Docs: MSI-HOWTO: Insert a comma
[linux-2.6.git] / Documentation / PCI / MSI-HOWTO.txt
1                 The MSI Driver Guide HOWTO
2         Tom L Nguyen tom.l.nguyen@intel.com
3                         10/03/2003
4         Revised Feb 12, 2004 by Martine Silbermann
5                 email: Martine.Silbermann@hp.com
6         Revised Jun 25, 2004 by Tom L Nguyen
7         Revised Jul  9, 2008 by Matthew Wilcox <willy@linux.intel.com>
8                 Copyright 2003, 2008 Intel Corporation
9
10 1. About this guide
11
12 This guide describes the basics of Message Signaled Interrupts (MSIs),
13 the advantages of using MSI over traditional interrupt mechanisms, how
14 to change your driver to use MSI or MSI-X and some basic diagnostics to
15 try if a device doesn't support MSIs.
16
17
18 2. What are MSIs?
19
20 A Message Signaled Interrupt is a write from the device to a special
21 address which causes an interrupt to be received by the CPU.
22
23 The MSI capability was first specified in PCI 2.2 and was later enhanced
24 in PCI 3.0 to allow each interrupt to be masked individually.  The MSI-X
25 capability was also introduced with PCI 3.0.  It supports more interrupts
26 per device than MSI and allows interrupts to be independently configured.
27
28 Devices may support both MSI and MSI-X, but only one can be enabled at
29 a time.
30
31
32 3. Why use MSIs?
33
34 There are three reasons why using MSIs can give an advantage over
35 traditional pin-based interrupts.
36
37 Pin-based PCI interrupts are often shared amongst several devices.
38 To support this, the kernel must call each interrupt handler associated
39 with an interrupt, which leads to reduced performance for the system as
40 a whole.  MSIs are never shared, so this problem cannot arise.
41
42 When a device writes data to memory, then raises a pin-based interrupt,
43 it is possible that the interrupt may arrive before all the data has
44 arrived in memory (this becomes more likely with devices behind PCI-PCI
45 bridges).  In order to ensure that all the data has arrived in memory,
46 the interrupt handler must read a register on the device which raised
47 the interrupt.  PCI transaction ordering rules require that all the data
48 arrive in memory before the value may be returned from the register.
49 Using MSIs avoids this problem as the interrupt-generating write cannot
50 pass the data writes, so by the time the interrupt is raised, the driver
51 knows that all the data has arrived in memory.
52
53 PCI devices can only support a single pin-based interrupt per function.
54 Often drivers have to query the device to find out what event has
55 occurred, slowing down interrupt handling for the common case.  With
56 MSIs, a device can support more interrupts, allowing each interrupt
57 to be specialised to a different purpose.  One possible design gives
58 infrequent conditions (such as errors) their own interrupt which allows
59 the driver to handle the normal interrupt handling path more efficiently.
60 Other possible designs include giving one interrupt to each packet queue
61 in a network card or each port in a storage controller.
62
63
64 4. How to use MSIs
65
66 PCI devices are initialised to use pin-based interrupts.  The device
67 driver has to set up the device to use MSI or MSI-X.  Not all machines
68 support MSIs correctly, and for those machines, the APIs described below
69 will simply fail and the device will continue to use pin-based interrupts.
70
71 4.1 Include kernel support for MSIs
72
73 To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI
74 option enabled.  This option is only available on some architectures,
75 and it may depend on some other options also being set.  For example,
76 on x86, you must also enable X86_UP_APIC or SMP in order to see the
77 CONFIG_PCI_MSI option.
78
79 4.2 Using MSI
80
81 Most of the hard work is done for the driver in the PCI layer.  It simply
82 has to request that the PCI layer set up the MSI capability for this
83 device.
