]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - Documentation/video4linux/v4l2-framework.txt
V4L/DVB (10988): v4l2-dev: use parent field if the v4l2_device has no parent set.
[linux-2.6.git] / Documentation / video4linux / v4l2-framework.txt
1 Overview of the V4L2 driver framework
2 =====================================
3
4 This text documents the various structures provided by the V4L2 framework and
5 their relationships.
6
7
8 Introduction
9 ------------
10
11 The V4L2 drivers tend to be very complex due to the complexity of the
12 hardware: most devices have multiple ICs, export multiple device nodes in
13 /dev, and create also non-V4L2 devices such as DVB, ALSA, FB, I2C and input
14 (IR) devices.
15
16 Especially the fact that V4L2 drivers have to setup supporting ICs to
17 do audio/video muxing/encoding/decoding makes it more complex than most.
18 Usually these ICs are connected to the main bridge driver through one or
19 more I2C busses, but other busses can also be used. Such devices are
20 called 'sub-devices'.
21
22 For a long time the framework was limited to the video_device struct for
23 creating V4L device nodes and video_buf for handling the video buffers
24 (note that this document does not discuss the video_buf framework).
25
26 This meant that all drivers had to do the setup of device instances and
27 connecting to sub-devices themselves. Some of this is quite complicated
28 to do right and many drivers never did do it correctly.
29
30 There is also a lot of common code that could never be refactored due to
31 the lack of a framework.
32
33 So this framework sets up the basic building blocks that all drivers
34 need and this same framework should make it much easier to refactor
35 common code into utility functions shared by all drivers.
36
37
38 Structure of a driver
39 ---------------------
40
41 All drivers have the following structure:
42
43 1) A struct for each device instance containing the device state.
44
45 2) A way of initializing and commanding sub-devices (if any).
46
47 3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX, /dev/radioX and
48    /dev/vtxX) and keeping track of device-node specific data.
49
50 4) Filehandle-specific structs containing per-filehandle data;
51
52 5) video buffer handling.
53
54 This is a rough schematic of how it all relates:
55
56     device instances
57       |
58       +-sub-device instances
59       |
60       \-V4L2 device nodes
61           |
62           \-filehandle instances
63
64
65 Structure of the framework
66 --------------------------
67
68 The framework closely resembles the driver structure: it has a v4l2_device
69 struct for the device instance data, a v4l2_subdev struct to refer to
70 sub-device instances, the video_device struct stores V4L2 device node data
71 and in the future a v4l2_fh struct will keep track of filehandle instances
72 (this is not yet implemented).
73
74
75 struct v4l2_device
76 ------------------
77
78 Each device instance is represented by a struct v4l2_device (v4l2-device.h).
79 Very simple devices can just allocate this struct, but most of the time you
80 would embed this struct inside a larger struct.
81
82 You must register the device instance:
83
84         v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev);
85
86 Registration will initialize the v4l2_device struct and link dev->driver_data
87 to v4l2_dev. If v4l2_dev->name is empty then it will be set to a value derived
88 from dev (driver name followed by the bus_id, to be precise). If you set it
89 up before calling v4l2_device_register then it will be untouched. If dev is
90 NULL, then you *must* setup v4l2_dev->name before calling v4l2_device_register.
91
92 The first 'dev' argument is normally the struct device pointer of a pci_dev,
93 usb_device or platform_device. It is rare for dev to be NULL, but it happens
94 with ISA devices or when one device creates multiple PCI devices, thus making
95 it impossible to associate v4l2_dev with a particular parent.
96
97 You unregister with:
98
99         v4l2_device_unregister(struct v4l2_device *v4l2_dev);
100
101 Unregistering will also automatically unregister all subdevs from the device.
102
103 Sometimes you need to iterate over all devices registered by a specific
104 driver. This is usually the case if multiple device drivers use the same
105 hardware. E.g. the ivtvfb driver is a framebuffer driver that uses the ivtv
106 hardware. The same is true for alsa drivers for example.
107
108 You can iterate over all registered devices as follows:
109
110 static int callback(struct device *dev, void *p)
111 {
112         struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);
113
114         /* test if this device was inited */
115         if (v4l2_dev == NULL)
116                 return 0;
117         ...
