tlk: 6/19 update daily-2014.06.20.0_release-tlk
Dennis Huang [Fri, 20 Jun 2014 00:36:33 +0000 (17:36 -0700)]
- import clean copy of NetBSD elf.h
- add brk syscall failure debug print
- remove unused makefile variable
- fix return code in get_property ioctl routines
- add task unloading
- enable perf counter access during init
- use dcache flush routine from LK

Change-Id: Iad16fbe37d18200534e0cdc8eb2e73a055a4b3eb
Reviewed-on: http://git-master/r/426320
Reviewed-by: Dennis Huang <denhuang@nvidia.com>
Tested-by: Dennis Huang <denhuang@nvidia.com>

48 files changed:
arch/arm/arm-m/CMSIS/Include/arm_common_tables.h [deleted file]
arch/arm/arm-m/CMSIS/Include/arm_math.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_cm0.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_cm0plus.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_cm3.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_cm4.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_cm4_simd.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_cmFunc.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_cmInstr.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_sc000.h [deleted file]
arch/arm/arm-m/CMSIS/Include/core_sc300.h [deleted file]
arch/arm/arm-m/CMSIS/Lib/libarm_cortexM0l_math.a [deleted file]
arch/arm/arm-m/CMSIS/Lib/libarm_cortexM3l_math.a [deleted file]
arch/arm/arm-m/CMSIS/Lib/libarm_cortexM4l_math.a [deleted file]
arch/arm/arm-m/CMSIS/Lib/libarm_cortexM4lf_math.a [deleted file]
arch/arm/arm-m/arch.c [deleted file]
arch/arm/arm-m/exceptions.c [deleted file]
arch/arm/arm-m/include/arch/arm/cm3.h [deleted file]
arch/arm/arm-m/start.c [deleted file]
arch/arm/arm-m/systick.c [deleted file]
arch/arm/arm-m/thread.c [deleted file]
arch/arm/arm-m/vectab.c [deleted file]
arch/arm/arm/arch.c
arch/arm/arm/cache-ops.S
arch/arm/arm/task.c
include/arch/arm/elf_machdep.h [new file with mode: 0644]
include/arch/elf_machdep.h [moved from arch/arm/arm-m/include/arch/arch_thread.h with 86% similarity]
include/kernel/elf.h
include/kernel/exec_elf.h [new file with mode: 0644]
include/kernel/task.h
include/kernel/task_load.h
include/kernel/task_unload.h [new file with mode: 0644]
include/kernel/thread.h
include/ote_intf.h
kernel/ote_intf.c
kernel/rules.mk
kernel/syscall.c
kernel/task.c
kernel/task_load.c
kernel/task_unload.c [new file with mode: 0644]
kernel/thread.c
lib/monitor/arm64/monitor_cpu.S
lib/monitor/arm64/monitor_psci.S [deleted file]
platform/tegra/common/boot_secondary.S
platform/tegra/common/pm.c
platform/tegra/include/platform/platform_p.h
platform/tegra/monitor/psci.c
task/rules.mk

diff --git a/arch/arm/arm-m/CMSIS/Include/arm_common_tables.h b/arch/arm/arm-m/CMSIS/Include/arm_common_tables.h
deleted file mode 100644 (file)
index 8c35ef2..0000000
+++ /dev/null
@@ -1,38 +0,0 @@
-/* ---------------------------------------------------------------------- 
-* Copyright (C) 2010 ARM Limited. All rights reserved. 
-* 
-* $Date:        11. November 2010  
-* $Revision:   V1.0.2  
-* 
-* Project:         CMSIS DSP Library 
-* Title:           arm_common_tables.h 
-* 
-* Description: This file has extern declaration for common tables like Bitreverse, reciprocal etc which are used across different functions 
-* 
-* Target Processor: Cortex-M4/Cortex-M3
-*  
-* Version 1.0.2 2010/11/11 
-*    Documentation updated.  
-* 
-* Version 1.0.1 2010/10/05  
-*    Production release and review comments incorporated. 
-* 
-* Version 1.0.0 2010/09/20  
-*    Production release and review comments incorporated. 
-* -------------------------------------------------------------------- */
-
-#ifndef _ARM_COMMON_TABLES_H
-#define _ARM_COMMON_TABLES_H
-
-#include "arm_math.h"
-
-extern const uint16_t armBitRevTable[1024];
-extern const q15_t armRecipTableQ15[64];
-extern const q31_t armRecipTableQ31[64];
-extern const q31_t realCoefAQ31[1024];
-extern const q31_t realCoefBQ31[1024];
-extern const float32_t twiddleCoef[6144];
-extern const q31_t twiddleCoefQ31[6144];
-extern const q15_t twiddleCoefQ15[6144];
-
-#endif /*  ARM_COMMON_TABLES_H */
diff --git a/arch/arm/arm-m/CMSIS/Include/arm_math.h b/arch/arm/arm-m/CMSIS/Include/arm_math.h
deleted file mode 100644 (file)
index 7266c3e..0000000
+++ /dev/null
@@ -1,7557 +0,0 @@
-/* ----------------------------------------------------------------------   
- * Copyright (C) 2010-2011 ARM Limited. All rights reserved.   
- *   
- * $Date:        15. February 2012  
- * $Revision:  V1.1.0  
- *   
- * Project:        CMSIS DSP Library   
- * Title:              arm_math.h
- *   
- * Description:         Public header file for CMSIS DSP Library
- *   
- * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
- *  
- * Version 1.1.0 2012/02/15 
- *    Updated with more optimizations, bug fixes and minor API changes.  
- *  
- * Version 1.0.10 2011/7/15 
- *    Big Endian support added and Merged M0 and M3/M4 Source code.  
- *   
- * Version 1.0.3 2010/11/29  
- *    Re-organized the CMSIS folders and updated documentation.   
- *    
- * Version 1.0.2 2010/11/11   
- *    Documentation updated.    
- *   
- * Version 1.0.1 2010/10/05    
- *    Production release and review comments incorporated.   
- *   
- * Version 1.0.0 2010/09/20    
- *    Production release and review comments incorporated.   
- * -------------------------------------------------------------------- */
-
-/**
-   \mainpage CMSIS DSP Software Library
-   *
-   * <b>Introduction</b>
-   *
-   * This user manual describes the CMSIS DSP software library, 
-   * a suite of common signal processing functions for use on Cortex-M processor based devices.
-   *
-   * The library is divided into a number of functions each covering a specific category:  
-   * - Basic math functions
-   * - Fast math functions
-   * - Complex math functions
-   * - Filters
-   * - Matrix functions
-   * - Transforms
-   * - Motor control functions
-   * - Statistical functions
-   * - Support functions
-   * - Interpolation functions
-   *
-   * The library has separate functions for operating on 8-bit integers, 16-bit integers,
-   * 32-bit integer and 32-bit floating-point values. 
-   *
-   * <b>Pre-processor Macros</b> 
-   * 
-   * Each library project have differant pre-processor macros. 
-   * 
-   * - UNALIGNED_SUPPORT_DISABLE: 
-   * 
-   * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access    
-   * 
-   * - ARM_MATH_BIG_ENDIAN: 
-   * 
-   * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. 
-   * 
-   * - ARM_MATH_MATRIX_CHECK: 
-   * 
-   * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices 
-   * 
-   * - ARM_MATH_ROUNDING: 
-   * 
-   * Define macro ARM_MATH_ROUNDING for rounding on support functions
-   *
-   * - ARM_MATH_CMx:
-   *
-   * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
-   * and ARM_MATH_CM0 for building library on cortex-M0 target.
-   * 
-   * - __FPU_PRESENT:
-   *
-   * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries 
-   *
-   * <b>Toolchain Support</b>
-   *
-   * The library has been developed and tested with MDK-ARM version 4.23. 
-   * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
-   *
-   * <b>Using the Library</b>
-   *
-   * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
-   * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
-   * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
-   * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
-   * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
-   * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
-   * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
-   * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
-   * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
-   *
-   * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
-   * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single 
-   * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. 
-   * Define the appropriate pre processor MACRO ARM_MATH_CM4 or  ARM_MATH_CM3 or 
-   * ARM_MATH_CM0 depending on the target processor in the application.
-   *
-   * <b>Examples</b>
-   *
-   * The library ships with a number of examples which demonstrate how to use the library functions.
-   *
-   * <b>Building the Library</b>
-   *
-   * The library installer contains project files to re build libraries on MDK Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
-   * - arm_cortexM0b_math.uvproj
-   * - arm_cortexM0l_math.uvproj
-   * - arm_cortexM3b_math.uvproj
-   * - arm_cortexM3l_math.uvproj  
-   * - arm_cortexM4b_math.uvproj
-   * - arm_cortexM4l_math.uvproj
-   * - arm_cortexM4bf_math.uvproj
-   * - arm_cortexM4lf_math.uvproj
-   *
-   *
-   * The project can be built by opening the appropriate project in MDK-ARM 4.23 chain and defining the optional pre processor MACROs detailed above.
-   *
-   * <b>Copyright Notice</b>
-   *
-   * Copyright (C) 2010 ARM Limited. All rights reserved.
-   */
-
-
-/**
- * @defgroup groupMath Basic Math Functions
- */
-
-/**
- * @defgroup groupFastMath Fast Math Functions
- * This set of functions provides a fast approximation to sine, cosine, and square root.
- * As compared to most of the other functions in the CMSIS math library, the fast math functions
- * operate on individual values and not arrays.
- * There are separate functions for Q15, Q31, and floating-point data.
- *
- */
-
-/**
- * @defgroup groupCmplxMath Complex Math Functions
- * This set of functions operates on complex data vectors.
- * The data in the complex arrays is stored in an interleaved fashion
- * (real, imag, real, imag, ...).
- * In the API functions, the number of samples in a complex array refers
- * to the number of complex values; the array contains twice this number of
- * real values.
- */
-
-/**
- * @defgroup groupFilters Filtering Functions
- */
-
-/**
- * @defgroup groupMatrix Matrix Functions
- *
- * This set of functions provides basic matrix math operations.
- * The functions operate on matrix data structures.  For example,
- * the type
- * definition for the floating-point matrix structure is shown
- * below:
- * <pre>
- *     typedef struct
- *     {
- *       uint16_t numRows;     // number of rows of the matrix.
- *       uint16_t numCols;     // number of columns of the matrix.
- *       float32_t *pData;     // points to the data of the matrix.
- *     } arm_matrix_instance_f32;
- * </pre>
- * There are similar definitions for Q15 and Q31 data types.
- *
- * The structure specifies the size of the matrix and then points to
- * an array of data.  The array is of size <code>numRows X numCols</code>
- * and the values are arranged in row order.  That is, the
- * matrix element (i, j) is stored at:
- * <pre>
- *     pData[i*numCols + j]
- * </pre>
- *
- * \par Init Functions
- * There is an associated initialization function for each type of matrix
- * data structure.
- * The initialization function sets the values of the internal structure fields.
- * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
- * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types,  respectively.
- *
- * \par
- * Use of the initialization function is optional. However, if initialization function is used
- * then the instance structure cannot be placed into a const data section.
- * To place the instance structure in a const data
- * section, manually initialize the data structure.  For example:
- * <pre>
- * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
- * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
- * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
- * </pre>
- * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
- * specifies the number of columns, and <code>pData</code> points to the
- * data array.
- *
- * \par Size Checking
- * By default all of the matrix functions perform size checking on the input and
- * output matrices.  For example, the matrix addition function verifies that the
- * two input matrices and the output matrix all have the same number of rows and
- * columns.  If the size check fails the functions return:
- * <pre>
- *     ARM_MATH_SIZE_MISMATCH
- * </pre>
- * Otherwise the functions return
- * <pre>
- *     ARM_MATH_SUCCESS
- * </pre>
- * There is some overhead associated with this matrix size checking.
- * The matrix size checking is enabled via the \#define
- * <pre>
- *     ARM_MATH_MATRIX_CHECK
- * </pre>
- * within the library project settings.  By default this macro is defined
- * and size checking is enabled.  By changing the project settings and
- * undefining this macro size checking is eliminated and the functions
- * run a bit faster.  With size checking disabled the functions always
- * return <code>ARM_MATH_SUCCESS</code>.
- */
-
-/**
- * @defgroup groupTransforms Transform Functions
- */
-
-/**
- * @defgroup groupController Controller Functions
- */
-
-/**
- * @defgroup groupStats Statistics Functions
- */
-/**
- * @defgroup groupSupport Support Functions
- */
-
-/**
- * @defgroup groupInterpolation Interpolation Functions
- * These functions perform 1- and 2-dimensional interpolation of data.
- * Linear interpolation is used for 1-dimensional data and
- * bilinear interpolation is used for 2-dimensional data.
- */
-
-/**
- * @defgroup groupExamples Examples
- */
-#ifndef _ARM_MATH_H
-#define _ARM_MATH_H
-
-#define __CMSIS_GENERIC         /* disable NVIC and Systick functions */
-
-#if defined (ARM_MATH_CM4)
-#include "core_cm4.h"
-#elif defined (ARM_MATH_CM3)
-#include "core_cm3.h"
-#elif defined (ARM_MATH_CM0)
-#include "core_cm0.h"
-#else
-#include "ARMCM4.h"
-#warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
-#endif
-
-#undef  __CMSIS_GENERIC         /* enable NVIC and Systick functions */
-#include "string.h"
-#include "math.h"
-#ifdef __cplusplus
-extern "C"
-{
-#endif
-
-
-  /**
-   * @brief Macros required for reciprocal calculation in Normalized LMS
-   */
-
-#define DELTA_Q31                      (0x100)
-#define DELTA_Q15                      0x5
-#define INDEX_MASK                     0x0000003F
-#ifndef PI
-#define PI                                     3.14159265358979f
-#endif
-
-  /**
-   * @brief Macros required for SINE and COSINE Fast math approximations
-   */
-
-#define TABLE_SIZE                     256
-#define TABLE_SPACING_Q31      0x800000
-#define TABLE_SPACING_Q15      0x80
-
-  /**
-   * @brief Macros required for SINE and COSINE Controller functions
-   */
-  /* 1.31(q31) Fixed value of 2/360 */
-  /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
-#define INPUT_SPACING                  0xB60B61
-
-  /**
-   * @brief Macro for Unaligned Support
-   */
-#ifndef UNALIGNED_SUPPORT_DISABLE
-    #define ALIGN4
-#else
-  #if defined  (__GNUC__)
-    #define ALIGN4 __attribute__((aligned(4)))
-  #else
-    #define ALIGN4 __align(4)
-  #endif
-#endif /*      #ifndef UNALIGNED_SUPPORT_DISABLE       */
-
-  /**
-   * @brief Error status returned by some functions in the library.
