]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/alpha/mm/numa.c
Remove obsolete #include <linux/config.h>
[linux-2.6.git] / arch / alpha / mm / numa.c
1 /*
2  *  linux/arch/alpha/mm/numa.c
3  *
4  *  DISCONTIGMEM NUMA alpha support.
5  *
6  *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/bootmem.h>
13 #include <linux/swap.h>
14 #include <linux/initrd.h>
15 #include <linux/pfn.h>
16
17 #include <asm/hwrpb.h>
18 #include <asm/pgalloc.h>
19
20 pg_data_t node_data[MAX_NUMNODES];
21 bootmem_data_t node_bdata[MAX_NUMNODES];
22
23 #undef DEBUG_DISCONTIG
24 #ifdef DEBUG_DISCONTIG
25 #define DBGDCONT(args...) printk(args)
26 #else
27 #define DBGDCONT(args...)
28 #endif
29
30 #define for_each_mem_cluster(memdesc, cluster, i)               \
31         for ((cluster) = (memdesc)->cluster, (i) = 0;           \
32              (i) < (memdesc)->numclusters; (i)++, (cluster)++)
33
34 static void __init show_mem_layout(void)
35 {
36         struct memclust_struct * cluster;
37         struct memdesc_struct * memdesc;
38         int i;
39
40         /* Find free clusters, and init and free the bootmem accordingly.  */
41         memdesc = (struct memdesc_struct *)
42           (hwrpb->mddt_offset + (unsigned long) hwrpb);
43
44         printk("Raw memory layout:\n");
45         for_each_mem_cluster(memdesc, cluster, i) {
46                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
47                        i, cluster->usage, cluster->start_pfn,
48                        cluster->start_pfn + cluster->numpages);
49         }
50 }
51
52 static void __init
53 setup_memory_node(int nid, void *kernel_end)
54 {
55         extern unsigned long mem_size_limit;
56         struct memclust_struct * cluster;
57         struct memdesc_struct * memdesc;
58         unsigned long start_kernel_pfn, end_kernel_pfn;
59         unsigned long bootmap_size, bootmap_pages, bootmap_start;
60         unsigned long start, end;
61         unsigned long node_pfn_start, node_pfn_end;
62         unsigned long node_min_pfn, node_max_pfn;
63         int i;
64         unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
65         int show_init = 0;
66
67         /* Find the bounds of current node */
68         node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
69         node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
70         
71         /* Find free clusters, and init and free the bootmem accordingly.  */
72         memdesc = (struct memdesc_struct *)
73           (hwrpb->mddt_offset + (unsigned long) hwrpb);
74
75         /* find the bounds of this node (node_min_pfn/node_max_pfn) */
76         node_min_pfn = ~0UL;
77         node_max_pfn = 0UL;
78         for_each_mem_cluster(memdesc, cluster, i) {
79                 /* Bit 0 is console/PALcode reserved.  Bit 1 is
80                    non-volatile memory -- we might want to mark
81                    this for later.  */
82                 if (cluster->usage & 3)
83                         continue;
84
85                 start = cluster->start_pfn;
86                 end = start + cluster->numpages;
87
88                 if (start >= node_pfn_end || end <= node_pfn_start)
89                         continue;
90
91                 if (!show_init) {
92                         show_init = 1;
93                         printk("Initializing bootmem allocator on Node ID %d\n", nid);
94                 }
95                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
96                        i, cluster->usage, cluster->start_pfn,
97                        cluster->start_pfn + cluster->numpages);
98
99                 if (start < node_pfn_start)
100                         start = node_pfn_start;
101                 if (end > node_pfn_end)
102                         end = node_pfn_end;
103
104                 if (start < node_min_pfn)
105                         node_min_pfn = start;
106                 if (end > node_max_pfn)
107                         node_max_pfn = end;
108         }
109
110         if (mem_size_limit && node_max_pfn > mem_size_limit) {
111                 static int msg_shown = 0;
112                 if (!msg_shown) {
113                         msg_shown = 1;
114                         printk("setup: forcing memory size to %ldK (from %ldK).\n",
115                                mem_size_limit << (PAGE_SHIFT - 10),
116                                node_max_pfn    << (PAGE_SHIFT - 10));
117                 }
118                 node_max_pfn = mem_size_limit;
119         }
120
121         if (node_min_pfn >= node_max_pfn)
122                 return;
123
124         /* Update global {min,max}_low_pfn from node information. */
125         if (node_min_pfn < min_low_pfn)
126                 min_low_pfn = node_min_pfn;
127         if (node_max_pfn > max_low_pfn)
128                 max_pfn = max_low_pfn = node_max_pfn;
129
130         num_physpages += node_max_pfn - node_min_pfn;
131
132 #if 0 /* we'll try this one again in a little while */
133         /* Cute trick to make sure our local node data is on local memory */
134         node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
135 #endif
136         /* Quasi-mark the pg_data_t as in-use */
137         node_min_pfn += node_datasz;
138         if (node_min_pfn >= node_max_pfn) {
139                 printk(" not enough mem to reserve NODE_DATA");