118         return 0;
119 }
120
121 int iterate(void *p)
122 {
123         struct device_driver *drv;
124         int err;
125
126         /* Find driver 'ivtv' on the PCI bus.
127            pci_bus_type is a global. For USB busses use usb_bus_type. */
128         drv = driver_find("ivtv", &pci_bus_type);
129         /* iterate over all ivtv device instances */
130         err = driver_for_each_device(drv, NULL, p, callback);
131         put_driver(drv);
132         return err;
133 }
134
135 Sometimes you need to keep a running counter of the device instance. This is
136 commonly used to map a device instance to an index of a module option array.
137
138 The recommended approach is as follows:
139
140 static atomic_t drv_instance = ATOMIC_INIT(0);
141
142 static int __devinit drv_probe(struct pci_dev *pdev,
143                                 const struct pci_device_id *pci_id)
144 {
145         ...
146         state->instance = atomic_inc_return(&drv_instance) - 1;
147 }
148
149
150 struct v4l2_subdev
151 ------------------
152
153 Many drivers need to communicate with sub-devices. These devices can do all
154 sort of tasks, but most commonly they handle audio and/or video muxing,
155 encoding or decoding. For webcams common sub-devices are sensors and camera
156 controllers.
157
158 Usually these are I2C devices, but not necessarily. In order to provide the
159 driver with a consistent interface to these sub-devices the v4l2_subdev struct
160 (v4l2-subdev.h) was created.
161
162 Each sub-device driver must have a v4l2_subdev struct. This struct can be
163 stand-alone for simple sub-devices or it might be embedded in a larger struct
164 if more state information needs to be stored. Usually there is a low-level
165 device struct (e.g. i2c_client) that contains the device data as setup
166 by the kernel. It is recommended to store that pointer in the private
167 data of v4l2_subdev using v4l2_set_subdevdata(). That makes it easy to go
168 from a v4l2_subdev to the actual low-level bus-specific device data.
169
170 You also need a way to go from the low-level struct to v4l2_subdev. For the
171 common i2c_client struct the i2c_set_clientdata() call is used to store a
172 v4l2_subdev pointer, for other busses you may have to use other methods.
173
174 From the bridge driver perspective you load the sub-device module and somehow
175 obtain the v4l2_subdev pointer. For i2c devices this is easy: you call
176 i2c_get_clientdata(). For other busses something similar needs to be done.
177 Helper functions exists for sub-devices on an I2C bus that do most of this
178 tricky work for you.
179
180 Each v4l2_subdev contains function pointers that sub-device drivers can
181 implement (or leave NULL if it is not applicable). Since sub-devices can do
182 so many different things and you do not want to end up with a huge ops struct
183 of which only a handful of ops are commonly implemented, the function pointers
184 are sorted according to category and each category has its own ops struct.
185
186 The top-level ops struct contains pointers to the category ops structs, which
187 may be NULL if the subdev driver does not support anything from that category.
188
189 It looks like this:
190
191 struct v4l2_subdev_core_ops {
192         int (*g_chip_ident)(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip);
193         int (*log_status)(struct v4l2_subdev *sd);
194         int (*init)(struct v4l2_subdev *sd, u32 val);
195         ...
196 };
197
198 struct v4l2_subdev_tuner_ops {
199         ...
200 };
201
202 struct v4l2_subdev_audio_ops {
203         ...
204 };
205
206 struct v4l2_subdev_video_ops {
207         ...
208 };
209
210 struct v4l2_subdev_ops {
211         const struct v4l2_subdev_core_ops  *core;
212         const struct v4l2_subdev_tuner_ops *tuner;
213         const struct v4l2_subdev_audio_ops *audio;
214         const struct v4l2_subdev_video_ops *video;
215 };
216
217 The core ops are common to all subdevs, the other categories are implemented
218 depending on the sub-device. E.g. a video device is unlikely to support the
219 audio ops and vice versa.
220
221 This setup limits the number of function pointers while still making it easy
222 to add new ops and categories.