-   */
-
-  typedef enum
-  {
-    ARM_MATH_SUCCESS = 0,                /**< No error */
-    ARM_MATH_ARGUMENT_ERROR = -1,        /**< One or more arguments are incorrect */
-    ARM_MATH_LENGTH_ERROR = -2,          /**< Length of data buffer is incorrect */
-    ARM_MATH_SIZE_MISMATCH = -3,         /**< Size of matrices is not compatible with the operation. */
-    ARM_MATH_NANINF = -4,                /**< Not-a-number (NaN) or infinity is generated */
-    ARM_MATH_SINGULAR = -5,              /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
-    ARM_MATH_TEST_FAILURE = -6           /**< Test Failed  */
-  } arm_status;
-
-  /**
-   * @brief 8-bit fractional data type in 1.7 format.
-   */
-  typedef int8_t q7_t;
-
-  /**
-   * @brief 16-bit fractional data type in 1.15 format.
-   */
-  typedef int16_t q15_t;
-
-  /**
-   * @brief 32-bit fractional data type in 1.31 format.
-   */
-  typedef int32_t q31_t;
-
-  /**
-   * @brief 64-bit fractional data type in 1.63 format.
-   */
-  typedef int64_t q63_t;
-
-  /**
-   * @brief 32-bit floating-point type definition.
-   */
-  typedef float float32_t;
-
-  /**
-   * @brief 64-bit floating-point type definition.
-   */
-  typedef double float64_t;
-
-  /**
-   * @brief definition to read/write two 16 bit values.
-   */
-#if defined  (__GNUC__)
-  #define __SIMD32(addr)         (*( int32_t **) & (addr))
-  #define  _SIMD32_OFFSET(addr)  (*( int32_t * )   (addr))
-#else
-  #define __SIMD32(addr)         (*(__packed                    int32_t **) & (addr))
-  #define  _SIMD32_OFFSET(addr)  (*(__packed                    int32_t * )   (addr))
-#endif 
-
-  #define __SIMD64(addr)  (*(int64_t **) & (addr))
-
-#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
-  /**
-   * @brief definition to pack two 16 bit values.
-   */
-#define __PKHBT(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0x0000FFFF) | \
-                                         (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000)  )
-#define __PKHTB(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0xFFFF0000) | \
-                                         (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF)  )
-
-#endif
-
-
-   /**
-   * @brief definition to pack four 8 bit values.
-   */
-#ifndef ARM_MATH_BIG_ENDIAN
-
-#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) <<  0) & (int32_t)0x000000FF) |        \
-                                (((int32_t)(v1) <<  8) & (int32_t)0x0000FF00) |        \
-                                                           (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) |     \
-                                                           (((int32_t)(v3) << 24) & (int32_t)0xFF000000)  )
-#else
-
-#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) <<  0) & (int32_t)0x000000FF) |        \
-                                (((int32_t)(v2) <<  8) & (int32_t)0x0000FF00) |        \
-                                                           (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) |     \
-                                                           (((int32_t)(v0) << 24) & (int32_t)0xFF000000)  )
-
-#endif
-
-
-  /**
-   * @brief Clips Q63 to Q31 values.
-   */
-  __STATIC_INLINE q31_t clip_q63_to_q31(
-  q63_t x)
-  {
-    return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
-      ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
-  }
-
-  /**
-   * @brief Clips Q63 to Q15 values.
-   */
-  __STATIC_INLINE q15_t clip_q63_to_q15(
-  q63_t x)
-  {
-    return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
-      ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
-  }
-
-  /**
-   * @brief Clips Q31 to Q7 values.
-   */
-  __STATIC_INLINE q7_t clip_q31_to_q7(
-  q31_t x)
-  {
-    return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
-      ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
-  }
-
-  /**
-   * @brief Clips Q31 to Q15 values.
-   */
-  __STATIC_INLINE q15_t clip_q31_to_q15(
-  q31_t x)
-  {
-    return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
-      ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
-  }
-
-  /**
-   * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
-   */
-
-  __STATIC_INLINE q63_t mult32x64(
-  q63_t x,
-  q31_t y)
-  {
-    return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
-            (((q63_t) (x >> 32) * y)));
-  }
-
-
-#if defined (ARM_MATH_CM0) && defined ( __CC_ARM   )
-#define __CLZ __clz
-#endif
-
-#if defined (ARM_MATH_CM0) && defined ( __TASKING__ )
-/* No need to redefine __CLZ */
-#endif
-
-#if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) )
-
-  __STATIC_INLINE  uint32_t __CLZ(q31_t data);
-
-
-  __STATIC_INLINE uint32_t __CLZ(q31_t data)
-  {
-    uint32_t count = 0;
-    uint32_t mask = 0x80000000;
-
-    while((data & mask) == 0)
-    {
-      count += 1u;
-      mask = mask >> 1u;
-    }
-
-    return (count);
-
-  }
-
-#endif
-
-  /**
-   * @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type.
-   */
-
-  __STATIC_INLINE uint32_t arm_recip_q31(
-  q31_t in,
-  q31_t * dst,
-  q31_t * pRecipTable)
-  {
-
-    uint32_t out, tempVal;
-    uint32_t index, i;
-    uint32_t signBits;
-
-    if(in > 0)
-    {
-      signBits = __CLZ(in) - 1;
-    }
-    else
-    {
-      signBits = __CLZ(-in) - 1;
-    }
-
-    /* Convert input sample to 1.31 format */
-    in = in << signBits;
-
-    /* calculation of index for initial approximated Val */
-    index = (uint32_t) (in >> 24u);
-    index = (index & INDEX_MASK);
-
-    /* 1.31 with exp 1 */
-    out = pRecipTable[index];
-
-    /* calculation of reciprocal value */
-    /* running approximation for two iterations */
-    for (i = 0u; i < 2u; i++)
-    {
-      tempVal = (q31_t) (((q63_t) in * out) >> 31u);
-      tempVal = 0x7FFFFFFF - tempVal;
-      /*      1.31 with exp 1 */
-      //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
-      out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
-    }
-
-    /* write output */
-    *dst = out;
-
-    /* return num of signbits of out = 1/in value */
-    return (signBits + 1u);
-
-  }
-
-  /**
-   * @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type.
-   */
-  __STATIC_INLINE uint32_t arm_recip_q15(
-  q15_t in,
-  q15_t * dst,
-  q15_t * pRecipTable)
-  {
-
-    uint32_t out = 0, tempVal = 0;
-    uint32_t index = 0, i = 0;
-    uint32_t signBits = 0;
-
-    if(in > 0)
-    {
-      signBits = __CLZ(in) - 17;
-    }
-    else
-    {
-      signBits = __CLZ(-in) - 17;
-    }
-
-    /* Convert input sample to 1.15 format */
-    in = in << signBits;
-
-    /* calculation of index for initial approximated Val */
-    index = in >> 8;
-    index = (index & INDEX_MASK);
-
-    /*      1.15 with exp 1  */
-    out = pRecipTable[index];
-
-    /* calculation of reciprocal value */
-    /* running approximation for two iterations */
-    for (i = 0; i < 2; i++)
-    {
-      tempVal = (q15_t) (((q31_t) in * out) >> 15);
-      tempVal = 0x7FFF - tempVal;
-      /*      1.15 with exp 1 */
-      out = (q15_t) (((q31_t) out * tempVal) >> 14);
-    }
-
-    /* write output */
-    *dst = out;
-
-    /* return num of signbits of out = 1/in value */
-    return (signBits + 1);
-
-  }
-
-
-  /*
-   * @brief C custom defined intrinisic function for only M0 processors
-   */
-#if defined(ARM_MATH_CM0)
-
-  __STATIC_INLINE q31_t __SSAT(
-  q31_t x,
-  uint32_t y)
-  {
-    int32_t posMax, negMin;
-    uint32_t i;
-
-    posMax = 1;
-    for (i = 0; i < (y - 1); i++)
-    {
-      posMax = posMax * 2;
-    }
-
-    if(x > 0)
-    {
-      posMax = (posMax - 1);
-
-      if(x > posMax)
-      {
-        x = posMax;
-      }
-    }
-    else
-    {
-      negMin = -posMax;
-
-      if(x < negMin)
-      {
-        x = negMin;
-      }
-    }
-    return (x);
-
-
-  }
-
-#endif /* end of ARM_MATH_CM0 */
-
-
-
-  /*
-   * @brief C custom defined intrinsic function for M3 and M0 processors
-   */
-#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
-
-  /*
-   * @brief C custom defined QADD8 for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QADD8(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum;
-    q7_t r, s, t, u;
-
-    r = (q7_t) x;
-    s = (q7_t) y;
-
-    r = __SSAT((q31_t) (r + s), 8);
-    s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
-    t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
-    u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
-
-    sum =
-      (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
-      (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
-
-    return sum;
-
-  }
-
-  /*
-   * @brief C custom defined QSUB8 for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QSUB8(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum;
-    q31_t r, s, t, u;
-
-    r = (q7_t) x;
-    s = (q7_t) y;
-
-    r = __SSAT((r - s), 8);
-    s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
-    t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
-    u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
-
-    sum =
-      (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
-                                                                0x000000FF);
-
-    return sum;
-  }
-
-  /*
-   * @brief C custom defined QADD16 for M3 and M0 processors
-   */
-
-  /*
-   * @brief C custom defined QADD16 for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QADD16(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum;
-    q31_t r, s;
-
-    r = (short) x;
-    s = (short) y;
-
-    r = __SSAT(r + s, 16);
-    s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
-
-    sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
-    return sum;
-
-  }
-
-  /*
-   * @brief C custom defined SHADD16 for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SHADD16(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum;
-    q31_t r, s;
-
-    r = (short) x;
-    s = (short) y;
-
-    r = ((r >> 1) + (s >> 1));
-    s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
-
-    sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
-    return sum;
-
-  }
-
-  /*
-   * @brief C custom defined QSUB16 for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QSUB16(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum;
-    q31_t r, s;
-
-    r = (short) x;
-    s = (short) y;
-
-    r = __SSAT(r - s, 16);
-    s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
-
-    sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
-    return sum;
-  }
-
-  /*
-   * @brief C custom defined SHSUB16 for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SHSUB16(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t diff;
-    q31_t r, s;
-
-    r = (short) x;
-    s = (short) y;
-
-    r = ((r >> 1) - (s >> 1));
-    s = (((x >> 17) - (y >> 17)) << 16);
-
-    diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
-    return diff;
-  }
-
-  /*
-   * @brief C custom defined QASX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QASX(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum = 0;
-
-    sum =
-      ((sum +
-        clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
-      clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
-
-    return sum;
-  }
-
-  /*
-   * @brief C custom defined SHASX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SHASX(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum;
-    q31_t r, s;
-
-    r = (short) x;
-    s = (short) y;
-
-    r = ((r >> 1) - (y >> 17));
-    s = (((x >> 17) + (s >> 1)) << 16);
-
-    sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
-    return sum;
-  }
-
-
-  /*
-   * @brief C custom defined QSAX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QSAX(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum = 0;
-
-    sum =
-      ((sum +
-        clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
-      clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
-
-    return sum;
-  }
-
-  /*
-   * @brief C custom defined SHSAX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SHSAX(
-  q31_t x,
-  q31_t y)
-  {
-
-    q31_t sum;
-    q31_t r, s;
-
-    r = (short) x;
-    s = (short) y;
-
-    r = ((r >> 1) + (y >> 17));
-    s = (((x >> 17) - (s >> 1)) << 16);
-
-    sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
-    return sum;
-  }
-
-  /*
-   * @brief C custom defined SMUSDX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SMUSDX(
-  q31_t x,
-  q31_t y)
-  {
-
-    return ((q31_t) (((short) x * (short) (y >> 16)) -
-                     ((short) (x >> 16) * (short) y)));
-  }
-
-  /*
-   * @brief C custom defined SMUADX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SMUADX(
-  q31_t x,
-  q31_t y)
-  {
-
-    return ((q31_t) (((short) x * (short) (y >> 16)) +
-                     ((short) (x >> 16) * (short) y)));
-  }
-
-  /*
-   * @brief C custom defined QADD for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QADD(
-  q31_t x,
-  q31_t y)
-  {
-    return clip_q63_to_q31((q63_t) x + y);
-  }
-
-  /*
-   * @brief C custom defined QSUB for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __QSUB(
-  q31_t x,
-  q31_t y)
-  {
-    return clip_q63_to_q31((q63_t) x - y);
-  }
-
-  /*
-   * @brief C custom defined SMLAD for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SMLAD(
-  q31_t x,
-  q31_t y,
-  q31_t sum)
-  {
-
-    return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
-            ((short) x * (short) y));
-  }
-
-  /*
-   * @brief C custom defined SMLADX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SMLADX(
-  q31_t x,
-  q31_t y,
-  q31_t sum)
-  {
-
-    return (sum + ((short) (x >> 16) * (short) (y)) +
-            ((short) x * (short) (y >> 16)));
-  }
-
-  /*
-   * @brief C custom defined SMLSDX for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SMLSDX(
-  q31_t x,
-  q31_t y,
-  q31_t sum)
-  {
-
-    return (sum - ((short) (x >> 16) * (short) (y)) +
-            ((short) x * (short) (y >> 16)));
-  }
-
-  /*
-   * @brief C custom defined SMLALD for M3 and M0 processors
-   */
-  __STATIC_INLINE q63_t __SMLALD(
-  q31_t x,
-  q31_t y,
-  q63_t sum)
-  {
-
-    return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
-            ((short) x * (short) y));
-  }
-
-  /*
-   * @brief C custom defined SMLALDX for M3 and M0 processors
-   */
-  __STATIC_INLINE q63_t __SMLALDX(
-  q31_t x,
-  q31_t y,
-  q63_t sum)
-  {
-
-    return (sum + ((short) (x >> 16) * (short) y)) +
-      ((short) x * (short) (y >> 16));
-  }
-
-  /*
-   * @brief C custom defined SMUAD for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SMUAD(
-  q31_t x,
-  q31_t y)
-  {
-
-    return (((x >> 16) * (y >> 16)) +
-            (((x << 16) >> 16) * ((y << 16) >> 16)));
-  }
-
-  /*
-   * @brief C custom defined SMUSD for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SMUSD(
-  q31_t x,
-  q31_t y)
-  {
-
-    return (-((x >> 16) * (y >> 16)) +
-            (((x << 16) >> 16) * ((y << 16) >> 16)));
-  }
-
-
-  /*
-   * @brief C custom defined SXTB16 for M3 and M0 processors
-   */
-  __STATIC_INLINE q31_t __SXTB16(
-  q31_t x)
-  {
-
-    return ((((x << 24) >> 24) & 0x0000FFFF) |
-            (((x << 8) >> 8) & 0xFFFF0000));
-  }
-
-
-#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */
-
-
-  /**
-   * @brief Instance structure for the Q7 FIR filter.