84
85 4.2.1 pci_enable_msi
86
87 int pci_enable_msi(struct pci_dev *dev)
88
89 A successful call allocates ONE interrupt to the device, regardless
90 of how many MSIs the device supports.  The device is switched from
91 pin-based interrupt mode to MSI mode.  The dev->irq number is changed
92 to a new number which represents the message signaled interrupt;
93 consequently, this function should be called before the driver calls
94 request_irq(), because an MSI is delivered via a vector that is
95 different from the vector of a pin-based interrupt.
96
97 4.2.2 pci_enable_msi_block
98
99 int pci_enable_msi_block(struct pci_dev *dev, int count)
100
101 This variation on the above call allows a device driver to request multiple
102 MSIs.  The MSI specification only allows interrupts to be allocated in
103 powers of two, up to a maximum of 2^5 (32).
104
105 If this function returns 0, it has succeeded in allocating at least as many
106 interrupts as the driver requested (it may have allocated more in order
107 to satisfy the power-of-two requirement).  In this case, the function
108 enables MSI on this device and updates dev->irq to be the lowest of
109 the new interrupts assigned to it.  The other interrupts assigned to
110 the device are in the range dev->irq to dev->irq + count - 1.
111
112 If this function returns a negative number, it indicates an error and
113 the driver should not attempt to request any more MSI interrupts for
114 this device.  If this function returns a positive number, it is
115 less than 'count' and indicates the number of interrupts that could have
116 been allocated.  In neither case is the irq value updated or the device
117 switched into MSI mode.
118
119 The device driver must decide what action to take if
120 pci_enable_msi_block() returns a value less than the number requested.
121 For instance, the driver could still make use of fewer interrupts;
122 in this case the driver should call pci_enable_msi_block()
123 again.  Note that it is not guaranteed to succeed, even when the
124 'count' has been reduced to the value returned from a previous call to
125 pci_enable_msi_block().  This is because there are multiple constraints
126 on the number of vectors that can be allocated; pci_enable_msi_block()
127 returns as soon as it finds any constraint that doesn't allow the
128 call to succeed.
129
130 4.2.3 pci_disable_msi
131
132 void pci_disable_msi(struct pci_dev *dev)
133
134 This function should be used to undo the effect of pci_enable_msi() or
135 pci_enable_msi_block().  Calling it restores dev->irq to the pin-based
136 interrupt number and frees the previously allocated message signaled
137 interrupt(s).  The interrupt may subsequently be assigned to another
138 device, so drivers should not cache the value of dev->irq.
139
140 Before calling this function, a device driver must always call free_irq()
141 on any interrupt for which it previously called request_irq().
142 Failure to do so results in a BUG_ON(), leaving the device with
143 MSI enabled and thus leaking its vector.
144
145 4.3 Using MSI-X
146
147 The MSI-X capability is much more flexible than the MSI capability.
148 It supports up to 2048 interrupts, each of which can be controlled
149 independently.  To support this flexibility, drivers must use an array of
150 `struct msix_entry':
151
152 struct msix_entry {
153         u16     vector; /* kernel uses to write alloc vector */
154         u16     entry; /* driver uses to specify entry */
155 };
156
157 This allows for the device to use these interrupts in a sparse fashion;
158 for example, it could use interrupts 3 and 1027 and yet allocate only a
159 two-element array.  The driver is expected to fill in the 'entry' value
160 in each element of the array to indicate for which entries the kernel
161 should assign interrupts; it is invalid to fill in two entries with the
162 same number.
163
164 4.3.1 pci_enable_msix
165
166 int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
167
168 Calling this function asks the PCI subsystem to allocate 'nvec' MSIs.
169 The 'entries' argument is a pointer to an array of msix_entry structs
170 which should be at least 'nvec' entries in size.  On success, the
171 device is switched into MSI-X mode and the function returns 0.
172 The 'vector' member in each entry is populated with the interrupt number;
173 the driver should then call request_irq() for each 'vector' that it
174 decides to use.  The device driver is responsible for keeping track of the
175 interrupts assigned to the MSI-X vectors so it can free them again later.
176
177 If this function returns a negative number, it indicates an error and
178 the driver should not attempt to allocate any more MSI-X interrupts for
179 this device.  If it returns a positive number, it indicates the maximum
180 number of interrupt vectors that could have been allocated. See example
181 below.
