swrst & RESET_DOUBLE) {
794                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
795 #ifdef CONFIG_DEBUG_DOUBLEFAULT
796                 /* We assume the crashing kernel, and the current symbol table match */
797                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
798                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
799                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
800                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
801 #endif
802                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
803                         init_retx);
804         } else if (_bfin_swrst & RESET_WDOG)
805                 printk(KERN_INFO "Recovering from Watchdog event\n");
806         else if (_bfin_swrst & RESET_SOFTWARE)
807                 printk(KERN_NOTICE "Reset caused by Software reset\n");
808
809         printk(KERN_INFO "Blackfin support (C) 2004-2008 Analog Devices, Inc.\n");
810         if (bfin_compiled_revid() == 0xffff)
811                 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
812         else if (bfin_compiled_revid() == -1)
813                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
814         else
815                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
816         if (bfin_revid() != bfin_compiled_revid()) {
817                 if (bfin_compiled_revid() == -1)
818                         printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
819                                bfin_revid());
820                 else if (bfin_compiled_revid() != 0xffff)
821                         printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
822                                bfin_compiled_revid(), bfin_revid());
823         }
824         if (bfin_revid() <= CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
825                 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
826                        CPU, bfin_revid());
827
828         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
829
830         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
831                cclk / 1000000,  sclk / 1000000);
832
833         if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
834                 printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
835
836         setup_bootmem_allocator();
837
838         paging_init();
839
840         /* Copy atomic sequences to their fixed location, and sanity check that
841            these locations are the ones that we advertise to userspace.  */
842         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
843                FIXED_CODE_END - FIXED_CODE_START);
844         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
845                != SIGRETURN_STUB - FIXED_CODE_START);
846         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
847                != ATOMIC_XCHG32 - FIXED_CODE_START);
848         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
849                != ATOMIC_CAS32 - FIXED_CODE_START);
850         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
851                != ATOMIC_ADD32 - FIXED_CODE_START);
852         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
853                != ATOMIC_SUB32 - FIXED_CODE_START);
854         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
855                != ATOMIC_IOR32 - FIXED_CODE_START);
856         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
857                != ATOMIC_AND32 - FIXED_CODE_START);
858         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
859                != ATOMIC_XOR32 - FIXED_CODE_START);
860         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
861                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
862
863         init_exception_vectors();
864         bfin_cache_init();
865 }
866
867 static int __init topology_init(void)
868 {
869         int cpu;
870
871         for_each_possible_cpu(cpu) {
872                 struct cpu *c = &per_cpu(cpu_devices, cpu);
873
874                 register_cpu(c, cpu);
875         }
876
877         return 0;
878 }
879
880 subsys_initcall(topology_init);
881
882 /* Get the voltage input multiplier */
883 static u_long cached_vco_pll_ctl, cached_vco;
884 static u_long get_vco(void)
885 {
886         u_long msel;
887
888         u_long pll_ctl = bfin_read_PLL_CTL();
889         if (pll_ctl == cached_vco_pll_ctl)
890                 return cached_vco;
891         else
892                 cached_vco_pll_ctl = pll_ctl;
893
894         msel = (pll_ctl >> 9) & 0x3F;