223
224 A sub-device driver initializes the v4l2_subdev struct using:
225
226         v4l2_subdev_init(sd, &ops);
227
228 Afterwards you need to initialize subdev->name with a unique name and set the
229 module owner. This is done for you if you use the i2c helper functions.
230
231 A device (bridge) driver needs to register the v4l2_subdev with the
232 v4l2_device:
233
234         int err = v4l2_device_register_subdev(v4l2_dev, sd);
235
236 This can fail if the subdev module disappeared before it could be registered.
237 After this function was called successfully the subdev->dev field points to
238 the v4l2_device.
239
240 You can unregister a sub-device using:
241
242         v4l2_device_unregister_subdev(sd);
243
244 Afterwards the subdev module can be unloaded and sd->dev == NULL.
245
246 You can call an ops function either directly:
247
248         err = sd->ops->core->g_chip_ident(sd, &chip);
249
250 but it is better and easier to use this macro:
251
252         err = v4l2_subdev_call(sd, core, g_chip_ident, &chip);
253
254 The macro will to the right NULL pointer checks and returns -ENODEV if subdev
255 is NULL, -ENOIOCTLCMD if either subdev->core or subdev->core->g_chip_ident is
256 NULL, or the actual result of the subdev->ops->core->g_chip_ident ops.
257
258 It is also possible to call all or a subset of the sub-devices:
259
260         v4l2_device_call_all(v4l2_dev, 0, core, g_chip_ident, &chip);
261
262 Any subdev that does not support this ops is skipped and error results are
263 ignored. If you want to check for errors use this:
264
265         err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_chip_ident, &chip);
266
267 Any error except -ENOIOCTLCMD will exit the loop with that error. If no
268 errors (except -ENOIOCTLCMD) occured, then 0 is returned.
269
270 The second argument to both calls is a group ID. If 0, then all subdevs are
271 called. If non-zero, then only those whose group ID match that value will
272 be called. Before a bridge driver registers a subdev it can set sd->grp_id
273 to whatever value it wants (it's 0 by default). This value is owned by the
274 bridge driver and the sub-device driver will never modify or use it.
275
276 The group ID gives the bridge driver more control how callbacks are called.
277 For example, there may be multiple audio chips on a board, each capable of
278 changing the volume. But usually only one will actually be used when the
279 user want to change the volume. You can set the group ID for that subdev to
280 e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling
281 v4l2_device_call_all(). That ensures that it will only go to the subdev
282 that needs it.
283
284 The advantage of using v4l2_subdev is that it is a generic struct and does
285 not contain any knowledge about the underlying hardware. So a driver might
286 contain several subdevs that use an I2C bus, but also a subdev that is
287 controlled through GPIO pins. This distinction is only relevant when setting
288 up the device, but once the subdev is registered it is completely transparent.
289
290
291 I2C sub-device drivers
292 ----------------------
293
294 Since these drivers are so common, special helper functions are available to
295 ease the use of these drivers (v4l2-common.h).
296
297 The recommended method of adding v4l2_subdev support to an I2C driver is to
298 embed the v4l2_subdev struct into the state struct that is created for each
299 I2C device instance. Very simple devices have no state struct and in that case
300 you can just create a v4l2_subdev directly.
301
302 A typical state struct would look like this (where 'chipname' is replaced by
303 the name of the chip):
304
305 struct chipname_state {
306         struct v4l2_subdev sd;
307         ...  /* additional state fields */
308 };
309
310 Initialize the v4l2_subdev struct as follows:
311
312         v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);
313
314 This function will fill in all the fields of v4l2_subdev and ensure that the
315 v4l2_subdev and i2c_client both point to one another.