140                 return;
141         }
142         NODE_DATA(nid)->bdata = &node_bdata[nid];
143
144         printk(" Detected node memory:   start %8lu, end %8lu\n",
145                node_min_pfn, node_max_pfn);
146
147         DBGDCONT(" DISCONTIG: node_data[%d]   is at 0x%p\n", nid, NODE_DATA(nid));
148         DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
149
150         /* Find the bounds of kernel memory.  */
151         start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
152         end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
153         bootmap_start = -1;
154
155         if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
156                 panic("kernel loaded out of ram");
157
158         /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
159            Note that we round this down, not up - node memory
160            has much larger alignment than 8Mb, so it's safe. */
161         node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
162
163         /* We need to know how many physically contiguous pages
164            we'll need for the bootmap.  */
165         bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
166
167         /* Now find a good region where to allocate the bootmap.  */
168         for_each_mem_cluster(memdesc, cluster, i) {
169                 if (cluster->usage & 3)
170                         continue;
171
172                 start = cluster->start_pfn;
173                 end = start + cluster->numpages;
174
175                 if (start >= node_max_pfn || end <= node_min_pfn)
176                         continue;
177
178                 if (end > node_max_pfn)
179                         end = node_max_pfn;
180                 if (start < node_min_pfn)
181                         start = node_min_pfn;
182
183                 if (start < start_kernel_pfn) {
184                         if (end > end_kernel_pfn
185                             && end - end_kernel_pfn >= bootmap_pages) {
186                                 bootmap_start = end_kernel_pfn;
187                                 break;
188                         } else if (end > start_kernel_pfn)
189                                 end = start_kernel_pfn;
190                 } else if (start < end_kernel_pfn)
191                         start = end_kernel_pfn;
192                 if (end - start >= bootmap_pages) {
193                         bootmap_start = start;
194                         break;
195                 }
196         }
197
198         if (bootmap_start == -1)
199                 panic("couldn't find a contigous place for the bootmap");
200
201         /* Allocate the bootmap and mark the whole MM as reserved.  */
202         bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
203                                          node_min_pfn, node_max_pfn);
204         DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
205                  bootmap_start, bootmap_size, bootmap_pages);
206
207         /* Mark the free regions.  */
208         for_each_mem_cluster(memdesc, cluster, i) {
209                 if (cluster->usage & 3)
210                         continue;
211
212                 start = cluster->start_pfn;
213                 end = cluster->start_pfn + cluster->numpages;
214
215                 if (start >= node_max_pfn || end <= node_min_pfn)
216                         continue;
217
218                 if (end > node_max_pfn)
219                         end = node_max_pfn;
220                 if (start < node_min_pfn)
221                         start = node_min_pfn;
222
223                 if (start < start_kernel_pfn) {
224                         if (end > end_kernel_pfn) {
225                                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
226                                              (PFN_PHYS(start_kernel_pfn)
227                                               - PFN_PHYS(start)));
228                                 printk(" freeing pages %ld:%ld\n",
229                                        start, start_kernel_pfn);
230                                 start = end_kernel_pfn;
231                         } else if (end > start_kernel_pfn)
232                                 end = start_kernel_pfn;
233                 } else if (start < end_kernel_pfn)
234                         start = end_kernel_pfn;
235                 if (start >= end)
236                         continue;
237
238                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
239                 printk(" freeing pages %ld:%ld\n", start, end);
240         }
241
242         /* Reserve the bootmap memory.  */
243         reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size);
244         printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
245
246         node_set_online(nid);
247 }
248
249 void __init
250 setup_memory(void *kernel_end)
251 {
252         int nid;
253
254         show_mem_layout();
255
256         nodes_clear(node_online_map);
257
258         min_low_pfn = ~0UL;
259         max_low_pfn = 0UL;
260         for (nid = 0; nid < MAX_NUMNODES; nid++)
261                 setup_memory_node(nid, kernel_end);
262
263 #ifdef CONFIG_BLK_DEV_INITRD
264         initrd_start = INITRD_START;
265         if (initrd_start) {
266                 extern void *move_initrd(unsigned long);
267
268                 initrd_end = initrd_start+INITRD_SIZE;