895         if (0 == msel)
896                 msel = 64;
897
898         cached_vco = CONFIG_CLKIN_HZ;
899         cached_vco >>= (1 & pll_ctl);   /* DF bit */
900         cached_vco *= msel;
901         return cached_vco;
902 }
903
904 /* Get the Core clock */
905 static u_long cached_cclk_pll_div, cached_cclk;
906 u_long get_cclk(void)
907 {
908         u_long csel, ssel;
909
910         if (bfin_read_PLL_STAT() & 0x1)
911                 return CONFIG_CLKIN_HZ;
912
913         ssel = bfin_read_PLL_DIV();
914         if (ssel == cached_cclk_pll_div)
915                 return cached_cclk;
916         else
917                 cached_cclk_pll_div = ssel;
918
919         csel = ((ssel >> 4) & 0x03);
920         ssel &= 0xf;
921         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
922                 cached_cclk = get_vco() / ssel;
923         else
924                 cached_cclk = get_vco() >> csel;
925         return cached_cclk;
926 }
927 EXPORT_SYMBOL(get_cclk);
928
929 /* Get the System clock */
930 static u_long cached_sclk_pll_div, cached_sclk;
931 u_long get_sclk(void)
932 {
933         u_long ssel;
934
935         if (bfin_read_PLL_STAT() & 0x1)
936                 return CONFIG_CLKIN_HZ;
937
938         ssel = bfin_read_PLL_DIV();
939         if (ssel == cached_sclk_pll_div)
940                 return cached_sclk;
941         else
942                 cached_sclk_pll_div = ssel;
943
944         ssel &= 0xf;
945         if (0 == ssel) {
946                 printk(KERN_WARNING "Invalid System Clock\n");
947                 ssel = 1;
948         }
949
950         cached_sclk = get_vco() / ssel;
951         return cached_sclk;
952 }
953 EXPORT_SYMBOL(get_sclk);
954
955 unsigned long sclk_to_usecs(unsigned long sclk)
956 {
957         u64 tmp = USEC_PER_SEC * (u64)sclk;
958         do_div(tmp, get_sclk());
959         return tmp;
960 }
961 EXPORT_SYMBOL(sclk_to_usecs);
962
963 unsigned long usecs_to_sclk(unsigned long usecs)
964 {
965         u64 tmp = get_sclk() * (u64)usecs;
966         do_div(tmp, USEC_PER_SEC);
967         return tmp;
968 }
969 EXPORT_SYMBOL(usecs_to_sclk);
970
971 /*
972  *      Get CPU information for use by the procfs.
973  */
974 static int show_cpuinfo(struct seq_file *m, void *v)
975 {
976         char *cpu, *mmu, *fpu, *vendor, *cache;
977         uint32_t revid;
978
979         u_long cclk = 0, sclk = 0;
980         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
981
982         cpu = CPU;
983         mmu = "none";
984         fpu = "none";
985         revid = bfin_revid();
986
987         cclk = get_cclk();
988         sclk = get_sclk();
989
990         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
991         case 0xca:
992                 vendor = "Analog Devices";
993                 break;
994         default:
995                 vendor = "unknown";
996                 break;
997         }
998
999         seq_printf(m, "processor\t: %d\n"
1000                 "vendor_id\t: %s\n"
1001                 "cpu family\t: 0x%x\n"
1002                 "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1003                 "stepping\t: %d\n",
1004                 *(unsigned int *)v,
1005                 vendor,
1006                 (bfin_read_CHIPID() & CHIPID_FAMILY),
1007                 cpu, cclk/1000000, sclk/1000000,
1008 #ifdef CONFIG_MPU
1009                 "mpu on",
1010 #else
1011                 "mpu off",
1012 #endif
1013                 revid);
1014
1015         seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1016                 cclk/1000000, cclk%1000000,
1017                 sclk/1000000, sclk%1000000);
1018         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1019                 "Calibration\t: %lu loops\n",
1020                 (loops_per_jiffy * HZ) / 500000,
1021                 ((loops_per_jiffy * HZ) / 5000) % 100,
1022                 (loops_per_jiffy * HZ));
1023
1024         /* Check Cache configutation */
1025         switch (bfin_read_DMEM_CONTROL() & (1 << DMC0_P | 1 << DMC1_P)) {
1026         case ACACHE_BSRAM:
1027                 cache = "dbank-A/B\t: cache/sram";
1028                 dcache_size = 16;
1029                 dsup_banks = 1;
1030                 break;
1031         case ACACHE_BCACHE:
1032                 cache = "dbank-A/B\t: cache/cache";
1033                 dcache_size = 32;
1034                 dsup_banks = 2;
1035                 break;
1036         case ASRAM_BSRAM:
1037                 cache = "dbank-A/B\t: sram/sram";
1038                 dcache_size = 0;
1039                 dsup_banks = 0;
1040                 break;
