[ALSA] cmipci: clean up struct cmipci_pcm
[linux-2.6.git] / Documentation / sched-arch.txt
1         CPU Scheduler implementation hints for architecture specific code
2
3         Nick Piggin, 2005
4
5 Context switch
6 ==============
7 1. Runqueue locking
8 By default, the switch_to arch function is called with the runqueue
9 locked. This is usually not a problem unless switch_to may need to
10 take the runqueue lock. This is usually due to a wake up operation in
11 the context switch. See include/asm-ia64/system.h for an example.
12
13 To request the scheduler call switch_to with the runqueue unlocked,
14 you must `#define __ARCH_WANT_UNLOCKED_CTXSW` in a header file
15 (typically the one where switch_to is defined).
16
17 Unlocked context switches introduce only a very minor performance
18 penalty to the core scheduler implementation in the CONFIG_SMP case.
19
20 2. Interrupt status
21 By default, the switch_to arch function is called with interrupts
22 disabled. Interrupts may be enabled over the call if it is likely to
23 introduce a significant interrupt latency by adding the line
24 `#define __ARCH_WANT_INTERRUPTS_ON_CTXSW` in the same place as for
25 unlocked context switches. This define also implies
26 `__ARCH_WANT_UNLOCKED_CTXSW`. See include/asm-arm/system.h for an
27 example.
28
29
30 CPU idle
31 ========
32 Your cpu_idle routines need to obey the following rules:
33
34 1. Preempt should now disabled over idle routines. Should only
35    be enabled to call schedule() then disabled again.
36
37 2. need_resched/TIF_NEED_RESCHED is only ever set, and will never
38    be cleared until the running task has called schedule(). Idle
39    threads need only ever query need_resched, and may never set or
40    clear it.
41
42 3. When cpu_idle finds (need_resched() == 'true'), it should call
43    schedule(). It should not call schedule() otherwise.
44
45 4. The only time interrupts need to be disabled when checking
46    need_resched is if we are about to sleep the processor until
47    the next interrupt (this doesn't provide any protection of
48    need_resched, it prevents losing an interrupt).
49
50         4a. Common problem with this type of sleep appears to be:
51                 local_irq_disable();
52                 if (!need_resched()) {
53                         local_irq_enable();
54                         *** resched interrupt arrives here ***
55                         __asm__("sleep until next interrupt");
56                 }
57
58 5. TIF_POLLING_NRFLAG can be set by idle routines that do not
59    need an interrupt to wake them up when need_resched goes high.
60    In other words, they must be periodically polling need_resched,
61    although it may be reasonable to do some background work or enter
62    a low CPU priority.
63
64         5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
65             an interrupt sleep, it needs to be cleared then a memory
66             barrier issued (followed by a test of need_resched with
67             interrupts disabled, as explained in 3).
68
69 arch/i386/kernel/process.c has examples of both polling and
70 sleeping idle functions.
71
72
73 Possible arch/ problems
74 =======================
75
76 Possible arch problems I found (and either tried to fix or didn't):
77
78 h8300 - Is such sleeping racy vs interrupts? (See #4a).
79         The H8/300 manual I found indicates yes, however disabling IRQs
80         over the sleep mean only NMIs can wake it up, so can't fix easily
81         without doing spin waiting.
82
83 ia64 - is safe_halt call racy vs interrupts? (does it sleep?) (See #4a)
84
85 sh64 - Is sleeping racy vs interrupts? (See #4a)
86
87 sparc - IRQs on at this point(?), change local_irq_save to _disable.
88       - TODO: needs secondary CPUs to disable preempt (See #1)
89