Merge branch 'timers-cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6.git] / arch / alpha / kernel / time.c
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *      fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
14  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16   Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *      fixed algorithm in do_gettimeofday() for calculating the precise time
23  *      from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13   Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  *      Fixed time_init to be aware of epoches != 1900. This prevents
26  *      booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03   R. Scott Bailey <scott.bailey@eds.com>
28  *      Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/rtc.h>
50
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 #include <linux/clocksource.h>
55
56 #include "proto.h"
57 #include "irq_impl.h"
58
59 static int set_rtc_mmss(unsigned long);
60
61 DEFINE_SPINLOCK(rtc_lock);
62 EXPORT_SYMBOL(rtc_lock);
63
64 #define TICK_SIZE (tick_nsec / 1000)
65
66 /*
67  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
68  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69  * for large CPU clock rates.
70  */
71 #define FIX_SHIFT       48
72
73 /* lump static variables together for more efficient access: */
74 static struct {
75         /* cycle counter last time it got invoked */
76         __u32 last_time;
77         /* ticks/cycle * 2^48 */
78         unsigned long scaled_ticks_per_cycle;
79         /* partial unused tick */
80         unsigned long partial_tick;
81 } state;
82
83 unsigned long est_cycle_freq;
84
85 #ifdef CONFIG_IRQ_WORK
86
87 DEFINE_PER_CPU(u8, irq_work_pending);
88
89 #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
90 #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
91 #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
92
93 void arch_irq_work_raise(void)
94 {
95         set_irq_work_pending_flag();
96 }
97
98 #else  /* CONFIG_IRQ_WORK */
99
100 #define test_irq_work_pending()      0
101 #define clear_irq_work_pending()
102
103 #endif /* CONFIG_IRQ_WORK */
104
105
106 static inline __u32 rpcc(void)
107 {
108     __u32 result;
109     asm volatile ("rpcc %0" : "=r"(result));
110     return result;
111 }
112
113 int update_persistent_clock(struct timespec now)
114 {
115         return set_rtc_mmss(now.tv_sec);
116 }
117
118 void read_persistent_clock(struct timespec *ts)
119 {
120         unsigned int year, mon, day, hour, min, sec, epoch;
121
122         sec = CMOS_READ(RTC_SECONDS);
123         min = CMOS_READ(RTC_MINUTES);
124         hour = CMOS_READ(RTC_HOURS);
125         day = CMOS_READ(RTC_DAY_OF_MONTH);
126         mon = CMOS_READ(RTC_MONTH);
127         year = CMOS_READ(RTC_YEAR);
128
129         if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
130                 sec = bcd2bin(sec);
131                 min = bcd2bin(min);
132                 hour = bcd2bin(hour);
133                 day = bcd2bin(day);
134                 mon = bcd2bin(mon);
135                 year = bcd2bin(year);
136         }
137
138         /* PC-like is standard; used for year >= 70 */
139         epoch = 1900;
140         if (year < 20)
141                 epoch = 2000;
142         else if (year >= 20 && year < 48)
143                 /* NT epoch */
144                 epoch = 1980;
145         else if (year >= 48 && year < 70)
146                 /* Digital UNIX epoch */
147                 epoch = 1952;
148
149         printk(KERN_INFO "Using epoch = %d\n", epoch);
150
151         if ((year += epoch) < 1970)
152                 year += 100;
153
154         ts->tv_sec = mktime(year, mon, day, hour, min, sec);
155         ts->tv_nsec = 0;
156 }
157
158
159
160 /*
161  * timer_interrupt() needs to keep up the real-time clock,
162  * as well as call the "xtime_update()" routine every clocktick
163  */
164 irqreturn_t timer_interrupt(int irq, void *dev)
165 {
166         unsigned long delta;
167         __u32 now;
168         long nticks;
169
170 #ifndef CONFIG_SMP
171         /* Not SMP, do kernel PC profiling here.  */
172         profile_tick(CPU_PROFILING);
173 #endif
174
175         /*
176          * Calculate how many ticks have passed since the last update,
177          * including any previous partial leftover.  Save any resulting
178          * fraction for the next pass.