-   */
-  typedef struct
-  {
-    uint16_t numTaps;        /**< number of filter coefficients in the filter. */
-    q7_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    q7_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
-  } arm_fir_instance_q7;
-
-  /**
-   * @brief Instance structure for the Q15 FIR filter.
-   */
-  typedef struct
-  {
-    uint16_t numTaps;         /**< number of filter coefficients in the filter. */
-    q15_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    q15_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
-  } arm_fir_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 FIR filter.
-   */
-  typedef struct
-  {
-    uint16_t numTaps;         /**< number of filter coefficients in the filter. */
-    q31_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    q31_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps. */
-  } arm_fir_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point FIR filter.
-   */
-  typedef struct
-  {
-    uint16_t numTaps;     /**< number of filter coefficients in the filter. */
-    float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
-  } arm_fir_instance_f32;
-
-
-  /**
-   * @brief Processing function for the Q7 FIR filter.
-   * @param[in] *S points to an instance of the Q7 FIR filter structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-  void arm_fir_q7(
-  const arm_fir_instance_q7 * S,
-  q7_t * pSrc,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Initialization function for the Q7 FIR filter.
-   * @param[in,out] *S points to an instance of the Q7 FIR structure.
-   * @param[in] numTaps  Number of filter coefficients in the filter.
-   * @param[in] *pCoeffs points to the filter coefficients.
-   * @param[in] *pState points to the state buffer.
-   * @param[in] blockSize number of samples that are processed.
-   * @return none
-   */
-  void arm_fir_init_q7(
-  arm_fir_instance_q7 * S,
-  uint16_t numTaps,
-  q7_t * pCoeffs,
-  q7_t * pState,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Processing function for the Q15 FIR filter.
-   * @param[in] *S points to an instance of the Q15 FIR structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-  void arm_fir_q15(
-  const arm_fir_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
-   * @param[in] *S points to an instance of the Q15 FIR filter structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-  void arm_fir_fast_q15(
-  const arm_fir_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the Q15 FIR filter.
-   * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
-   * @param[in] numTaps  Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
-   * @param[in] *pCoeffs points to the filter coefficients.
-   * @param[in] *pState points to the state buffer.
-   * @param[in] blockSize number of samples that are processed at a time.
-   * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
-   * <code>numTaps</code> is not a supported value.
-   */
-
-  arm_status arm_fir_init_q15(
-  arm_fir_instance_q15 * S,
-  uint16_t numTaps,
-  q15_t * pCoeffs,
-  q15_t * pState,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q31 FIR filter.
-   * @param[in] *S points to an instance of the Q31 FIR filter structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-  void arm_fir_q31(
-  const arm_fir_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
-   * @param[in] *S points to an instance of the Q31 FIR structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-  void arm_fir_fast_q31(
-  const arm_fir_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the Q31 FIR filter.
-   * @param[in,out] *S points to an instance of the Q31 FIR structure.
-   * @param[in]        numTaps  Number of filter coefficients in the filter.
-   * @param[in]        *pCoeffs points to the filter coefficients.
-   * @param[in]        *pState points to the state buffer.
-   * @param[in]        blockSize number of samples that are processed at a time.
-   * @return           none.
-   */
-  void arm_fir_init_q31(
-  arm_fir_instance_q31 * S,
-  uint16_t numTaps,
-  q31_t * pCoeffs,
-  q31_t * pState,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the floating-point FIR filter.
-   * @param[in] *S points to an instance of the floating-point FIR structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-  void arm_fir_f32(
-  const arm_fir_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the floating-point FIR filter.
-   * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
-   * @param[in]        numTaps  Number of filter coefficients in the filter.
-   * @param[in]        *pCoeffs points to the filter coefficients.
-   * @param[in]        *pState points to the state buffer.
-   * @param[in]        blockSize number of samples that are processed at a time.
-   * @return           none.
-   */
-  void arm_fir_init_f32(
-  arm_fir_instance_f32 * S,
-  uint16_t numTaps,
-  float32_t * pCoeffs,
-  float32_t * pState,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Instance structure for the Q15 Biquad cascade filter.
-   */
-  typedef struct
-  {
-    int8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
-    q15_t *pState;            /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
-    q15_t *pCoeffs;           /**< Points to the array of coefficients.  The array is of length 5*numStages. */
-    int8_t postShift;         /**< Additional shift, in bits, applied to each output sample. */
-
-  } arm_biquad_casd_df1_inst_q15;
-
-
-  /**
-   * @brief Instance structure for the Q31 Biquad cascade filter.
-   */
-  typedef struct
-  {
-    uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
-    q31_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
-    q31_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */
-    uint8_t postShift;       /**< Additional shift, in bits, applied to each output sample. */
-
-  } arm_biquad_casd_df1_inst_q31;
-
-  /**
-   * @brief Instance structure for the floating-point Biquad cascade filter.
-   */
-  typedef struct
-  {
-    uint32_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
-    float32_t *pState;          /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
-    float32_t *pCoeffs;         /**< Points to the array of coefficients.  The array is of length 5*numStages. */
-
-
-  } arm_biquad_casd_df1_inst_f32;
-
-
-
-  /**
-   * @brief Processing function for the Q15 Biquad cascade filter.
-   * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
-   * @param[in]  *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in]  blockSize number of samples to process.
-   * @return     none.
-   */
-
-  void arm_biquad_cascade_df1_q15(
-  const arm_biquad_casd_df1_inst_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the Q15 Biquad cascade filter.
-   * @param[in,out] *S           points to an instance of the Q15 Biquad cascade structure.
-   * @param[in]     numStages    number of 2nd order stages in the filter.
-   * @param[in]     *pCoeffs     points to the filter coefficients.
-   * @param[in]     *pState      points to the state buffer.
-   * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format
-   * @return        none
-   */
-
-  void arm_biquad_cascade_df1_init_q15(
-  arm_biquad_casd_df1_inst_q15 * S,
-  uint8_t numStages,
-  q15_t * pCoeffs,
-  q15_t * pState,
-  int8_t postShift);
-
-
-  /**
-   * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
-   * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
-   * @param[in]  *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in]  blockSize number of samples to process.
-   * @return     none.
-   */
-
-  void arm_biquad_cascade_df1_fast_q15(
-  const arm_biquad_casd_df1_inst_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Processing function for the Q31 Biquad cascade filter
-   * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure.
-   * @param[in]  *pSrc      points to the block of input data.
-   * @param[out] *pDst      points to the block of output data.
-   * @param[in]  blockSize  number of samples to process.
-   * @return     none.
-   */
-
-  void arm_biquad_cascade_df1_q31(
-  const arm_biquad_casd_df1_inst_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
-   * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure.
-   * @param[in]  *pSrc      points to the block of input data.
-   * @param[out] *pDst      points to the block of output data.
-   * @param[in]  blockSize  number of samples to process.
-   * @return     none.
-   */
-
-  void arm_biquad_cascade_df1_fast_q31(
-  const arm_biquad_casd_df1_inst_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the Q31 Biquad cascade filter.
-   * @param[in,out] *S           points to an instance of the Q31 Biquad cascade structure.
-   * @param[in]     numStages      number of 2nd order stages in the filter.
-   * @param[in]     *pCoeffs     points to the filter coefficients.
-   * @param[in]     *pState      points to the state buffer.
-   * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format
-   * @return        none
-   */
-
-  void arm_biquad_cascade_df1_init_q31(
-  arm_biquad_casd_df1_inst_q31 * S,
-  uint8_t numStages,
-  q31_t * pCoeffs,
-  q31_t * pState,
-  int8_t postShift);
-
-  /**
-   * @brief Processing function for the floating-point Biquad cascade filter.
-   * @param[in]  *S         points to an instance of the floating-point Biquad cascade structure.
-   * @param[in]  *pSrc      points to the block of input data.
-   * @param[out] *pDst      points to the block of output data.
-   * @param[in]  blockSize  number of samples to process.
-   * @return     none.
-   */
-
-  void arm_biquad_cascade_df1_f32(
-  const arm_biquad_casd_df1_inst_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the floating-point Biquad cascade filter.
-   * @param[in,out] *S           points to an instance of the floating-point Biquad cascade structure.
-   * @param[in]     numStages    number of 2nd order stages in the filter.
-   * @param[in]     *pCoeffs     points to the filter coefficients.
-   * @param[in]     *pState      points to the state buffer.
-   * @return        none
-   */
-
-  void arm_biquad_cascade_df1_init_f32(
-  arm_biquad_casd_df1_inst_f32 * S,
-  uint8_t numStages,
-  float32_t * pCoeffs,
-  float32_t * pState);
-
-
-  /**
-   * @brief Instance structure for the floating-point matrix structure.
-   */
-
-  typedef struct
-  {
-    uint16_t numRows;     /**< number of rows of the matrix.     */
-    uint16_t numCols;     /**< number of columns of the matrix.  */
-    float32_t *pData;     /**< points to the data of the matrix. */
-  } arm_matrix_instance_f32;
-
-  /**
-   * @brief Instance structure for the Q15 matrix structure.
-   */
-
-  typedef struct
-  {
-    uint16_t numRows;     /**< number of rows of the matrix.     */
-    uint16_t numCols;     /**< number of columns of the matrix.  */
-    q15_t *pData;         /**< points to the data of the matrix. */
-
-  } arm_matrix_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 matrix structure.
-   */
-
-  typedef struct
-  {
-    uint16_t numRows;     /**< number of rows of the matrix.     */
-    uint16_t numCols;     /**< number of columns of the matrix.  */
-    q31_t *pData;         /**< points to the data of the matrix. */
-
-  } arm_matrix_instance_q31;
-
-
-
-  /**
-   * @brief Floating-point matrix addition.
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_add_f32(
-  const arm_matrix_instance_f32 * pSrcA,
-  const arm_matrix_instance_f32 * pSrcB,
-  arm_matrix_instance_f32 * pDst);
-
-  /**
-   * @brief Q15 matrix addition.
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_add_q15(
-  const arm_matrix_instance_q15 * pSrcA,
-  const arm_matrix_instance_q15 * pSrcB,
-  arm_matrix_instance_q15 * pDst);
-
-  /**
-   * @brief Q31 matrix addition.
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_add_q31(
-  const arm_matrix_instance_q31 * pSrcA,
-  const arm_matrix_instance_q31 * pSrcB,
-  arm_matrix_instance_q31 * pDst);
-
-
-  /**
-   * @brief Floating-point matrix transpose.
-   * @param[in]  *pSrc points to the input matrix
-   * @param[out] *pDst points to the output matrix
-   * @return   The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
-   * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_trans_f32(
-  const arm_matrix_instance_f32 * pSrc,
-  arm_matrix_instance_f32 * pDst);
-
-
-  /**
-   * @brief Q15 matrix transpose.
-   * @param[in]  *pSrc points to the input matrix
-   * @param[out] *pDst points to the output matrix
-   * @return   The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
-   * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_trans_q15(
-  const arm_matrix_instance_q15 * pSrc,
-  arm_matrix_instance_q15 * pDst);
-
-  /**
-   * @brief Q31 matrix transpose.
-   * @param[in]  *pSrc points to the input matrix
-   * @param[out] *pDst points to the output matrix
-   * @return   The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
-   * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_trans_q31(
-  const arm_matrix_instance_q31 * pSrc,
-  arm_matrix_instance_q31 * pDst);
-
-
-  /**
-   * @brief Floating-point matrix multiplication
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_mult_f32(
-  const arm_matrix_instance_f32 * pSrcA,
-  const arm_matrix_instance_f32 * pSrcB,
-  arm_matrix_instance_f32 * pDst);
-
-  /**
-   * @brief Q15 matrix multiplication
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_mult_q15(
-  const arm_matrix_instance_q15 * pSrcA,
-  const arm_matrix_instance_q15 * pSrcB,
-  arm_matrix_instance_q15 * pDst,
-  q15_t * pState);
-
-  /**
-   * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
-   * @param[in]       *pSrcA  points to the first input matrix structure
-   * @param[in]       *pSrcB  points to the second input matrix structure
-   * @param[out]      *pDst   points to output matrix structure
-   * @param[in]                  *pState points to the array for storing intermediate results  
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_mult_fast_q15(
-  const arm_matrix_instance_q15 * pSrcA,
-  const arm_matrix_instance_q15 * pSrcB,
-  arm_matrix_instance_q15 * pDst,
-  q15_t * pState);
-
-  /**
-   * @brief Q31 matrix multiplication
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_mult_q31(
-  const arm_matrix_instance_q31 * pSrcA,
-  const arm_matrix_instance_q31 * pSrcB,
-  arm_matrix_instance_q31 * pDst);
-
-  /**
-   * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_mult_fast_q31(
-  const arm_matrix_instance_q31 * pSrcA,
-  const arm_matrix_instance_q31 * pSrcB,
-  arm_matrix_instance_q31 * pDst);
-
-
-  /**
-   * @brief Floating-point matrix subtraction
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_sub_f32(
-  const arm_matrix_instance_f32 * pSrcA,
-  const arm_matrix_instance_f32 * pSrcB,
-  arm_matrix_instance_f32 * pDst);
-
-  /**
-   * @brief Q15 matrix subtraction
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_sub_q15(
-  const arm_matrix_instance_q15 * pSrcA,
-  const arm_matrix_instance_q15 * pSrcB,
-  arm_matrix_instance_q15 * pDst);
-
-  /**
-   * @brief Q31 matrix subtraction
-   * @param[in]       *pSrcA points to the first input matrix structure
-   * @param[in]       *pSrcB points to the second input matrix structure
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_sub_q31(
-  const arm_matrix_instance_q31 * pSrcA,
-  const arm_matrix_instance_q31 * pSrcB,
-  arm_matrix_instance_q31 * pDst);
-
-  /**
-   * @brief Floating-point matrix scaling.