316
317 You should also add a helper inline function to go from a v4l2_subdev pointer
318 to a chipname_state struct:
319
320 static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
321 {
322         return container_of(sd, struct chipname_state, sd);
323 }
324
325 Use this to go from the v4l2_subdev struct to the i2c_client struct:
326
327         struct i2c_client *client = v4l2_get_subdevdata(sd);
328
329 And this to go from an i2c_client to a v4l2_subdev struct:
330
331         struct v4l2_subdev *sd = i2c_get_clientdata(client);
332
333 Finally you need to make a command function to make driver->command()
334 call the right subdev_ops functions:
335
336 static int subdev_command(struct i2c_client *client, unsigned cmd, void *arg)
337 {
338         return v4l2_subdev_command(i2c_get_clientdata(client), cmd, arg);
339 }
340
341 If driver->command is never used then you can leave this out. Eventually the
342 driver->command usage should be removed from v4l.
343
344 Make sure to call v4l2_device_unregister_subdev(sd) when the remove() callback
345 is called. This will unregister the sub-device from the bridge driver. It is
346 safe to call this even if the sub-device was never registered.
347
348 You need to do this because when the bridge driver destroys the i2c adapter
349 the remove() callbacks are called of the i2c devices on that adapter.
350 After that the corresponding v4l2_subdev structures are invalid, so they
351 have to be unregistered first. Calling v4l2_device_unregister_subdev(sd)
352 from the remove() callback ensures that this is always done correctly.
353
354
355 The bridge driver also has some helper functions it can use:
356
357 struct v4l2_subdev *sd = v4l2_i2c_new_subdev(adapter, "module_foo", "chipid", 0x36);
358
359 This loads the given module (can be NULL if no module needs to be loaded) and
360 calls i2c_new_device() with the given i2c_adapter and chip/address arguments.
361 If all goes well, then it registers the subdev with the v4l2_device. It gets
362 the v4l2_device by calling i2c_get_adapdata(adapter), so you should make sure
363 to call i2c_set_adapdata(adapter, v4l2_device) when you setup the i2c_adapter
364 in your driver.
365
366 You can also use v4l2_i2c_new_probed_subdev() which is very similar to
367 v4l2_i2c_new_subdev(), except that it has an array of possible I2C addresses
368 that it should probe. Internally it calls i2c_new_probed_device().
369
370 Both functions return NULL if something went wrong.
371
372 Note that the chipid you pass to v4l2_i2c_new_(probed_)subdev() is usually
373 the same as the module name. It allows you to specify a chip variant, e.g.
374 "saa7114" or "saa7115". In general though the i2c driver autodetects this.
375 The use of chipid is something that needs to be looked at more closely at a
376 later date. It differs between i2c drivers and as such can be confusing.
377 To see which chip variants are supported you can look in the i2c driver code
378 for the i2c_device_id table. This lists all the possibilities.
379
380
381 struct video_device
382 -------------------
383
384 The actual device nodes in the /dev directory are created using the
385 video_device struct (v4l2-dev.h). This struct can either be allocated
386 dynamically or embedded in a larger struct.
387
388 To allocate it dynamically use:
389
390         struct video_device *vdev = video_device_alloc();
391
392         if (vdev == NULL)
393                 return -ENOMEM;
394
395         vdev->release = video_device_release;
396
397 If you embed it in a larger struct, then you must set the release()
398 callback to your own function:
399
400         struct video_device *vdev = &my_vdev->vdev;
401
402         vdev->release = my_vdev_release;
403
404 The release callback must be set and it is called when the last user
405 of the video device exits.
406
407 The default video_device_release() callback just calls kfree to free the
408 allocated memory.
409
410 You should also set these fields:
411
412 - v4l2_dev: set to the v4l2_device parent device.
413 - name: set to something descriptive and unique.
414 - fops: set to the v4l2_file_operations struct.
415 - ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance
416   (highly recommended to use this and it might become compulsory in the
417   future!), then set this to your v4l2_ioctl_ops struct.
418 - parent: you only set this if v4l2_device was registered with NULL as
419   the parent device struct. This only happens in cases where one hardware
420   device has multiple PCI devices that all share the same v4l2_device core.
421
422   The cx88 driver is an example of this: one core v4l2_device struct, but
423   it is used by both an raw video PCI device (cx8800) and a MPEG PCI device
424   (cx8802). Since the v4l2_device cannot be associated with a particular
425   PCI device it is setup without a parent device. But when the struct
426   video_device is setup you do know which parent PCI device to use.