179          */
180         now = rpcc();
181         delta = now - state.last_time;
182         state.last_time = now;
183         delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
184         state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 
185         nticks = delta >> FIX_SHIFT;
186
187         if (nticks)
188                 xtime_update(nticks);
189
190         if (test_irq_work_pending()) {
191                 clear_irq_work_pending();
192                 irq_work_run();
193         }
194
195 #ifndef CONFIG_SMP
196         while (nticks--)
197                 update_process_times(user_mode(get_irq_regs()));
198 #endif
199
200         return IRQ_HANDLED;
201 }
202
203 void __init
204 common_init_rtc(void)
205 {
206         unsigned char x;
207
208         /* Reset periodic interrupt frequency.  */
209         x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210         /* Test includes known working values on various platforms
211            where 0x26 is wrong; we refuse to change those. */
212         if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213                 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
214                 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
215         }
216
217         /* Turn on periodic interrupts.  */
218         x = CMOS_READ(RTC_CONTROL);
219         if (!(x & RTC_PIE)) {
220                 printk("Turning on RTC interrupts.\n");
221                 x |= RTC_PIE;
222                 x &= ~(RTC_AIE | RTC_UIE);
223                 CMOS_WRITE(x, RTC_CONTROL);
224         }
225         (void) CMOS_READ(RTC_INTR_FLAGS);
226
227         outb(0x36, 0x43);       /* pit counter 0: system timer */
228         outb(0x00, 0x40);
229         outb(0x00, 0x40);
230
231         outb(0xb6, 0x43);       /* pit counter 2: speaker */
232         outb(0x31, 0x42);
233         outb(0x13, 0x42);
234
235         init_rtc_irq();
236 }
237
238 unsigned int common_get_rtc_time(struct rtc_time *time)
239 {
240         return __get_rtc_time(time);
241 }
242
243 int common_set_rtc_time(struct rtc_time *time)
244 {
245         return __set_rtc_time(time);
246 }
247
248 /* Validate a computed cycle counter result against the known bounds for
249    the given processor core.  There's too much brokenness in the way of
250    timing hardware for any one method to work everywhere.  :-(
251
252    Return 0 if the result cannot be trusted, otherwise return the argument.  */
253
254 static unsigned long __init
255 validate_cc_value(unsigned long cc)
256 {
257         static struct bounds {
258                 unsigned int min, max;
259         } cpu_hz[] __initdata = {
260                 [EV3_CPU]    = {   50000000,  200000000 },      /* guess */
261                 [EV4_CPU]    = {  100000000,  300000000 },
262                 [LCA4_CPU]   = {  100000000,  300000000 },      /* guess */
263                 [EV45_CPU]   = {  200000000,  300000000 },
264                 [EV5_CPU]    = {  250000000,  433000000 },
265                 [EV56_CPU]   = {  333000000,  667000000 },
266                 [PCA56_CPU]  = {  400000000,  600000000 },      /* guess */
267                 [PCA57_CPU]  = {  500000000,  600000000 },      /* guess */
268                 [EV6_CPU]    = {  466000000,  600000000 },
269                 [EV67_CPU]   = {  600000000,  750000000 },
270                 [EV68AL_CPU] = {  750000000,  940000000 },
271                 [EV68CB_CPU] = { 1000000000, 1333333333 },
272                 /* None of the following are shipping as of 2001-11-01.  */
273                 [EV68CX_CPU] = { 1000000000, 1700000000 },      /* guess */
274                 [EV69_CPU]   = { 1000000000, 1700000000 },      /* guess */
275                 [EV7_CPU]    = {  800000000, 1400000000 },      /* guess */
276                 [EV79_CPU]   = { 1000000000, 2000000000 },      /* guess */
277         };
278
279         /* Allow for some drift in the crystal.  10MHz is more than enough.  */
280         const unsigned int deviation = 10000000;
281
282         struct percpu_struct *cpu;
283         unsigned int index;
284
285         cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
286         index = cpu->type & 0xffffffff;
287
288         /* If index out of bounds, no way to validate.  */
289         if (index >= ARRAY_SIZE(cpu_hz))
290                 return cc;
291
292         /* If index contains no data, no way to validate.  */
293         if (cpu_hz[index].max == 0)
294                 return cc;
295
296         if (cc < cpu_hz[index].min - deviation
297             || cc > cpu_hz[index].max + deviation)
298                 return 0;
299
300         return cc;
301 }
302
303
304 /*
305  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
306  * arch/i386/time.c.