-   * @param[in]  *pSrc points to the input matrix
-   * @param[in]  scale scale factor
-   * @param[out] *pDst points to the output matrix
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_scale_f32(
-  const arm_matrix_instance_f32 * pSrc,
-  float32_t scale,
-  arm_matrix_instance_f32 * pDst);
-
-  /**
-   * @brief Q15 matrix scaling.
-   * @param[in]       *pSrc points to input matrix
-   * @param[in]       scaleFract fractional portion of the scale factor
-   * @param[in]       shift number of bits to shift the result by
-   * @param[out]      *pDst points to output matrix
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_scale_q15(
-  const arm_matrix_instance_q15 * pSrc,
-  q15_t scaleFract,
-  int32_t shift,
-  arm_matrix_instance_q15 * pDst);
-
-  /**
-   * @brief Q31 matrix scaling.
-   * @param[in]       *pSrc points to input matrix
-   * @param[in]       scaleFract fractional portion of the scale factor
-   * @param[in]       shift number of bits to shift the result by
-   * @param[out]      *pDst points to output matrix structure
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   */
-
-  arm_status arm_mat_scale_q31(
-  const arm_matrix_instance_q31 * pSrc,
-  q31_t scaleFract,
-  int32_t shift,
-  arm_matrix_instance_q31 * pDst);
-
-
-  /**
-   * @brief  Q31 matrix initialization.
-   * @param[in,out] *S             points to an instance of the floating-point matrix structure.
-   * @param[in]     nRows          number of rows in the matrix.
-   * @param[in]     nColumns       number of columns in the matrix.
-   * @param[in]     *pData            points to the matrix data array.
-   * @return        none
-   */
-
-  void arm_mat_init_q31(
-  arm_matrix_instance_q31 * S,
-  uint16_t nRows,
-  uint16_t nColumns,
-  q31_t * pData);
-
-  /**
-   * @brief  Q15 matrix initialization.
-   * @param[in,out] *S             points to an instance of the floating-point matrix structure.
-   * @param[in]     nRows          number of rows in the matrix.
-   * @param[in]     nColumns       number of columns in the matrix.
-   * @param[in]     *pData            points to the matrix data array.
-   * @return        none
-   */
-
-  void arm_mat_init_q15(
-  arm_matrix_instance_q15 * S,
-  uint16_t nRows,
-  uint16_t nColumns,
-  q15_t * pData);
-
-  /**
-   * @brief  Floating-point matrix initialization.
-   * @param[in,out] *S             points to an instance of the floating-point matrix structure.
-   * @param[in]     nRows          number of rows in the matrix.
-   * @param[in]     nColumns       number of columns in the matrix.
-   * @param[in]     *pData            points to the matrix data array.
-   * @return        none
-   */
-
-  void arm_mat_init_f32(
-  arm_matrix_instance_f32 * S,
-  uint16_t nRows,
-  uint16_t nColumns,
-  float32_t * pData);
-
-
-
-  /**
-   * @brief Instance structure for the Q15 PID Control.
-   */
-  typedef struct
-  {
-    q15_t A0;    /**< The derived gain, A0 = Kp + Ki + Kd . */
-#ifdef ARM_MATH_CM0
-    q15_t A1;
-    q15_t A2;
-#else
-    q31_t A1;           /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
-#endif
-    q15_t state[3];       /**< The state array of length 3. */
-    q15_t Kp;           /**< The proportional gain. */
-    q15_t Ki;           /**< The integral gain. */
-    q15_t Kd;           /**< The derivative gain. */
-  } arm_pid_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 PID Control.
-   */
-  typedef struct
-  {
-    q31_t A0;            /**< The derived gain, A0 = Kp + Ki + Kd . */
-    q31_t A1;            /**< The derived gain, A1 = -Kp - 2Kd. */
-    q31_t A2;            /**< The derived gain, A2 = Kd . */
-    q31_t state[3];      /**< The state array of length 3. */
-    q31_t Kp;            /**< The proportional gain. */
-    q31_t Ki;            /**< The integral gain. */
-    q31_t Kd;            /**< The derivative gain. */
-
-  } arm_pid_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point PID Control.
-   */
-  typedef struct
-  {
-    float32_t A0;          /**< The derived gain, A0 = Kp + Ki + Kd . */
-    float32_t A1;          /**< The derived gain, A1 = -Kp - 2Kd. */
-    float32_t A2;          /**< The derived gain, A2 = Kd . */
-    float32_t state[3];    /**< The state array of length 3. */
-    float32_t Kp;               /**< The proportional gain. */
-    float32_t Ki;               /**< The integral gain. */
-    float32_t Kd;               /**< The derivative gain. */
-  } arm_pid_instance_f32;
-
-
-
-  /**
-   * @brief  Initialization function for the floating-point PID Control.
-   * @param[in,out] *S      points to an instance of the PID structure.
-   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
-   * @return none.
-   */
-  void arm_pid_init_f32(
-  arm_pid_instance_f32 * S,
-  int32_t resetStateFlag);
-
-  /**
-   * @brief  Reset function for the floating-point PID Control.
-   * @param[in,out] *S is an instance of the floating-point PID Control structure
-   * @return none
-   */
-  void arm_pid_reset_f32(
-  arm_pid_instance_f32 * S);
-
-
-  /**
-   * @brief  Initialization function for the Q31 PID Control.
-   * @param[in,out] *S points to an instance of the Q15 PID structure.
-   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
-   * @return none.
-   */
-  void arm_pid_init_q31(
-  arm_pid_instance_q31 * S,
-  int32_t resetStateFlag);
-
-
-  /**
-   * @brief  Reset function for the Q31 PID Control.
-   * @param[in,out] *S points to an instance of the Q31 PID Control structure
-   * @return none
-   */
-
-  void arm_pid_reset_q31(
-  arm_pid_instance_q31 * S);
-
-  /**
-   * @brief  Initialization function for the Q15 PID Control.
-   * @param[in,out] *S points to an instance of the Q15 PID structure.
-   * @param[in] resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
-   * @return none.
-   */
-  void arm_pid_init_q15(
-  arm_pid_instance_q15 * S,
-  int32_t resetStateFlag);
-
-  /**
-   * @brief  Reset function for the Q15 PID Control.
-   * @param[in,out] *S points to an instance of the q15 PID Control structure
-   * @return none
-   */
-  void arm_pid_reset_q15(
-  arm_pid_instance_q15 * S);
-
-
-  /**
-   * @brief Instance structure for the floating-point Linear Interpolate function.
-   */
-  typedef struct
-  {
-    uint32_t nValues;           /**< nValues */
-    float32_t x1;               /**< x1 */
-    float32_t xSpacing;         /**< xSpacing */
-    float32_t *pYData;          /**< pointer to the table of Y values */
-  } arm_linear_interp_instance_f32;
-
-  /**
-   * @brief Instance structure for the floating-point bilinear interpolation function.
-   */
-
-  typedef struct
-  {
-    uint16_t numRows;   /**< number of rows in the data table. */
-    uint16_t numCols;   /**< number of columns in the data table. */
-    float32_t *pData;   /**< points to the data table. */
-  } arm_bilinear_interp_instance_f32;
-
-   /**
-   * @brief Instance structure for the Q31 bilinear interpolation function.
-   */
-
-  typedef struct
-  {
-    uint16_t numRows;   /**< number of rows in the data table. */
-    uint16_t numCols;   /**< number of columns in the data table. */
-    q31_t *pData;       /**< points to the data table. */
-  } arm_bilinear_interp_instance_q31;
-
-   /**
-   * @brief Instance structure for the Q15 bilinear interpolation function.
-   */
-
-  typedef struct
-  {
-    uint16_t numRows;   /**< number of rows in the data table. */
-    uint16_t numCols;   /**< number of columns in the data table. */
-    q15_t *pData;       /**< points to the data table. */
-  } arm_bilinear_interp_instance_q15;
-
-   /**
-   * @brief Instance structure for the Q15 bilinear interpolation function.
-   */
-
-  typedef struct
-  {
-    uint16_t numRows;   /**< number of rows in the data table. */
-    uint16_t numCols;   /**< number of columns in the data table. */
-    q7_t *pData;                /**< points to the data table. */
-  } arm_bilinear_interp_instance_q7;
-
-
-  /**
-   * @brief Q7 vector multiplication.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst  points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_mult_q7(
-  q7_t * pSrcA,
-  q7_t * pSrcB,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q15 vector multiplication.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst  points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_mult_q15(
-  q15_t * pSrcA,
-  q15_t * pSrcB,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q31 vector multiplication.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_mult_q31(
-  q31_t * pSrcA,
-  q31_t * pSrcB,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Floating-point vector multiplication.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_mult_f32(
-  float32_t * pSrcA,
-  float32_t * pSrcB,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Instance structure for the Q15 CFFT/CIFFT function.
-   */
-
-  typedef struct
-  {
-    uint16_t fftLen;                 /**< length of the FFT. */
-    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
-    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
-    q15_t *pTwiddle;                 /**< points to the twiddle factor table. */
-    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
-    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
-  } arm_cfft_radix4_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 CFFT/CIFFT function.
-   */
-
-  typedef struct
-  {
-    uint16_t fftLen;                 /**< length of the FFT. */
-    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
-    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
-    q31_t *pTwiddle;                 /**< points to the twiddle factor table. */
-    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
-    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
-  } arm_cfft_radix4_instance_q31;
-
-
-  /**
-   * @brief Instance structure for the floating-point CFFT/CIFFT function.
-   */
-
-  typedef struct
-  {
-    uint16_t fftLen;                   /**< length of the FFT. */
-    uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
-    uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
-    float32_t *pTwiddle;               /**< points to the twiddle factor table. */
-    uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
-    uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
-    float32_t onebyfftLen;                 /**< value of 1/fftLen. */
-  } arm_cfft_radix4_instance_f32;
-
-
-  /**
-   * @brief Instance structure for the Q15 CFFT/CIFFT function.
-   */
-
-  typedef struct
-  {
-    uint16_t fftLen;                 /**< length of the FFT. */
-    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
-    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
-    q15_t *pTwiddle;                     /**< points to the Sin twiddle factor table. */
-    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
-    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
-  } arm_cfft_radix2_instance_q15;
-
-  /**
-   * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
-   */
-
-  typedef struct
-  {
-    uint16_t fftLen;                 /**< length of the FFT. */
-    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
-    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
-    q31_t *pTwiddle;                     /**< points to the Twiddle factor table. */
-    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
-    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
-  } arm_cfft_radix2_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point CFFT/CIFFT function.
-   */
-
-  typedef struct
-  {
-    uint16_t fftLen;                   /**< length of the FFT. */
-    uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
-    uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
-    float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
-    uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
-    uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
-    float32_t onebyfftLen;                 /**< value of 1/fftLen. */
-  } arm_cfft_radix2_instance_f32;
-
-
-  /**
-   * @brief Processing function for the Q15 CFFT/CIFFT.
-   * @param[in]      *S    points to an instance of the Q15 CFFT/CIFFT structure.
-   * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
-   * @return none.
-   */
-
-  void arm_cfft_radix4_q15(
-  const arm_cfft_radix4_instance_q15 * S,
-  q15_t * pSrc);
-
-  /**
-   * @brief Processing function for the Q15 CFFT/CIFFT.
-   * @param[in]      *S    points to an instance of the Q15 CFFT/CIFFT structure.
-   * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
-   * @return none.
-   */
-
-  void arm_cfft_radix2_q15(
-  const arm_cfft_radix2_instance_q15 * S,
-  q15_t * pSrc);
-
-  /**
-   * @brief Initialization function for the Q15 CFFT/CIFFT.
-   * @param[in,out] *S             points to an instance of the Q15 CFFT/CIFFT structure.
-   * @param[in]     fftLen         length of the FFT.
-   * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
-   * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return        arm_status     function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
-   */
-
-  arm_status arm_cfft_radix4_init_q15(
-  arm_cfft_radix4_instance_q15 * S,
-  uint16_t fftLen,
-  uint8_t ifftFlag,
-  uint8_t bitReverseFlag);
-
-  /**
-   * @brief Initialization function for the Q15 CFFT/CIFFT.
-   * @param[in,out] *S             points to an instance of the Q15 CFFT/CIFFT structure.
-   * @param[in]     fftLen         length of the FFT.
-   * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
-   * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return        arm_status     function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
-   */
-
-  arm_status arm_cfft_radix2_init_q15(
-  arm_cfft_radix2_instance_q15 * S,
-  uint16_t fftLen,
-  uint8_t ifftFlag,
-  uint8_t bitReverseFlag);
-
-  /**
-   * @brief Processing function for the Q31 CFFT/CIFFT.
-   * @param[in]      *S    points to an instance of the Q31 CFFT/CIFFT structure.
-   * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
-   * @return none.
-   */
-
-  void arm_cfft_radix4_q31(
-  const arm_cfft_radix4_instance_q31 * S,
-  q31_t * pSrc);
-
-  /**
-   * @brief  Initialization function for the Q31 CFFT/CIFFT.
-   * @param[in,out] *S             points to an instance of the Q31 CFFT/CIFFT structure.
-   * @param[in]     fftLen         length of the FFT.
-   * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
-   * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return        arm_status     function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
-   */
-
-  arm_status arm_cfft_radix4_init_q31(
-  arm_cfft_radix4_instance_q31 * S,
-  uint16_t fftLen,
-  uint8_t ifftFlag,
-  uint8_t bitReverseFlag);
-
-  /**
-   * @brief Processing function for the Radix-2 Q31 CFFT/CIFFT.
-   * @param[in]      *S    points to an instance of the Radix-2 Q31 CFFT/CIFFT structure.
-   * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
-   * @return none.
-   */
-
-  void arm_cfft_radix2_q31(
-  const arm_cfft_radix2_instance_q31 * S,
-  q31_t * pSrc);
-
-  /**
-   * @brief  Initialization function for the Radix-2 Q31 CFFT/CIFFT.
-   * @param[in,out] *S             points to an instance of the Radix-2 Q31 CFFT/CIFFT structure.
-   * @param[in]     fftLen         length of the FFT.
-   * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
-   * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return        arm_status     function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
-   */
-
-  arm_status arm_cfft_radix2_init_q31(
-  arm_cfft_radix2_instance_q31 * S,
-  uint16_t fftLen,
-  uint8_t ifftFlag,
-  uint8_t bitReverseFlag);
-
-
-
-  /**
-   * @brief Processing function for the floating-point CFFT/CIFFT.