427
428 If you use v4l2_ioctl_ops, then you should set either .unlocked_ioctl or
429 .ioctl to video_ioctl2 in your v4l2_file_operations struct.
430
431 The v4l2_file_operations struct is a subset of file_operations. The main
432 difference is that the inode argument is omitted since it is never used.
433
434
435 video_device registration
436 -------------------------
437
438 Next you register the video device: this will create the character device
439 for you.
440
441         err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
442         if (err) {
443                 video_device_release(vdev); /* or kfree(my_vdev); */
444                 return err;
445         }
446
447 Which device is registered depends on the type argument. The following
448 types exist:
449
450 VFL_TYPE_GRABBER: videoX for video input/output devices
451 VFL_TYPE_VBI: vbiX for vertical blank data (i.e. closed captions, teletext)
452 VFL_TYPE_RADIO: radioX for radio tuners
453 VFL_TYPE_VTX: vtxX for teletext devices (deprecated, don't use)
454
455 The last argument gives you a certain amount of control over the device
456 kernel number used (i.e. the X in videoX). Normally you will pass -1 to
457 let the v4l2 framework pick the first free number. But if a driver creates
458 many devices, then it can be useful to have different video devices in
459 separate ranges. For example, video capture devices start at 0, video
460 output devices start at 16.
461
462 So you can use the last argument to specify a minimum kernel number and
463 the v4l2 framework will try to pick the first free number that is equal
464 or higher to what you passed. If that fails, then it will just pick the
465 first free number.
466
467 Whenever a device node is created some attributes are also created for you.
468 If you look in /sys/class/video4linux you see the devices. Go into e.g.
469 video0 and you will see 'name' and 'index' attributes. The 'name' attribute
470 is the 'name' field of the video_device struct. The 'index' attribute is
471 a device node index that can be assigned by the driver, or that is calculated
472 for you.
473
474 If you call video_register_device(), then the index is just increased by
475 1 for each device node you register. The first video device node you register
476 always starts off with 0.
477
478 Alternatively you can call video_register_device_index() which is identical
479 to video_register_device(), but with an extra index argument. Here you can
480 pass a specific index value (between 0 and 31) that should be used.
481
482 Users can setup udev rules that utilize the index attribute to make fancy
483 device names (e.g. 'mpegX' for MPEG video capture device nodes).
484
485 After the device was successfully registered, then you can use these fields:
486
487 - vfl_type: the device type passed to video_register_device.
488 - minor: the assigned device minor number.
489 - num: the device kernel number (i.e. the X in videoX).
490 - index: the device index number (calculated or set explicitly using
491   video_register_device_index).
492
493 If the registration failed, then you need to call video_device_release()
494 to free the allocated video_device struct, or free your own struct if the
495 video_device was embedded in it. The vdev->release() callback will never
496 be called if the registration failed, nor should you ever attempt to
497 unregister the device if the registration failed.
498
499
500 video_device cleanup
501 --------------------
502
503 When the video device nodes have to be removed, either during the unload
504 of the driver or because the USB device was disconnected, then you should
505 unregister them:
506
507         video_unregister_device(vdev);
508
509 This will remove the device nodes from sysfs (causing udev to remove them
510 from /dev).
511
512 After video_unregister_device() returns no new opens can be done.
513
514 However, in the case of USB devices some application might still have one
515 of these device nodes open. You should block all new accesses to read,
516 write, poll, etc. except possibly for certain ioctl operations like
517 queueing buffers.
518
519 When the last user of the video device node exits, then the vdev->release()
520 callback is called and you can do the final cleanup there.
521
522
523 video_device helper functions
524 -----------------------------
525
526 There are a few useful helper functions:
527
528 You can set/get driver private data in the video_device struct using:
529
530 void *video_get_drvdata(struct video_device *vdev);
531 void video_set_drvdata(struct video_device *vdev, void *data);
532
533 Note that you can safely call video_set_drvdata() before calling
534 video_register_device().
535
536 And this function:
537
538 struct video_device *video_devdata(struct file *file);
539
540 returns the video_device belonging to the file struct.