182
183 This function, in contrast with pci_enable_msi(), does not adjust
184 dev->irq.  The device will not generate interrupts for this interrupt
185 number once MSI-X is enabled.
186
187 Device drivers should normally call this function once per device
188 during the initialization phase.
189
190 It is ideal if drivers can cope with a variable number of MSI-X interrupts;
191 there are many reasons why the platform may not be able to provide the
192 exact number that a driver asks for.
193
194 A request loop to achieve that might look like:
195
196 static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
197 {
198         while (nvec >= FOO_DRIVER_MINIMUM_NVEC) {
199                 rc = pci_enable_msix(adapter->pdev,
200                                      adapter->msix_entries, nvec);
201                 if (rc > 0)
202                         nvec = rc;
203                 else
204                         return rc;
205         }
206
207         return -ENOSPC;
208 }
209
210 4.3.2 pci_disable_msix
211
212 void pci_disable_msix(struct pci_dev *dev)
213
214 This function should be used to undo the effect of pci_enable_msix().  It frees
215 the previously allocated message signaled interrupts.  The interrupts may
216 subsequently be assigned to another device, so drivers should not cache
217 the value of the 'vector' elements over a call to pci_disable_msix().
218
219 Before calling this function, a device driver must always call free_irq()
220 on any interrupt for which it previously called request_irq().
221 Failure to do so results in a BUG_ON(), leaving the device with
222 MSI-X enabled and thus leaking its vector.
223
224 4.3.3 The MSI-X Table
225
226 The MSI-X capability specifies a BAR and offset within that BAR for the
227 MSI-X Table.  This address is mapped by the PCI subsystem, and should not
228 be accessed directly by the device driver.  If the driver wishes to
229 mask or unmask an interrupt, it should call disable_irq() / enable_irq().
230
231 4.4 Handling devices implementing both MSI and MSI-X capabilities
232
233 If a device implements both MSI and MSI-X capabilities, it can
234 run in either MSI mode or MSI-X mode, but not both simultaneously.
235 This is a requirement of the PCI spec, and it is enforced by the
236 PCI layer.  Calling pci_enable_msi() when MSI-X is already enabled or
237 pci_enable_msix() when MSI is already enabled results in an error.
238 If a device driver wishes to switch between MSI and MSI-X at runtime,
239 it must first quiesce the device, then switch it back to pin-interrupt
240 mode, before calling pci_enable_msi() or pci_enable_msix() and resuming
241 operation.  This is not expected to be a common operation but may be
242 useful for debugging or testing during development.
243
244 4.5 Considerations when using MSIs
245
246 4.5.1 Choosing between MSI-X and MSI
247
248 If your device supports both MSI-X and MSI capabilities, you should use
249 the MSI-X facilities in preference to the MSI facilities.  As mentioned
250 above, MSI-X supports any number of interrupts between 1 and 2048.
251 In constrast, MSI is restricted to a maximum of 32 interrupts (and
252 must be a power of two).  In addition, the MSI interrupt vectors must
253 be allocated consecutively, so the system may not be able to allocate
254 as many vectors for MSI as it could for MSI-X.  On some platforms, MSI
255 interrupts must all be targeted at the same set of CPUs whereas MSI-X
256 interrupts can all be targeted at different CPUs.
257
258 4.5.2 Spinlocks
259
260 Most device drivers have a per-device spinlock which is taken in the
261 interrupt handler.  With pin-based interrupts or a single MSI, it is not
262 necessary to disable interrupts (Linux guarantees the same interrupt will
263 not be re-entered).  If a device uses multiple interrupts, the driver
264 must disable interrupts while the lock is held.  If the device sends
265 a different interrupt, the driver will deadlock trying to recursively
266 acquire the spinlock.
267
268 There are two solutions.  The first is to take the lock with
269 spin_lock_irqsave() or spin_lock_irq() (see
270 Documentation/DocBook/kernel-locking).  The second is to specify
271 IRQF_DISABLED to request_irq() so that the kernel runs the entire
272 interrupt routine with interrupts disabled.