307  */
308
309 #define CALIBRATE_LATCH 0xffff
310 #define TIMEOUT_COUNT   0x100000
311
312 static unsigned long __init
313 calibrate_cc_with_pit(void)
314 {
315         int cc, count = 0;
316
317         /* Set the Gate high, disable speaker */
318         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
319
320         /*
321          * Now let's take care of CTC channel 2
322          *
323          * Set the Gate high, program CTC channel 2 for mode 0,
324          * (interrupt on terminal count mode), binary count,
325          * load 5 * LATCH count, (LSB and MSB) to begin countdown.
326          */
327         outb(0xb0, 0x43);               /* binary, mode 0, LSB/MSB, Ch 2 */
328         outb(CALIBRATE_LATCH & 0xff, 0x42);     /* LSB of count */
329         outb(CALIBRATE_LATCH >> 8, 0x42);       /* MSB of count */
330
331         cc = rpcc();
332         do {
333                 count++;
334         } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
335         cc = rpcc() - cc;
336
337         /* Error: ECTCNEVERSET or ECPUTOOFAST.  */
338         if (count <= 1 || count == TIMEOUT_COUNT)
339                 return 0;
340
341         return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
342 }
343
344 /* The Linux interpretation of the CMOS clock register contents:
345    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
346    RTC registers show the second which has precisely just started.
347    Let's hope other operating systems interpret the RTC the same way.  */
348
349 static unsigned long __init
350 rpcc_after_update_in_progress(void)
351 {
352         do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
353         do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
354
355         return rpcc();
356 }
357
358 #ifndef CONFIG_SMP
359 /* Until and unless we figure out how to get cpu cycle counters
360    in sync and keep them there, we can't use the rpcc.  */
361 static cycle_t read_rpcc(struct clocksource *cs)
362 {
363         cycle_t ret = (cycle_t)rpcc();
364         return ret;
365 }
366
367 static struct clocksource clocksource_rpcc = {
368         .name                   = "rpcc",
369         .rating                 = 300,
370         .read                   = read_rpcc,
371         .mask                   = CLOCKSOURCE_MASK(32),
372         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS
373 };
374
375 static inline void register_rpcc_clocksource(long cycle_freq)
376 {
377         clocksource_register_hz(&clocksource_rpcc, cycle_freq);
378 }
379 #else /* !CONFIG_SMP */
380 static inline void register_rpcc_clocksource(long cycle_freq)
381 {
382 }
383 #endif /* !CONFIG_SMP */
384
385 void __init
386 time_init(void)
387 {
388         unsigned int cc1, cc2;
389         unsigned long cycle_freq, tolerance;
390         long diff;
391
392         /* Calibrate CPU clock -- attempt #1.  */
393         if (!est_cycle_freq)
394                 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
395
396         cc1 = rpcc();
397
398         /* Calibrate CPU clock -- attempt #2.  */
399         if (!est_cycle_freq) {
400                 cc1 = rpcc_after_update_in_progress();
401                 cc2 = rpcc_after_update_in_progress();
402                 est_cycle_freq = validate_cc_value(cc2 - cc1);
403                 cc1 = cc2;
404         }
405
406         cycle_freq = hwrpb->cycle_freq;
407         if (est_cycle_freq) {
408                 /* If the given value is within 250 PPM of what we calculated,
409                    accept it.  Otherwise, use what we found.  */
410                 tolerance = cycle_freq / 4000;
411                 diff = cycle_freq - est_cycle_freq;
412                 if (diff < 0)
413                         diff = -diff;
414                 if ((unsigned long)diff > tolerance) {
415                         cycle_freq = est_cycle_freq;
416                         printk("HWRPB cycle frequency bogus.  "
417                                "Estimated %lu Hz\n", cycle_freq);
418                 } else {
419                         est_cycle_freq = 0;
420                 }
421         } else if (! validate_cc_value (cycle_freq)) {