-   * @param[in]      *S    points to an instance of the floating-point CFFT/CIFFT structure.
-   * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
-   * @return none.
-   */
-
-  void arm_cfft_radix2_f32(
-  const arm_cfft_radix2_instance_f32 * S,
-  float32_t * pSrc);
-
-  /**
-   * @brief  Initialization function for the floating-point CFFT/CIFFT.
-   * @param[in,out] *S             points to an instance of the floating-point CFFT/CIFFT structure.
-   * @param[in]     fftLen         length of the FFT.
-   * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
-   * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
-   */
-
-  arm_status arm_cfft_radix2_init_f32(
-  arm_cfft_radix2_instance_f32 * S,
-  uint16_t fftLen,
-  uint8_t ifftFlag,
-  uint8_t bitReverseFlag);
-
-  /**
-   * @brief Processing function for the floating-point CFFT/CIFFT.
-   * @param[in]      *S    points to an instance of the floating-point CFFT/CIFFT structure.
-   * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
-   * @return none.
-   */
-
-  void arm_cfft_radix4_f32(
-  const arm_cfft_radix4_instance_f32 * S,
-  float32_t * pSrc);
-
-  /**
-   * @brief  Initialization function for the floating-point CFFT/CIFFT.
-   * @param[in,out] *S             points to an instance of the floating-point CFFT/CIFFT structure.
-   * @param[in]     fftLen         length of the FFT.
-   * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
-   * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
-   */
-
-  arm_status arm_cfft_radix4_init_f32(
-  arm_cfft_radix4_instance_f32 * S,
-  uint16_t fftLen,
-  uint8_t ifftFlag,
-  uint8_t bitReverseFlag);
-
-
-
-  /*----------------------------------------------------------------------
-   *           Internal functions prototypes FFT function
-   ----------------------------------------------------------------------*/
-
-  /**
-   * @brief  Core function for the floating-point CFFT butterfly process.
-   * @param[in, out] *pSrc            points to the in-place buffer of floating-point data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef           points to the twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @return none.
-   */
-
-  void arm_radix4_butterfly_f32(
-  float32_t * pSrc,
-  uint16_t fftLen,
-  float32_t * pCoef,
-  uint16_t twidCoefModifier);
-
-  /**
-   * @brief  Core function for the floating-point CIFFT butterfly process.
-   * @param[in, out] *pSrc            points to the in-place buffer of floating-point data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef           points to twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @param[in]      onebyfftLen      value of 1/fftLen.
-   * @return none.
-   */
-
-  void arm_radix4_butterfly_inverse_f32(
-  float32_t * pSrc,
-  uint16_t fftLen,
-  float32_t * pCoef,
-  uint16_t twidCoefModifier,
-  float32_t onebyfftLen);
-
-  /**
-   * @brief  In-place bit reversal function.
-   * @param[in, out] *pSrc        points to the in-place buffer of floating-point data type.
-   * @param[in]      fftSize      length of the FFT.
-   * @param[in]      bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table.
-   * @param[in]      *pBitRevTab  points to the bit reversal table.
-   * @return none.
-   */
-
-  void arm_bitreversal_f32(
-  float32_t * pSrc,
-  uint16_t fftSize,
-  uint16_t bitRevFactor,
-  uint16_t * pBitRevTab);
-
-  /**
-   * @brief  Core function for the Q31 CFFT butterfly process.
-   * @param[in, out] *pSrc            points to the in-place buffer of Q31 data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef           points to Twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @return none.
-   */
-
-  void arm_radix4_butterfly_q31(
-  q31_t * pSrc,
-  uint32_t fftLen,
-  q31_t * pCoef,
-  uint32_t twidCoefModifier);
-
-  /**
-   * @brief  Core function for the f32 FFT butterfly process.
-   * @param[in, out] *pSrc            points to the in-place buffer of f32 data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef              points to Twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @return none.
-   */
-
-  void arm_radix2_butterfly_f32(
-  float32_t * pSrc,
-  uint32_t fftLen,
-  float32_t * pCoef,
-  uint16_t twidCoefModifier);
-
-        /**  
-        * @brief  Core function for the Radix-2 Q31 CFFT butterfly process. 
-        * @param[in, out] *pSrc            points to the in-place buffer of Q31 data type. 
-        * @param[in]      fftLen           length of the FFT. 
-        * @param[in]      *pCoef               points to Twiddle coefficient buffer.
-        * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. 
-        * @return none. 
-        */
-
-  void arm_radix2_butterfly_q31(
-  q31_t * pSrc,
-  uint32_t fftLen,
-  q31_t * pCoef,
-  uint16_t twidCoefModifier);
-
-        /**  
-        * @brief  Core function for the Radix-2 Q15 CFFT butterfly process. 
-        * @param[in, out] *pSrc            points to the in-place buffer of Q15 data type. 
-        * @param[in]      fftLen           length of the FFT. 
-        * @param[in]      *pCoef           points to Twiddle coefficient buffer.
-        * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. 
-        * @return none. 
-        */
-
-  void arm_radix2_butterfly_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  q15_t * pCoef,
-  uint16_t twidCoefModifier);
-
-        /**  
-        * @brief  Core function for the Radix-2 Q15 CFFT Inverse butterfly process. 
-        * @param[in, out] *pSrc            points to the in-place buffer of Q15 data type. 
-        * @param[in]      fftLen           length of the FFT. 
-        * @param[in]      *pCoef               points to Twiddle coefficient buffer.
-        * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. 
-        * @return none. 
-        */
-
-  void arm_radix2_butterfly_inverse_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  q15_t * pCoef,
-  uint16_t twidCoefModifier);
-
-        /**  
-        * @brief  Core function for the Radix-2 Q31 CFFT Inverse butterfly process. 
-        * @param[in, out] *pSrc            points to the in-place buffer of Q31 data type. 
-        * @param[in]      fftLen           length of the FFT. 
-        * @param[in]      *pCoef               points to Twiddle coefficient buffer.
-        * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. 
-        * @return none. 
-        */
-
-  void arm_radix2_butterfly_inverse_q31(
-  q31_t * pSrc,
-  uint32_t fftLen,
-  q31_t * pCoef,
-  uint16_t twidCoefModifier);
-
-  /**
-   * @brief  Core function for the f32 IFFT butterfly process.
-   * @param[in, out] *pSrc            points to the in-place buffer of f32 data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef              points to Twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @param[in]                 onebyfftLen      1/fftLenfth
-   * @return none.
-   */
-
-  void arm_radix2_butterfly_inverse_f32(
-  float32_t * pSrc,
-  uint32_t fftLen,
-  float32_t * pCoef,
-  uint16_t twidCoefModifier,
-  float32_t onebyfftLen);
-
-                                                                /**
-   * @brief  Core function for the Q31 CIFFT butterfly process.
-   * @param[in, out] *pSrc            points to the in-place buffer of Q31 data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef           points to twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @return none.
-   */
-
-  void arm_radix4_butterfly_inverse_q31(
-  q31_t * pSrc,
-  uint32_t fftLen,
-  q31_t * pCoef,
-  uint32_t twidCoefModifier);
-
-  /**
-   * @brief  In-place bit reversal function.
-   * @param[in, out] *pSrc        points to the in-place buffer of Q31 data type.
-   * @param[in]      fftLen       length of the FFT.
-   * @param[in]      bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
-   * @param[in]      *pBitRevTab  points to bit reversal table.
-   * @return none.
-   */
-
-  void arm_bitreversal_q31(
-  q31_t * pSrc,
-  uint32_t fftLen,
-  uint16_t bitRevFactor,
-  uint16_t * pBitRevTab);
-
-  /**
-   * @brief  Core function for the Q15 CFFT butterfly process.
-   * @param[in, out] *pSrc16          points to the in-place buffer of Q15 data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef16         points to twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @return none.
-   */
-
-  void arm_radix4_butterfly_q15(
-  q15_t * pSrc16,
-  uint32_t fftLen,
-  q15_t * pCoef16,
-  uint32_t twidCoefModifier);
-
-
-  /**
-   * @brief  Core function for the Q15 CIFFT butterfly process.
-   * @param[in, out] *pSrc16          points to the in-place buffer of Q15 data type.
-   * @param[in]      fftLen           length of the FFT.
-   * @param[in]      *pCoef16         points to twiddle coefficient buffer.
-   * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-   * @return none.
-   */
-
-  void arm_radix4_butterfly_inverse_q15(
-  q15_t * pSrc16,
-  uint32_t fftLen,
-  q15_t * pCoef16,
-  uint32_t twidCoefModifier);
-
-  /**
-   * @brief  In-place bit reversal function.
-   * @param[in, out] *pSrc        points to the in-place buffer of Q15 data type.
-   * @param[in]      fftLen       length of the FFT.
-   * @param[in]      bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
-   * @param[in]      *pBitRevTab  points to bit reversal table.
-   * @return none.
-   */
-
-  void arm_bitreversal_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  uint16_t bitRevFactor,
-  uint16_t * pBitRevTab);
-
-
-  /**
-   * @brief Instance structure for the Q15 RFFT/RIFFT function.
-   */
-
-  typedef struct
-  {
-    uint32_t fftLenReal;                      /**< length of the real FFT. */
-    uint32_t fftLenBy2;                       /**< length of the complex FFT. */
-    uint8_t ifftFlagR;                        /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
-    uint8_t bitReverseFlagR;                      /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
-    uint32_t twidCoefRModifier;               /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    q15_t *pTwiddleAReal;                     /**< points to the real twiddle factor table. */
-    q15_t *pTwiddleBReal;                     /**< points to the imag twiddle factor table. */
-    arm_cfft_radix4_instance_q15 *pCfft;          /**< points to the complex FFT instance. */
-  } arm_rfft_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 RFFT/RIFFT function.
-   */
-
-  typedef struct
-  {
-    uint32_t fftLenReal;                        /**< length of the real FFT. */
-    uint32_t fftLenBy2;                         /**< length of the complex FFT. */
-    uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
-    uint8_t bitReverseFlagR;                        /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
-    uint32_t twidCoefRModifier;                 /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    q31_t *pTwiddleAReal;                       /**< points to the real twiddle factor table. */
-    q31_t *pTwiddleBReal;                       /**< points to the imag twiddle factor table. */
-    arm_cfft_radix4_instance_q31 *pCfft;        /**< points to the complex FFT instance. */
-  } arm_rfft_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point RFFT/RIFFT function.
-   */
-
-  typedef struct
-  {
-    uint32_t fftLenReal;                        /**< length of the real FFT. */
-    uint16_t fftLenBy2;                         /**< length of the complex FFT. */
-    uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
-    uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
-    uint32_t twidCoefRModifier;                     /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
-    float32_t *pTwiddleAReal;                   /**< points to the real twiddle factor table. */
-    float32_t *pTwiddleBReal;                   /**< points to the imag twiddle factor table. */
-    arm_cfft_radix4_instance_f32 *pCfft;        /**< points to the complex FFT instance. */
-  } arm_rfft_instance_f32;
-
-  /**
-   * @brief Processing function for the Q15 RFFT/RIFFT.
-   * @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.
-   * @param[in]  *pSrc points to the input buffer.
-   * @param[out] *pDst points to the output buffer.
-   * @return none.
-   */
-
-  void arm_rfft_q15(
-  const arm_rfft_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst);
-
-  /**
-   * @brief  Initialization function for the Q15 RFFT/RIFFT.
-   * @param[in, out] *S             points to an instance of the Q15 RFFT/RIFFT structure.
-   * @param[in]      *S_CFFT        points to an instance of the Q15 CFFT/CIFFT structure.
-   * @param[in]      fftLenReal     length of the FFT.
-   * @param[in]      ifftFlagR      flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
-   * @param[in]      bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return           The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
-   */
-
-  arm_status arm_rfft_init_q15(
-  arm_rfft_instance_q15 * S,
-  arm_cfft_radix4_instance_q15 * S_CFFT,
-  uint32_t fftLenReal,
-  uint32_t ifftFlagR,
-  uint32_t bitReverseFlag);
-
-  /**
-   * @brief Processing function for the Q31 RFFT/RIFFT.
-   * @param[in]  *S    points to an instance of the Q31 RFFT/RIFFT structure.
-   * @param[in]  *pSrc points to the input buffer.
-   * @param[out] *pDst points to the output buffer.
-   * @return none.
-   */
-
-  void arm_rfft_q31(
-  const arm_rfft_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst);
-
-  /**
-   * @brief  Initialization function for the Q31 RFFT/RIFFT.
-   * @param[in, out] *S             points to an instance of the Q31 RFFT/RIFFT structure.
-   * @param[in, out] *S_CFFT        points to an instance of the Q31 CFFT/CIFFT structure.
-   * @param[in]      fftLenReal     length of the FFT.
-   * @param[in]      ifftFlagR      flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
-   * @param[in]      bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return           The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
-   */
-
-  arm_status arm_rfft_init_q31(
-  arm_rfft_instance_q31 * S,
-  arm_cfft_radix4_instance_q31 * S_CFFT,
-  uint32_t fftLenReal,
-  uint32_t ifftFlagR,
-  uint32_t bitReverseFlag);
-
-  /**
-   * @brief  Initialization function for the floating-point RFFT/RIFFT.
-   * @param[in,out] *S             points to an instance of the floating-point RFFT/RIFFT structure.
-   * @param[in,out] *S_CFFT        points to an instance of the floating-point CFFT/CIFFT structure.
-   * @param[in]     fftLenReal     length of the FFT.
-   * @param[in]     ifftFlagR      flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
-   * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-   * @return           The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
-   */
-
-  arm_status arm_rfft_init_f32(
-  arm_rfft_instance_f32 * S,
-  arm_cfft_radix4_instance_f32 * S_CFFT,
-  uint32_t fftLenReal,
-  uint32_t ifftFlagR,
-  uint32_t bitReverseFlag);
-
-  /**
-   * @brief Processing function for the floating-point RFFT/RIFFT.
-   * @param[in]  *S    points to an instance of the floating-point RFFT/RIFFT structure.
-   * @param[in]  *pSrc points to the input buffer.
-   * @param[out] *pDst points to the output buffer.
-   * @return none.
-   */
-
-  void arm_rfft_f32(
-  const arm_rfft_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst);
-
-  /**
-   * @brief Instance structure for the floating-point DCT4/IDCT4 function.