273
274 If your MSI interrupt routine does not hold the lock for the whole time
275 it is running, the first solution may be best.  The second solution is
276 normally preferred as it avoids making two transitions from interrupt
277 disabled to enabled and back again.
278
279 4.6 How to tell whether MSI/MSI-X is enabled on a device
280
281 Using 'lspci -v' (as root) may show some devices with "MSI", "Message
282 Signalled Interrupts" or "MSI-X" capabilities.  Each of these capabilities
283 has an 'Enable' flag which is followed with either "+" (enabled)
284 or "-" (disabled).
285
286
287 5. MSI quirks
288
289 Several PCI chipsets or devices are known not to support MSIs.
290 The PCI stack provides three ways to disable MSIs:
291
292 1. globally
293 2. on all devices behind a specific bridge
294 3. on a single device
295
296 5.1. Disabling MSIs globally
297
298 Some host chipsets simply don't support MSIs properly.  If we're
299 lucky, the manufacturer knows this and has indicated it in the ACPI
300 FADT table.  In this case, Linux automatically disables MSIs.
301 Some boards don't include this information in the table and so we have
302 to detect them ourselves.  The complete list of these is found near the
303 quirk_disable_all_msi() function in drivers/pci/quirks.c.
304
305 If you have a board which has problems with MSIs, you can pass pci=nomsi
306 on the kernel command line to disable MSIs on all devices.  It would be
307 in your best interests to report the problem to linux-pci@vger.kernel.org
308 including a full 'lspci -v' so we can add the quirks to the kernel.
309
310 5.2. Disabling MSIs below a bridge
311
312 Some PCI bridges are not able to route MSIs between busses properly.
313 In this case, MSIs must be disabled on all devices behind the bridge.
314
315 Some bridges allow you to enable MSIs by changing some bits in their
316 PCI configuration space (especially the Hypertransport chipsets such
317 as the nVidia nForce and Serverworks HT2000).  As with host chipsets,
318 Linux mostly knows about them and automatically enables MSIs if it can.
319 If you have a bridge which Linux doesn't yet know about, you can enable
320 MSIs in configuration space using whatever method you know works, then
321 enable MSIs on that bridge by doing:
322
323        echo 1 > /sys/bus/pci/devices/$bridge/msi_bus
324
325 where $bridge is the PCI address of the bridge you've enabled (eg
326 0000:00:0e.0).
327
328 To disable MSIs, echo 0 instead of 1.  Changing this value should be
329 done with caution as it can break interrupt handling for all devices
330 below this bridge.
331
332 Again, please notify linux-pci@vger.kernel.org of any bridges that need
333 special handling.
334
335 5.3. Disabling MSIs on a single device
336
337 Some devices are known to have faulty MSI implementations.  Usually this
338 is handled in the individual device driver but occasionally it's necessary
339 to handle this with a quirk.  Some drivers have an option to disable use
340 of MSI.  While this is a convenient workaround for the driver author,
341 it is not good practise, and should not be emulated.
342
343 5.4. Finding why MSIs are disabled on a device
344
345 From the above three sections, you can see that there are many reasons
346 why MSIs may not be enabled for a given device.  Your first step should
347 be to examine your dmesg carefully to determine whether MSIs are enabled
348 for your machine.  You should also check your .config to be sure you
349 have enabled CONFIG_PCI_MSI.
350
351 Then, 'lspci -t' gives the list of bridges above a device.  Reading
352 /sys/bus/pci/devices/*/msi_bus will tell you whether MSI are enabled (1)
353 or disabled (0).  If 0 is found in any of the msi_bus files belonging
354 to bridges between the PCI root and the device, MSIs are disabled.
355
356 It is also worth checking the device driver to see whether it supports MSIs.
357 For example, it may contain calls to pci_enable_msi(), pci_enable_msix() or
358 pci_enable_msi_block().