422                 printk("HWRPB cycle frequency bogus, "
423                        "and unable to estimate a proper value!\n");
424         }
425
426         /* From John Bowman <bowman@math.ualberta.ca>: allow the values
427            to settle, as the Update-In-Progress bit going low isn't good
428            enough on some hardware.  2ms is our guess; we haven't found 
429            bogomips yet, but this is close on a 500Mhz box.  */
430         __delay(1000000);
431
432
433         if (HZ > (1<<16)) {
434                 extern void __you_loose (void);
435                 __you_loose();
436         }
437
438         register_rpcc_clocksource(cycle_freq);
439
440         state.last_time = cc1;
441         state.scaled_ticks_per_cycle
442                 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
443         state.partial_tick = 0L;
444
445         /* Startup the timer source. */
446         alpha_mv.init_rtc();
447 }
448
449 /*
450  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
451  * called 500 ms after the second nowtime has started, because when
452  * nowtime is written into the registers of the CMOS clock, it will
453  * jump to the next second precisely 500 ms later. Check the Motorola
454  * MC146818A or Dallas DS12887 data sheet for details.
455  *
456  * BUG: This routine does not handle hour overflow properly; it just
457  *      sets the minutes. Usually you won't notice until after reboot!
458  */
459
460
461 static int
462 set_rtc_mmss(unsigned long nowtime)
463 {
464         int retval = 0;
465         int real_seconds, real_minutes, cmos_minutes;
466         unsigned char save_control, save_freq_select;
467
468         /* irq are locally disabled here */
469         spin_lock(&rtc_lock);
470         /* Tell the clock it's being set */
471         save_control = CMOS_READ(RTC_CONTROL);
472         CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
473
474         /* Stop and reset prescaler */
475         save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
476         CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
477
478         cmos_minutes = CMOS_READ(RTC_MINUTES);
479         if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
480                 cmos_minutes = bcd2bin(cmos_minutes);
481
482         /*
483          * since we're only adjusting minutes and seconds,
484          * don't interfere with hour overflow. This avoids
485          * messing with unknown time zones but requires your
486          * RTC not to be off by more than 15 minutes
487          */
488         real_seconds = nowtime % 60;
489         real_minutes = nowtime / 60;
490         if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
491                 /* correct for half hour time zone */
492                 real_minutes += 30;
493         }
494         real_minutes %= 60;
495
496         if (abs(real_minutes - cmos_minutes) < 30) {
497                 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
498                         real_seconds = bin2bcd(real_seconds);
499                         real_minutes = bin2bcd(real_minutes);
500                 }
501                 CMOS_WRITE(real_seconds,RTC_SECONDS);
502                 CMOS_WRITE(real_minutes,RTC_MINUTES);
503         } else {
504                 printk_once(KERN_NOTICE
505                        "set_rtc_mmss: can't update from %d to %d\n",
506                        cmos_minutes, real_minutes);
507                 retval = -1;
508         }
509
510         /* The following flags have to be released exactly in this order,
511          * otherwise the DS12887 (popular MC146818A clone with integrated
512          * battery and quartz) will not reset the oscillator and will not
513          * update precisely 500 ms later. You won't find this mentioned in
514          * the Dallas Semiconductor data sheets, but who believes data
515          * sheets anyway ...                           -- Markus Kuhn
516          */
517         CMOS_WRITE(save_control, RTC_CONTROL);
518         CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
519         spin_unlock(&rtc_lock);
520
521         return retval;
522 }