541
542 The final helper function combines video_get_drvdata with
543 video_devdata:
544
545 void *video_drvdata(struct file *file);
546
547 You can go from a video_device struct to the v4l2_device struct using:
548
549 struct v4l2_device *v4l2_dev = vdev->v4l2_dev;
550
551 video buffer helper functions
552 -----------------------------
553
554 The v4l2 core API provides a standard method for dealing with video
555 buffers. Those methods allow a driver to implement read(), mmap() and
556 overlay() on a consistent way.
557
558 There are currently methods for using video buffers on devices that
559 supports DMA with scatter/gather method (videobuf-dma-sg), DMA with
560 linear access (videobuf-dma-contig), and vmalloced buffers, mostly
561 used on USB drivers (videobuf-vmalloc).
562
563 Any driver using videobuf should provide operations (callbacks) for
564 four handlers:
565
566 ops->buf_setup   - calculates the size of the video buffers and avoid they
567                    to waste more than some maximum limit of RAM;
568 ops->buf_prepare - fills the video buffer structs and calls
569                    videobuf_iolock() to alloc and prepare mmaped memory;
570 ops->buf_queue   - advices the driver that another buffer were
571                    requested (by read() or by QBUF);
572 ops->buf_release - frees any buffer that were allocated.
573
574 In order to use it, the driver need to have a code (generally called at
575 interrupt context) that will properly handle the buffer request lists,
576 announcing that a new buffer were filled.
577
578 The irq handling code should handle the videobuf task lists, in order
579 to advice videobuf that a new frame were filled, in order to honor to a
580 request. The code is generally like this one:
581         if (list_empty(&dma_q->active))
582                 return;
583
584         buf = list_entry(dma_q->active.next, struct vbuffer, vb.queue);
585
586         if (!waitqueue_active(&buf->vb.done))
587                 return;
588
589         /* Some logic to handle the buf may be needed here */
590
591         list_del(&buf->vb.queue);
592         do_gettimeofday(&buf->vb.ts);
593         wake_up(&buf->vb.done);
594
595 Those are the videobuffer functions used on drivers, implemented on
596 videobuf-core:
597
598 - Videobuf init functions
599   videobuf_queue_sg_init()
600       Initializes the videobuf infrastructure. This function should be
601       called before any other videobuf function on drivers that uses DMA
602       Scatter/Gather buffers.
603
604   videobuf_queue_dma_contig_init
605       Initializes the videobuf infrastructure. This function should be
606       called before any other videobuf function on drivers that need DMA
607       contiguous buffers.
608
609   videobuf_queue_vmalloc_init()
610       Initializes the videobuf infrastructure. This function should be
611       called before any other videobuf function on USB (and other drivers)
612       that need a vmalloced type of videobuf.
613
614 - videobuf_iolock()
615   Prepares the videobuf memory for the proper method (read, mmap, overlay).
616
617 - videobuf_queue_is_busy()
618   Checks if a videobuf is streaming.
619
620 - videobuf_queue_cancel()
621   Stops video handling.
622
623 - videobuf_mmap_free()
624   frees mmap buffers.
625
626 - videobuf_stop()
627   Stops video handling, ends mmap and frees mmap and other buffers.
628
629 - V4L2 api functions. Those functions correspond to VIDIOC_foo ioctls:
630    videobuf_reqbufs(), videobuf_querybuf(), videobuf_qbuf(),
631    videobuf_dqbuf(), videobuf_streamon(), videobuf_streamoff().
632
633 - V4L1 api function (corresponds to VIDIOCMBUF ioctl):
634    videobuf_cgmbuf()
635       This function is used to provide backward compatibility with V4L1
636       API.
637
638 - Some help functions for read()/poll() operations:
639    videobuf_read_stream()
640       For continuous stream read()
641    videobuf_read_one()
642       For snapshot read()
643    videobuf_poll_stream()
644       polling help function
645
646 The better way to understand it is to take a look at vivi driver. One
647 of the main reasons for vivi is to be a videobuf usage example. the
648 vivi_thread_tick() does the task that the IRQ callback would do on PCI
649 drivers (or the irq callback on USB).