-   */
-
-  typedef struct
-  {
-    uint16_t N;                         /**< length of the DCT4. */
-    uint16_t Nby2;                      /**< half of the length of the DCT4. */
-    float32_t normalize;                /**< normalizing factor. */
-    float32_t *pTwiddle;                /**< points to the twiddle factor table. */
-    float32_t *pCosFactor;              /**< points to the cosFactor table. */
-    arm_rfft_instance_f32 *pRfft;        /**< points to the real FFT instance. */
-    arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
-  } arm_dct4_instance_f32;
-
-  /**
-   * @brief  Initialization function for the floating-point DCT4/IDCT4.
-   * @param[in,out] *S         points to an instance of floating-point DCT4/IDCT4 structure.
-   * @param[in]     *S_RFFT    points to an instance of floating-point RFFT/RIFFT structure.
-   * @param[in]     *S_CFFT    points to an instance of floating-point CFFT/CIFFT structure.
-   * @param[in]     N          length of the DCT4.
-   * @param[in]     Nby2       half of the length of the DCT4.
-   * @param[in]     normalize  normalizing factor.
-   * @return           arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
-   */
-
-  arm_status arm_dct4_init_f32(
-  arm_dct4_instance_f32 * S,
-  arm_rfft_instance_f32 * S_RFFT,
-  arm_cfft_radix4_instance_f32 * S_CFFT,
-  uint16_t N,
-  uint16_t Nby2,
-  float32_t normalize);
-
-  /**
-   * @brief Processing function for the floating-point DCT4/IDCT4.
-   * @param[in]       *S             points to an instance of the floating-point DCT4/IDCT4 structure.
-   * @param[in]       *pState        points to state buffer.
-   * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
-   * @return none.
-   */
-
-  void arm_dct4_f32(
-  const arm_dct4_instance_f32 * S,
-  float32_t * pState,
-  float32_t * pInlineBuffer);
-
-  /**
-   * @brief Instance structure for the Q31 DCT4/IDCT4 function.
-   */
-
-  typedef struct
-  {
-    uint16_t N;                         /**< length of the DCT4. */
-    uint16_t Nby2;                      /**< half of the length of the DCT4. */
-    q31_t normalize;                    /**< normalizing factor. */
-    q31_t *pTwiddle;                    /**< points to the twiddle factor table. */
-    q31_t *pCosFactor;                  /**< points to the cosFactor table. */
-    arm_rfft_instance_q31 *pRfft;        /**< points to the real FFT instance. */
-    arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
-  } arm_dct4_instance_q31;
-
-  /**
-   * @brief  Initialization function for the Q31 DCT4/IDCT4.
-   * @param[in,out] *S         points to an instance of Q31 DCT4/IDCT4 structure.
-   * @param[in]     *S_RFFT    points to an instance of Q31 RFFT/RIFFT structure
-   * @param[in]     *S_CFFT    points to an instance of Q31 CFFT/CIFFT structure
-   * @param[in]     N          length of the DCT4.
-   * @param[in]     Nby2       half of the length of the DCT4.
-   * @param[in]     normalize  normalizing factor.
-   * @return           arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
-   */
-
-  arm_status arm_dct4_init_q31(
-  arm_dct4_instance_q31 * S,
-  arm_rfft_instance_q31 * S_RFFT,
-  arm_cfft_radix4_instance_q31 * S_CFFT,
-  uint16_t N,
-  uint16_t Nby2,
-  q31_t normalize);
-
-  /**
-   * @brief Processing function for the Q31 DCT4/IDCT4.
-   * @param[in]       *S             points to an instance of the Q31 DCT4 structure.
-   * @param[in]       *pState        points to state buffer.
-   * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
-   * @return none.
-   */
-
-  void arm_dct4_q31(
-  const arm_dct4_instance_q31 * S,
-  q31_t * pState,
-  q31_t * pInlineBuffer);
-
-  /**
-   * @brief Instance structure for the Q15 DCT4/IDCT4 function.
-   */
-
-  typedef struct
-  {
-    uint16_t N;                         /**< length of the DCT4. */
-    uint16_t Nby2;                      /**< half of the length of the DCT4. */
-    q15_t normalize;                    /**< normalizing factor. */
-    q15_t *pTwiddle;                    /**< points to the twiddle factor table. */
-    q15_t *pCosFactor;                  /**< points to the cosFactor table. */
-    arm_rfft_instance_q15 *pRfft;        /**< points to the real FFT instance. */
-    arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
-  } arm_dct4_instance_q15;
-
-  /**
-   * @brief  Initialization function for the Q15 DCT4/IDCT4.
-   * @param[in,out] *S         points to an instance of Q15 DCT4/IDCT4 structure.
-   * @param[in]     *S_RFFT    points to an instance of Q15 RFFT/RIFFT structure.
-   * @param[in]     *S_CFFT    points to an instance of Q15 CFFT/CIFFT structure.
-   * @param[in]     N          length of the DCT4.
-   * @param[in]     Nby2       half of the length of the DCT4.
-   * @param[in]     normalize  normalizing factor.
-   * @return           arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
-   */
-
-  arm_status arm_dct4_init_q15(
-  arm_dct4_instance_q15 * S,
-  arm_rfft_instance_q15 * S_RFFT,
-  arm_cfft_radix4_instance_q15 * S_CFFT,
-  uint16_t N,
-  uint16_t Nby2,
-  q15_t normalize);
-
-  /**
-   * @brief Processing function for the Q15 DCT4/IDCT4.
-   * @param[in]       *S             points to an instance of the Q15 DCT4 structure.
-   * @param[in]       *pState        points to state buffer.
-   * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
-   * @return none.
-   */
-
-  void arm_dct4_q15(
-  const arm_dct4_instance_q15 * S,
-  q15_t * pState,
-  q15_t * pInlineBuffer);
-
-  /**
-   * @brief Floating-point vector addition.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_add_f32(
-  float32_t * pSrcA,
-  float32_t * pSrcB,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q7 vector addition.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_add_q7(
-  q7_t * pSrcA,
-  q7_t * pSrcB,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q15 vector addition.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_add_q15(
-  q15_t * pSrcA,
-  q15_t * pSrcB,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q31 vector addition.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_add_q31(
-  q31_t * pSrcA,
-  q31_t * pSrcB,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Floating-point vector subtraction.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_sub_f32(
-  float32_t * pSrcA,
-  float32_t * pSrcB,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q7 vector subtraction.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_sub_q7(
-  q7_t * pSrcA,
-  q7_t * pSrcB,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q15 vector subtraction.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_sub_q15(
-  q15_t * pSrcA,
-  q15_t * pSrcB,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q31 vector subtraction.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_sub_q31(
-  q31_t * pSrcA,
-  q31_t * pSrcB,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Multiplies a floating-point vector by a scalar.
-   * @param[in]       *pSrc points to the input vector
-   * @param[in]       scale scale factor to be applied
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_scale_f32(
-  float32_t * pSrc,
-  float32_t scale,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Multiplies a Q7 vector by a scalar.
-   * @param[in]       *pSrc points to the input vector
-   * @param[in]       scaleFract fractional portion of the scale value
-   * @param[in]       shift number of bits to shift the result by
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_scale_q7(
-  q7_t * pSrc,
-  q7_t scaleFract,
-  int8_t shift,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Multiplies a Q15 vector by a scalar.
-   * @param[in]       *pSrc points to the input vector
-   * @param[in]       scaleFract fractional portion of the scale value
-   * @param[in]       shift number of bits to shift the result by
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_scale_q15(
-  q15_t * pSrc,
-  q15_t scaleFract,
-  int8_t shift,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Multiplies a Q31 vector by a scalar.
-   * @param[in]       *pSrc points to the input vector
-   * @param[in]       scaleFract fractional portion of the scale value
-   * @param[in]       shift number of bits to shift the result by
-   * @param[out]      *pDst points to the output vector
-   * @param[in]       blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_scale_q31(
-  q31_t * pSrc,
-  q31_t scaleFract,
-  int8_t shift,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q7 vector absolute value.
-   * @param[in]       *pSrc points to the input buffer
-   * @param[out]      *pDst points to the output buffer
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_abs_q7(
-  q7_t * pSrc,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Floating-point vector absolute value.
-   * @param[in]       *pSrc points to the input buffer
-   * @param[out]      *pDst points to the output buffer
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_abs_f32(
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q15 vector absolute value.
-   * @param[in]       *pSrc points to the input buffer
-   * @param[out]      *pDst points to the output buffer
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_abs_q15(
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Q31 vector absolute value.
-   * @param[in]       *pSrc points to the input buffer
-   * @param[out]      *pDst points to the output buffer
-   * @param[in]       blockSize number of samples in each vector
-   * @return none.
-   */
-
-  void arm_abs_q31(
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Dot product of floating-point vectors.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[in]       blockSize number of samples in each vector
-   * @param[out]      *result output result returned here
-   * @return none.
-   */
-
-  void arm_dot_prod_f32(
-  float32_t * pSrcA,
-  float32_t * pSrcB,
-  uint32_t blockSize,
-  float32_t * result);
-
-  /**
-   * @brief Dot product of Q7 vectors.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[in]       blockSize number of samples in each vector
-   * @param[out]      *result output result returned here
-   * @return none.
-   */
-
-  void arm_dot_prod_q7(
-  q7_t * pSrcA,
-  q7_t * pSrcB,
-  uint32_t blockSize,
-  q31_t * result);
-
-  /**
-   * @brief Dot product of Q15 vectors.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[in]       blockSize number of samples in each vector
-   * @param[out]      *result output result returned here
-   * @return none.
-   */
-
-  void arm_dot_prod_q15(
-  q15_t * pSrcA,
-  q15_t * pSrcB,
-  uint32_t blockSize,
-  q63_t * result);
-
-  /**
-   * @brief Dot product of Q31 vectors.
-   * @param[in]       *pSrcA points to the first input vector
-   * @param[in]       *pSrcB points to the second input vector
-   * @param[in]       blockSize number of samples in each vector
-   * @param[out]      *result output result returned here
-   * @return none.
-   */
-
-  void arm_dot_prod_q31(
-  q31_t * pSrcA,
-  q31_t * pSrcB,
-  uint32_t blockSize,
-  q63_t * result);
-
-  /**
-   * @brief  Shifts the elements of a Q7 vector a specified number of bits.
-   * @param[in]  *pSrc points to the input vector
-   * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_shift_q7(
-  q7_t * pSrc,
-  int8_t shiftBits,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Shifts the elements of a Q15 vector a specified number of bits.
-   * @param[in]  *pSrc points to the input vector
-   * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_shift_q15(
-  q15_t * pSrc,
-  int8_t shiftBits,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Shifts the elements of a Q31 vector a specified number of bits.
-   * @param[in]  *pSrc points to the input vector
-   * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_shift_q31(
-  q31_t * pSrc,
-  int8_t shiftBits,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Adds a constant offset to a floating-point vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[in]  offset is the offset to be added
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_offset_f32(
-  float32_t * pSrc,
-  float32_t offset,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Adds a constant offset to a Q7 vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[in]  offset is the offset to be added
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_offset_q7(
-  q7_t * pSrc,
-  q7_t offset,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Adds a constant offset to a Q15 vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[in]  offset is the offset to be added
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_offset_q15(
-  q15_t * pSrc,
-  q15_t offset,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Adds a constant offset to a Q31 vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[in]  offset is the offset to be added
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_offset_q31(
-  q31_t * pSrc,
-  q31_t offset,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Negates the elements of a floating-point vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_negate_f32(
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Negates the elements of a Q7 vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_negate_q7(
-  q7_t * pSrc,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Negates the elements of a Q15 vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_negate_q15(
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Negates the elements of a Q31 vector.
-   * @param[in]  *pSrc points to the input vector
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  blockSize number of samples in the vector
-   * @return none.
-   */
-
-  void arm_negate_q31(
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-  /**
-   * @brief  Copies the elements of a floating-point vector. 
-   * @param[in]  *pSrc input pointer
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_copy_f32(
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Copies the elements of a Q7 vector. 
-   * @param[in]  *pSrc input pointer
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_copy_q7(
-  q7_t * pSrc,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Copies the elements of a Q15 vector. 
-   * @param[in]  *pSrc input pointer
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_copy_q15(
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Copies the elements of a Q31 vector. 
-   * @param[in]  *pSrc input pointer
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_copy_q31(
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-  /**
-   * @brief  Fills a constant value into a floating-point vector. 
-   * @param[in]  value input value to be filled
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_fill_f32(
-  float32_t value,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Fills a constant value into a Q7 vector. 
-   * @param[in]  value input value to be filled
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_fill_q7(
-  q7_t value,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Fills a constant value into a Q15 vector. 
-   * @param[in]  value input value to be filled
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_fill_q15(
-  q15_t value,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Fills a constant value into a Q31 vector. 
-   * @param[in]  value input value to be filled
-   * @param[out]  *pDst output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_fill_q31(
-  q31_t value,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-/**  
- * @brief Convolution of floating-point sequences.  
- * @param[in] *pSrcA points to the first input sequence.  
- * @param[in] srcALen length of the first input sequence.  
- * @param[in] *pSrcB points to the second input sequence.  
- * @param[in] srcBLen length of the second input sequence.  
- * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.  
- * @return none.  
- */
-
-  void arm_conv_f32(
-  float32_t * pSrcA,
-  uint32_t srcALen,
-  float32_t * pSrcB,
-  uint32_t srcBLen,
-  float32_t * pDst);
-
-  
-  /**   
-   * @brief Convolution of Q15 sequences.   
-   * @param[in] *pSrcA points to the first input sequence.   
-   * @param[in] srcALen length of the first input sequence.   
-   * @param[in] *pSrcB points to the second input sequence.   
-   * @param[in] srcBLen length of the second input sequence.   
-   * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.   
-   * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).   
-   * @return none.   
-   */
-
-
-  void arm_conv_opt_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst,
-  q15_t * pScratch1,
-  q15_t * pScratch2);
-
-
-/**  
- * @brief Convolution of Q15 sequences.  
- * @param[in] *pSrcA points to the first input sequence.  
- * @param[in] srcALen length of the first input sequence.  
- * @param[in] *pSrcB points to the second input sequence.  
- * @param[in] srcBLen length of the second input sequence.  
- * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.  
- * @return none.  
- */
-
-  void arm_conv_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst);
-
-  /**
-   * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
-   * @return none.