1041         default:
1042                 cache = "unknown";
1043                 dcache_size = 0;
1044                 dsup_banks = 0;
1045                 break;
1046         }
1047
1048         /* Is it turned on? */
1049         if ((bfin_read_DMEM_CONTROL() & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1050                 dcache_size = 0;
1051
1052         if ((bfin_read_IMEM_CONTROL() & (IMC | ENICPLB)) != (IMC | ENICPLB))
1053                 icache_size = 0;
1054
1055         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1056                 "%d KB(L1 dcache-%s) %d KB(L2 cache)\n",
1057                 icache_size, dcache_size,
1058 #if defined CONFIG_BFIN_WB
1059                 "wb"
1060 #elif defined CONFIG_BFIN_WT
1061                 "wt"
1062 #endif
1063                 "", 0);
1064
1065         seq_printf(m, "%s\n", cache);
1066
1067         if (icache_size)
1068                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1069                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1070         else
1071                 seq_printf(m, "icache setup\t: off\n");
1072
1073         seq_printf(m,
1074                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1075                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1076                    BFIN_DLINES);
1077 #ifdef CONFIG_BFIN_ICACHE_LOCK
1078         switch ((bfin_read_IMEM_CONTROL() >> 3) & WAYALL_L) {
1079         case WAY0_L:
1080                 seq_printf(m, "Way0 Locked-Down\n");
1081                 break;
1082         case WAY1_L:
1083                 seq_printf(m, "Way1 Locked-Down\n");
1084                 break;
1085         case WAY01_L:
1086                 seq_printf(m, "Way0,Way1 Locked-Down\n");
1087                 break;
1088         case WAY2_L:
1089                 seq_printf(m, "Way2 Locked-Down\n");
1090                 break;
1091         case WAY02_L:
1092                 seq_printf(m, "Way0,Way2 Locked-Down\n");
1093                 break;
1094         case WAY12_L:
1095                 seq_printf(m, "Way1,Way2 Locked-Down\n");
1096                 break;
1097         case WAY012_L:
1098                 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1099                 break;
1100         case WAY3_L:
1101                 seq_printf(m, "Way3 Locked-Down\n");
1102                 break;
1103         case WAY03_L:
1104                 seq_printf(m, "Way0,Way3 Locked-Down\n");
1105                 break;
1106         case WAY13_L:
1107                 seq_printf(m, "Way1,Way3 Locked-Down\n");
1108                 break;
1109         case WAY013_L:
1110                 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1111                 break;
1112         case WAY32_L:
1113                 seq_printf(m, "Way3,Way2 Locked-Down\n");
1114                 break;
1115         case WAY320_L:
1116                 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1117                 break;
1118         case WAY321_L:
1119                 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1120                 break;
1121         case WAYALL_L:
1122                 seq_printf(m, "All Ways are locked\n");
1123                 break;
1124         default:
1125                 seq_printf(m, "No Ways are locked\n");
1126         }
1127 #endif
1128         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1129         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1130                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1131         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1132                 ((int)memory_end - (int)_stext) >> 10,
1133                 _stext,
1134                 (void *)memory_end);
1135
1136         return 0;
1137 }
1138
1139 static void *c_start(struct seq_file *m, loff_t *pos)
1140 {
1141         if (*pos == 0)
1142                 *pos = first_cpu(cpu_online_map);
1143         if (*pos >= num_online_cpus())
1144                 return NULL;
1145
1146         return pos;
1147 }
1148
1149 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1150 {
1151         *pos = next_cpu(*pos, cpu_online_map);
1152
1153         return c_start(m, pos);
1154 }
1155
1156 static void c_stop(struct seq_file *m, void *v)
1157 {
1158 }
1159
1160 const struct seq_operations cpuinfo_op = {
1161         .start = c_start,
1162         .next = c_next,
1163         .stop = c_stop,
1164         .show = show_cpuinfo,
1165 };
1166
1167 void __init cmdline_init(const char *r0)
1168 {
1169         if (r0)
1170                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1171 }