269                 printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
270                        (void *) initrd_start, INITRD_SIZE);
271
272                 if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
273                         if (!move_initrd(PFN_PHYS(max_low_pfn)))
274                                 printk("initrd extends beyond end of memory "
275                                        "(0x%08lx > 0x%p)\ndisabling initrd\n",
276                                        initrd_end,
277                                        phys_to_virt(PFN_PHYS(max_low_pfn)));
278                 } else {
279                         nid = kvaddr_to_nid(initrd_start);
280                         reserve_bootmem_node(NODE_DATA(nid),
281                                              virt_to_phys((void *)initrd_start),
282                                              INITRD_SIZE);
283                 }
284         }
285 #endif /* CONFIG_BLK_DEV_INITRD */
286 }
287
288 void __init paging_init(void)
289 {
290         unsigned int    nid;
291         unsigned long   zones_size[MAX_NR_ZONES] = {0, };
292         unsigned long   dma_local_pfn;
293
294         /*
295          * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
296          * in the NUMA model, for now we convert it to a pfn and
297          * we interpret this pfn as a local per-node information.
298          * This issue isn't very important since none of these machines
299          * have legacy ISA slots anyways.
300          */
301         dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
302
303         for_each_online_node(nid) {
304                 unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT;
305                 unsigned long end_pfn = node_bdata[nid].node_low_pfn;
306
307                 if (dma_local_pfn >= end_pfn - start_pfn)
308                         zones_size[ZONE_DMA] = end_pfn - start_pfn;
309                 else {
310                         zones_size[ZONE_DMA] = dma_local_pfn;
311                         zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
312                 }
313                 free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL);
314         }
315
316         /* Initialize the kernel's ZERO_PGE. */
317         memset((void *)ZERO_PGE, 0, PAGE_SIZE);
318 }
319
320 void __init mem_init(void)
321 {
322         unsigned long codesize, reservedpages, datasize, initsize, pfn;
323         extern int page_is_ram(unsigned long) __init;
324         extern char _text, _etext, _data, _edata;
325         extern char __init_begin, __init_end;
326         unsigned long nid, i;
327         high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
328
329         reservedpages = 0;
330         for_each_online_node(nid) {
331                 /*
332                  * This will free up the bootmem, ie, slot 0 memory
333                  */
334                 totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
335
336                 pfn = NODE_DATA(nid)->node_start_pfn;
337                 for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
338                         if (page_is_ram(pfn) &&
339                             PageReserved(nid_page_nr(nid, i)))
340                                 reservedpages++;
341         }
342
343         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
344         datasize =  (unsigned long) &_edata - (unsigned long) &_data;
345         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
346
347         printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
348                "%luk data, %luk init)\n",
349                (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
350                num_physpages << (PAGE_SHIFT-10),
351                codesize >> 10,
352                reservedpages << (PAGE_SHIFT-10),
353                datasize >> 10,
354                initsize >> 10);
355 #if 0
356         mem_stress();
357 #endif
358 }
359
360 void
361 show_mem(void)
362 {
363         long i,free = 0,total = 0,reserved = 0;
364         long shared = 0, cached = 0;
365         int nid;
366
367         printk("\nMem-info:\n");
368         show_free_areas();
369         printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
370         for_each_online_node(nid) {
371                 unsigned long flags;
372                 pgdat_resize_lock(NODE_DATA(nid), &flags);
373                 i = node_spanned_pages(nid);
374                 while (i-- > 0) {
375                         struct page *page = nid_page_nr(nid, i);
376                         total++;
377                         if (PageReserved(page))
378                                 reserved++;
379                         else if (PageSwapCache(page))
380                                 cached++;
381                         else if (!page_count(page))
382                                 free++;
383                         else
384                                 shared += page_count(page) - 1;
385                 }
386                 pgdat_resize_unlock(NODE_DATA(nid), &flags);
387         }
388         printk("%ld pages of RAM\n",total);
389         printk("%ld free pages\n",free);
390         printk("%ld reserved pages\n",reserved);
391         printk("%ld pages shared\n",shared);
392         printk("%ld pages swap cached\n",cached);
393 }