-   */
-
-  void arm_conv_fast_q15(
-                         q15_t * pSrcA,
-                        uint32_t srcALen,
-                         q15_t * pSrcB,
-                        uint32_t srcBLen,
-                        q15_t * pDst);
-
-  /**
-   * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
-   * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).   
-   * @return none.   
-   */
-
-  void arm_conv_fast_opt_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst,
-  q15_t * pScratch1,
-  q15_t * pScratch2);
-
-
-
-  /**
-   * @brief Convolution of Q31 sequences.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
-   * @return none.
-   */
-
-  void arm_conv_q31(
-  q31_t * pSrcA,
-  uint32_t srcALen,
-  q31_t * pSrcB,
-  uint32_t srcBLen,
-  q31_t * pDst);
-
-  /**
-   * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
-   * @return none.
-   */
-
-  void arm_conv_fast_q31(
-  q31_t * pSrcA,
-  uint32_t srcALen,
-  q31_t * pSrcB,
-  uint32_t srcBLen,
-  q31_t * pDst);
-
-
-    /**   
-   * @brief Convolution of Q7 sequences.   
-   * @param[in] *pSrcA points to the first input sequence.   
-   * @param[in] srcALen length of the first input sequence.   
-   * @param[in] *pSrcB points to the second input sequence.   
-   * @param[in] srcBLen length of the second input sequence.   
-   * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.   
-   * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).   
-   * @return none.   
-   */
-
-  void arm_conv_opt_q7(
-  q7_t * pSrcA,
-  uint32_t srcALen,
-  q7_t * pSrcB,
-  uint32_t srcBLen,
-  q7_t * pDst,
-  q15_t * pScratch1,
-  q15_t * pScratch2);
-
-
-
-  /**
-   * @brief Convolution of Q7 sequences.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
-   * @return none.
-   */
-
-  void arm_conv_q7(
-  q7_t * pSrcA,
-  uint32_t srcALen,
-  q7_t * pSrcB,
-  uint32_t srcBLen,
-  q7_t * pDst);
-
-
-  /**
-   * @brief Partial convolution of floating-point sequences.
-   * @param[in]       *pSrcA points to the first input sequence.
-   * @param[in]       srcALen length of the first input sequence.
-   * @param[in]       *pSrcB points to the second input sequence.
-   * @param[in]       srcBLen length of the second input sequence.
-   * @param[out]      *pDst points to the block of output data
-   * @param[in]       firstIndex is the first output sample to start with.
-   * @param[in]       numPoints is the number of output points to be computed.
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
-   */
-
-  arm_status arm_conv_partial_f32(
-  float32_t * pSrcA,
-  uint32_t srcALen,
-  float32_t * pSrcB,
-  uint32_t srcBLen,
-  float32_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints);
-
-    /**   
-   * @brief Partial convolution of Q15 sequences.   
-   * @param[in]       *pSrcA points to the first input sequence.   
-   * @param[in]       srcALen length of the first input sequence.   
-   * @param[in]       *pSrcB points to the second input sequence.   
-   * @param[in]       srcBLen length of the second input sequence.   
-   * @param[out]      *pDst points to the block of output data   
-   * @param[in]       firstIndex is the first output sample to start with.   
-   * @param[in]       numPoints is the number of output points to be computed.   
-   * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).   
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].   
-   */
-
-  arm_status arm_conv_partial_opt_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints,
-  q15_t * pScratch1,
-  q15_t * pScratch2);
-
-
-/**
-   * @brief Partial convolution of Q15 sequences.
-   * @param[in]       *pSrcA points to the first input sequence.
-   * @param[in]       srcALen length of the first input sequence.
-   * @param[in]       *pSrcB points to the second input sequence.
-   * @param[in]       srcBLen length of the second input sequence.
-   * @param[out]      *pDst points to the block of output data
-   * @param[in]       firstIndex is the first output sample to start with.
-   * @param[in]       numPoints is the number of output points to be computed.
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
-   */
-
-  arm_status arm_conv_partial_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints);
-
-  /**
-   * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
-   * @param[in]       *pSrcA points to the first input sequence.
-   * @param[in]       srcALen length of the first input sequence.
-   * @param[in]       *pSrcB points to the second input sequence.
-   * @param[in]       srcBLen length of the second input sequence.
-   * @param[out]      *pDst points to the block of output data
-   * @param[in]       firstIndex is the first output sample to start with.
-   * @param[in]       numPoints is the number of output points to be computed.
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
-   */
-
-  arm_status arm_conv_partial_fast_q15(
-                                       q15_t * pSrcA,
-                                      uint32_t srcALen,
-                                       q15_t * pSrcB,
-                                      uint32_t srcBLen,
-                                      q15_t * pDst,
-                                      uint32_t firstIndex,
-                                      uint32_t numPoints);
-
-
-  /**
-   * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
-   * @param[in]       *pSrcA points to the first input sequence.
-   * @param[in]       srcALen length of the first input sequence.
-   * @param[in]       *pSrcB points to the second input sequence.
-   * @param[in]       srcBLen length of the second input sequence.
-   * @param[out]      *pDst points to the block of output data
-   * @param[in]       firstIndex is the first output sample to start with.
-   * @param[in]       numPoints is the number of output points to be computed.
-   * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).   
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].   
-   */
-
-  arm_status arm_conv_partial_fast_opt_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints,
-  q15_t * pScratch1,
-  q15_t * pScratch2);
-
-
-  /**
-   * @brief Partial convolution of Q31 sequences.
-   * @param[in]       *pSrcA points to the first input sequence.
-   * @param[in]       srcALen length of the first input sequence.
-   * @param[in]       *pSrcB points to the second input sequence.
-   * @param[in]       srcBLen length of the second input sequence.
-   * @param[out]      *pDst points to the block of output data
-   * @param[in]       firstIndex is the first output sample to start with.
-   * @param[in]       numPoints is the number of output points to be computed.
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
-   */
-
-  arm_status arm_conv_partial_q31(
-  q31_t * pSrcA,
-  uint32_t srcALen,
-  q31_t * pSrcB,
-  uint32_t srcBLen,
-  q31_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints);
-
-
-  /**
-   * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
-   * @param[in]       *pSrcA points to the first input sequence.
-   * @param[in]       srcALen length of the first input sequence.
-   * @param[in]       *pSrcB points to the second input sequence.
-   * @param[in]       srcBLen length of the second input sequence.
-   * @param[out]      *pDst points to the block of output data
-   * @param[in]       firstIndex is the first output sample to start with.
-   * @param[in]       numPoints is the number of output points to be computed.
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
-   */
-
-  arm_status arm_conv_partial_fast_q31(
-  q31_t * pSrcA,
-  uint32_t srcALen,
-  q31_t * pSrcB,
-  uint32_t srcBLen,
-  q31_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints);
-
-
-  /**   
-   * @brief Partial convolution of Q7 sequences   
-   * @param[in]       *pSrcA points to the first input sequence.   
-   * @param[in]       srcALen length of the first input sequence.   
-   * @param[in]       *pSrcB points to the second input sequence.   
-   * @param[in]       srcBLen length of the second input sequence.   
-   * @param[out]      *pDst points to the block of output data   
-   * @param[in]       firstIndex is the first output sample to start with.   
-   * @param[in]       numPoints is the number of output points to be computed.   
-   * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).   
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].   
-   */
-
-  arm_status arm_conv_partial_opt_q7(
-  q7_t * pSrcA,
-  uint32_t srcALen,
-  q7_t * pSrcB,
-  uint32_t srcBLen,
-  q7_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints,
-  q15_t * pScratch1,
-  q15_t * pScratch2);
-
-
-/**
-   * @brief Partial convolution of Q7 sequences.
-   * @param[in]       *pSrcA points to the first input sequence.
-   * @param[in]       srcALen length of the first input sequence.
-   * @param[in]       *pSrcB points to the second input sequence.
-   * @param[in]       srcBLen length of the second input sequence.
-   * @param[out]      *pDst points to the block of output data
-   * @param[in]       firstIndex is the first output sample to start with.
-   * @param[in]       numPoints is the number of output points to be computed.
-   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
-   */
-
-  arm_status arm_conv_partial_q7(
-  q7_t * pSrcA,
-  uint32_t srcALen,
-  q7_t * pSrcB,
-  uint32_t srcBLen,
-  q7_t * pDst,
-  uint32_t firstIndex,
-  uint32_t numPoints);
-
-
-
-  /**
-   * @brief Instance structure for the Q15 FIR decimator.
-   */
-
-  typedef struct
-  {
-    uint8_t M;                      /**< decimation factor. */
-    uint16_t numTaps;               /**< number of coefficients in the filter. */
-    q15_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/
-    q15_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-  } arm_fir_decimate_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 FIR decimator.
-   */
-
-  typedef struct
-  {
-    uint8_t M;                  /**< decimation factor. */
-    uint16_t numTaps;           /**< number of coefficients in the filter. */
-    q31_t *pCoeffs;              /**< points to the coefficient array. The array is of length numTaps.*/
-    q31_t *pState;               /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-
-  } arm_fir_decimate_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point FIR decimator.
-   */
-
-  typedef struct
-  {
-    uint8_t M;                          /**< decimation factor. */
-    uint16_t numTaps;                   /**< number of coefficients in the filter. */
-    float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/
-    float32_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-
-  } arm_fir_decimate_instance_f32;
-
-
-
-  /**
-   * @brief Processing function for the floating-point FIR decimator.
-   * @param[in] *S points to an instance of the floating-point FIR decimator structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none
-   */
-
-  void arm_fir_decimate_f32(
-  const arm_fir_decimate_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Initialization function for the floating-point FIR decimator.
-   * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
-   * @param[in] numTaps  number of coefficients in the filter.
-   * @param[in] M  decimation factor.
-   * @param[in] *pCoeffs points to the filter coefficients.
-   * @param[in] *pState points to the state buffer.
-   * @param[in] blockSize number of input samples to process per call.
-   * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
-   * <code>blockSize</code> is not a multiple of <code>M</code>.
-   */
-
-  arm_status arm_fir_decimate_init_f32(
-  arm_fir_decimate_instance_f32 * S,
-  uint16_t numTaps,
-  uint8_t M,
-  float32_t * pCoeffs,
-  float32_t * pState,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q15 FIR decimator.
-   * @param[in] *S points to an instance of the Q15 FIR decimator structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none
-   */
-
-  void arm_fir_decimate_q15(
-  const arm_fir_decimate_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
-   * @param[in] *S points to an instance of the Q15 FIR decimator structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none
-   */
-
-  void arm_fir_decimate_fast_q15(
-  const arm_fir_decimate_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-
-
-  /**
-   * @brief  Initialization function for the Q15 FIR decimator.
-   * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
-   * @param[in] numTaps  number of coefficients in the filter.
-   * @param[in] M  decimation factor.
-   * @param[in] *pCoeffs points to the filter coefficients.
-   * @param[in] *pState points to the state buffer.
-   * @param[in] blockSize number of input samples to process per call.
-   * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
-   * <code>blockSize</code> is not a multiple of <code>M</code>.
-   */
-
-  arm_status arm_fir_decimate_init_q15(
-  arm_fir_decimate_instance_q15 * S,
-  uint16_t numTaps,
-  uint8_t M,
-  q15_t * pCoeffs,
-  q15_t * pState,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q31 FIR decimator.
-   * @param[in] *S points to an instance of the Q31 FIR decimator structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none
-   */
-
-  void arm_fir_decimate_q31(
-  const arm_fir_decimate_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
-   * @param[in] *S points to an instance of the Q31 FIR decimator structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none
-   */
-
-  void arm_fir_decimate_fast_q31(
-  arm_fir_decimate_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Initialization function for the Q31 FIR decimator.
-   * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
-   * @param[in] numTaps  number of coefficients in the filter.
-   * @param[in] M  decimation factor.
-   * @param[in] *pCoeffs points to the filter coefficients.
-   * @param[in] *pState points to the state buffer.
-   * @param[in] blockSize number of input samples to process per call.
-   * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
-   * <code>blockSize</code> is not a multiple of <code>M</code>.
-   */
-
-  arm_status arm_fir_decimate_init_q31(
-  arm_fir_decimate_instance_q31 * S,
-  uint16_t numTaps,
-  uint8_t M,
-  q31_t * pCoeffs,
-  q31_t * pState,
-  uint32_t blockSize);
-
-
-
-  /**
-   * @brief Instance structure for the Q15 FIR interpolator.
-   */
-
-  typedef struct
-  {
-    uint8_t L;                      /**< upsample factor. */
-    uint16_t phaseLength;           /**< length of each polyphase filter component. */
-    q15_t *pCoeffs;                 /**< points to the coefficient array. The array is of length L*phaseLength. */
-    q15_t *pState;                  /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
-  } arm_fir_interpolate_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 FIR interpolator.
-   */
-
-  typedef struct
-  {
-    uint8_t L;                      /**< upsample factor. */
-    uint16_t phaseLength;           /**< length of each polyphase filter component. */
-    q31_t *pCoeffs;                  /**< points to the coefficient array. The array is of length L*phaseLength. */
-    q31_t *pState;                   /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
-  } arm_fir_interpolate_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point FIR interpolator.
-   */
-
-  typedef struct
-  {
-    uint8_t L;                     /**< upsample factor. */
-    uint16_t phaseLength;          /**< length of each polyphase filter component. */
-    float32_t *pCoeffs;             /**< points to the coefficient array. The array is of length L*phaseLength. */
-    float32_t *pState;              /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
-  } arm_fir_interpolate_instance_f32;
-
-
-  /**
-   * @brief Processing function for the Q15 FIR interpolator.
-   * @param[in] *S        points to an instance of the Q15 FIR interpolator structure.
-   * @param[in] *pSrc     points to the block of input data.
-   * @param[out] *pDst    points to the block of output data.
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none.
-   */
-
-  void arm_fir_interpolate_q15(
-  const arm_fir_interpolate_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Initialization function for the Q15 FIR interpolator.
-   * @param[in,out] *S        points to an instance of the Q15 FIR interpolator structure.
-   * @param[in]     L         upsample factor.
-   * @param[in]     numTaps   number of filter coefficients in the filter.
-   * @param[in]     *pCoeffs  points to the filter coefficient buffer.
-   * @param[in]     *pState   points to the state buffer.
-   * @param[in]     blockSize number of input samples to process per call.
-   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
-   * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
-   */
-
-  arm_status arm_fir_interpolate_init_q15(
-  arm_fir_interpolate_instance_q15 * S,
-  uint8_t L,
-  uint16_t numTaps,
-  q15_t * pCoeffs,
-  q15_t * pState,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q31 FIR interpolator.
-   * @param[in] *S        points to an instance of the Q15 FIR interpolator structure.
-   * @param[in] *pSrc     points to the block of input data.
-   * @param[out] *pDst    points to the block of output data.
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none.
-   */
-
-  void arm_fir_interpolate_q31(
-  const arm_fir_interpolate_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the Q31 FIR interpolator.
-   * @param[in,out] *S        points to an instance of the Q31 FIR interpolator structure.
-   * @param[in]     L         upsample factor.
-   * @param[in]     numTaps   number of filter coefficients in the filter.
-   * @param[in]     *pCoeffs  points to the filter coefficient buffer.
-   * @param[in]     *pState   points to the state buffer.
-   * @param[in]     blockSize number of input samples to process per call.
-   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
-   * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
-   */
-
-  arm_status arm_fir_interpolate_init_q31(
-  arm_fir_interpolate_instance_q31 * S,
-  uint8_t L,
-  uint16_t numTaps,
-  q31_t * pCoeffs,
-  q31_t * pState,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Processing function for the floating-point FIR interpolator.
-   * @param[in] *S        points to an instance of the floating-point FIR interpolator structure.
-   * @param[in] *pSrc     points to the block of input data.
-   * @param[out] *pDst    points to the block of output data.
-   * @param[in] blockSize number of input samples to process per call.
-   * @return none.
-   */
-
-  void arm_fir_interpolate_f32(
-  const arm_fir_interpolate_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the floating-point FIR interpolator.
-   * @param[in,out] *S        points to an instance of the floating-point FIR interpolator structure.
-   * @param[in]     L         upsample factor.
-   * @param[in]     numTaps   number of filter coefficients in the filter.
-   * @param[in]     *pCoeffs  points to the filter coefficient buffer.
-   * @param[in]     *pState   points to the state buffer.
-   * @param[in]     blockSize number of input samples to process per call.
-   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
-   * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
-   */
-
-  arm_status arm_fir_interpolate_init_f32(
-  arm_fir_interpolate_instance_f32 * S,
-  uint8_t L,
-  uint16_t numTaps,
-  float32_t * pCoeffs,
-  float32_t * pState,
-  uint32_t blockSize);
-
-  /**
-   * @brief Instance structure for the high precision Q31 Biquad cascade filter.
-   */
-
-  typedef struct
-  {
-    uint8_t numStages;       /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
-    q63_t *pState;           /**< points to the array of state coefficients.  The array is of length 4*numStages. */
-    q31_t *pCoeffs;          /**< points to the array of coefficients.  The array is of length 5*numStages. */
-    uint8_t postShift;       /**< additional shift, in bits, applied to each output sample. */
-
-  } arm_biquad_cas_df1_32x64_ins_q31;
-
-
-  /**
-   * @param[in]  *S        points to an instance of the high precision Q31 Biquad cascade filter structure.
-   * @param[in]  *pSrc     points to the block of input data.
-   * @param[out] *pDst     points to the block of output data
-   * @param[in]  blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_biquad_cas_df1_32x64_q31(
-  const arm_biquad_cas_df1_32x64_ins_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @param[in,out] *S           points to an instance of the high precision Q31 Biquad cascade filter structure.
-   * @param[in]     numStages    number of 2nd order stages in the filter.
-   * @param[in]     *pCoeffs     points to the filter coefficients.
-   * @param[in]     *pState      points to the state buffer.
-   * @param[in]     postShift    shift to be applied to the output. Varies according to the coefficients format
-   * @return        none
-   */
-
-  void arm_biquad_cas_df1_32x64_init_q31(
-  arm_biquad_cas_df1_32x64_ins_q31 * S,
-  uint8_t numStages,
-  q31_t * pCoeffs,
-  q63_t * pState,
-  uint8_t postShift);
-
-
-
-  /**
-   * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
-   */
-
-  typedef struct
-  {
-    uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
-    float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */
-    float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
-  } arm_biquad_cascade_df2T_instance_f32;
-
-
-  /**
-   * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
-   * @param[in]  *S        points to an instance of the filter data structure.
-   * @param[in]  *pSrc     points to the block of input data.
-   * @param[out] *pDst     points to the block of output data
-   * @param[in]  blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_biquad_cascade_df2T_f32(
-  const arm_biquad_cascade_df2T_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
-   * @param[in,out] *S           points to an instance of the filter data structure.
-   * @param[in]     numStages    number of 2nd order stages in the filter.
-   * @param[in]     *pCoeffs     points to the filter coefficients.
-   * @param[in]     *pState      points to the state buffer.
-   * @return        none
-   */
-
-  void arm_biquad_cascade_df2T_init_f32(
-  arm_biquad_cascade_df2T_instance_f32 * S,
-  uint8_t numStages,
-  float32_t * pCoeffs,
-  float32_t * pState);
-
-
-
-  /**
-   * @brief Instance structure for the Q15 FIR lattice filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numStages;                          /**< number of filter stages. */
-    q15_t *pState;                               /**< points to the state variable array. The array is of length numStages. */
-    q15_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */
-  } arm_fir_lattice_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 FIR lattice filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numStages;                          /**< number of filter stages. */
-    q31_t *pState;                               /**< points to the state variable array. The array is of length numStages. */
-    q31_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */
-  } arm_fir_lattice_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point FIR lattice filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numStages;                  /**< number of filter stages. */
-    float32_t *pState;                   /**< points to the state variable array. The array is of length numStages. */
-    float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numStages. */
-  } arm_fir_lattice_instance_f32;
-
-  /**
-   * @brief Initialization function for the Q15 FIR lattice filter.
-   * @param[in] *S points to an instance of the Q15 FIR lattice structure.
-   * @param[in] numStages  number of filter stages.
-   * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages. 
-   * @param[in] *pState points to the state buffer.  The array is of length numStages. 
-   * @return none.
-   */
-
-  void arm_fir_lattice_init_q15(
-  arm_fir_lattice_instance_q15 * S,
-  uint16_t numStages,
-  q15_t * pCoeffs,
-  q15_t * pState);
-
-
-  /**
-   * @brief Processing function for the Q15 FIR lattice filter.
-   * @param[in] *S points to an instance of the Q15 FIR lattice structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-  void arm_fir_lattice_q15(
-  const arm_fir_lattice_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Initialization function for the Q31 FIR lattice filter.
-   * @param[in] *S points to an instance of the Q31 FIR lattice structure.
-   * @param[in] numStages  number of filter stages.
-   * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
-   * @param[in] *pState points to the state buffer.   The array is of length numStages.
-   * @return none.
-   */
-
-  void arm_fir_lattice_init_q31(
-  arm_fir_lattice_instance_q31 * S,
-  uint16_t numStages,
-  q31_t * pCoeffs,
-  q31_t * pState);
-
-
-  /**
-   * @brief Processing function for the Q31 FIR lattice filter.
-   * @param[in]  *S        points to an instance of the Q31 FIR lattice structure.
-   * @param[in]  *pSrc     points to the block of input data.
-   * @param[out] *pDst     points to the block of output data
-   * @param[in]  blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_fir_lattice_q31(
-  const arm_fir_lattice_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-/**
- * @brief Initialization function for the floating-point FIR lattice filter.
- * @param[in] *S points to an instance of the floating-point FIR lattice structure.
- * @param[in] numStages  number of filter stages.
- * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
- * @param[in] *pState points to the state buffer.  The array is of length numStages.
- * @return none.
- */
-
-  void arm_fir_lattice_init_f32(
-  arm_fir_lattice_instance_f32 * S,
-  uint16_t numStages,
-  float32_t * pCoeffs,
-  float32_t * pState);
-
-  /**
-   * @brief Processing function for the floating-point FIR lattice filter.
-   * @param[in]  *S        points to an instance of the floating-point FIR lattice structure.
-   * @param[in]  *pSrc     points to the block of input data.
-   * @param[out] *pDst     points to the block of output data
-   * @param[in]  blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_fir_lattice_f32(
-  const arm_fir_lattice_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Instance structure for the Q15 IIR lattice filter.
-   */
-  typedef struct
-  {
-    uint16_t numStages;                         /**< number of stages in the filter. */
-    q15_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */
-    q15_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */
-    q15_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */
-  } arm_iir_lattice_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q31 IIR lattice filter.
-   */
-  typedef struct
-  {
-    uint16_t numStages;                         /**< number of stages in the filter. */
-    q31_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */
-    q31_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */
-    q31_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */
-  } arm_iir_lattice_instance_q31;
-
-  /**
-   * @brief Instance structure for the floating-point IIR lattice filter.
-   */
-  typedef struct
-  {
-    uint16_t numStages;                         /**< number of stages in the filter. */
-    float32_t *pState;                          /**< points to the state variable array. The array is of length numStages+blockSize. */
-    float32_t *pkCoeffs;                        /**< points to the reflection coefficient array. The array is of length numStages. */
-    float32_t *pvCoeffs;                        /**< points to the ladder coefficient array. The array is of length numStages+1. */
-  } arm_iir_lattice_instance_f32;
-
-  /**
-   * @brief Processing function for the floating-point IIR lattice filter.
-   * @param[in] *S points to an instance of the floating-point IIR lattice structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_iir_lattice_f32(
-  const arm_iir_lattice_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Initialization function for the floating-point IIR lattice filter.
-   * @param[in] *S points to an instance of the floating-point IIR lattice structure.
-   * @param[in] numStages number of stages in the filter.
-   * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages.
-   * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1.
-   * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize-1.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_iir_lattice_init_f32(
-  arm_iir_lattice_instance_f32 * S,
-  uint16_t numStages,
-  float32_t * pkCoeffs,
-  float32_t * pvCoeffs,
-  float32_t * pState,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Processing function for the Q31 IIR lattice filter.
-   * @param[in] *S points to an instance of the Q31 IIR lattice structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_iir_lattice_q31(
-  const arm_iir_lattice_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Initialization function for the Q31 IIR lattice filter.
-   * @param[in] *S points to an instance of the Q31 IIR lattice structure.
-   * @param[in] numStages number of stages in the filter.
-   * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages.
-   * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1.
-   * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_iir_lattice_init_q31(
-  arm_iir_lattice_instance_q31 * S,
-  uint16_t numStages,
-  q31_t * pkCoeffs,
-  q31_t * pvCoeffs,
-  q31_t * pState,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Processing function for the Q15 IIR lattice filter.
-   * @param[in] *S points to an instance of the Q15 IIR lattice structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[out] *pDst points to the block of output data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_iir_lattice_q15(
-  const arm_iir_lattice_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-
-/**
- * @brief Initialization function for the Q15 IIR lattice filter.
- * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
- * @param[in] numStages  number of stages in the filter.
- * @param[in] *pkCoeffs points to reflection coefficient buffer.  The array is of length numStages.
- * @param[in] *pvCoeffs points to ladder coefficient buffer.  The array is of length numStages+1.
- * @param[in] *pState points to state buffer.  The array is of length numStages+blockSize.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- */
-
-  void arm_iir_lattice_init_q15(
-  arm_iir_lattice_instance_q15 * S,
-  uint16_t numStages,
-  q15_t * pkCoeffs,
-  q15_t * pvCoeffs,
-  q15_t * pState,
-  uint32_t blockSize);
-
-  /**
-   * @brief Instance structure for the floating-point LMS filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;    /**< number of coefficients in the filter. */
-    float32_t *pState;   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    float32_t *pCoeffs;  /**< points to the coefficient array. The array is of length numTaps. */
-    float32_t mu;        /**< step size that controls filter coefficient updates. */
-  } arm_lms_instance_f32;
-
-  /**
-   * @brief Processing function for floating-point LMS filter.
-   * @param[in]  *S points to an instance of the floating-point LMS filter structure.
-   * @param[in]  *pSrc points to the block of input data.
-   * @param[in]  *pRef points to the block of reference data.
-   * @param[out] *pOut points to the block of output data.
-   * @param[out] *pErr points to the block of error data.
-   * @param[in]  blockSize number of samples to process.
-   * @return     none.
-   */
-
-  void arm_lms_f32(
-  const arm_lms_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pRef,
-  float32_t * pOut,
-  float32_t * pErr,
-  uint32_t blockSize);
-
-  /**
-   * @brief Initialization function for floating-point LMS filter.
-   * @param[in] *S points to an instance of the floating-point LMS filter structure.
-   * @param[in] numTaps  number of filter coefficients.
-   * @param[in] *pCoeffs points to the coefficient buffer.
-   * @param[in] *pState points to state buffer.
-   * @param[in] mu step size that controls filter coefficient updates.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_lms_init_f32(
-  arm_lms_instance_f32 * S,
-  uint16_t numTaps,
-  float32_t * pCoeffs,
-  float32_t * pState,
-  float32_t mu,
-  uint32_t blockSize);
-
-  /**
-   * @brief Instance structure for the Q15 LMS filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;    /**< number of coefficients in the filter. */
-    q15_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    q15_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
-    q15_t mu;            /**< step size that controls filter coefficient updates. */
-    uint32_t postShift;  /**< bit shift applied to coefficients. */
-  } arm_lms_instance_q15;
-
-
-  /**
-   * @brief Initialization function for the Q15 LMS filter.
-   * @param[in] *S points to an instance of the Q15 LMS filter structure.
-   * @param[in] numTaps  number of filter coefficients.
-   * @param[in] *pCoeffs points to the coefficient buffer.
-   * @param[in] *pState points to the state buffer.
-   * @param[in] mu step size that controls filter coefficient updates.
-   * @param[in] blockSize number of samples to process.
-   * @param[in] postShift bit shift applied to coefficients.
-   * @return    none.
-   */
-
-  void arm_lms_init_q15(
-  arm_lms_instance_q15 * S,
-  uint16_t numTaps,
-  q15_t * pCoeffs,
-  q15_t * pState,
-  q15_t mu,
-  uint32_t blockSize,
-  uint32_t postShift);
-
-  /**
-   * @brief Processing function for Q15 LMS filter.
-   * @param[in] *S points to an instance of the Q15 LMS filter structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[in] *pRef points to the block of reference data.
-   * @param[out] *pOut points to the block of output data.
-   * @param[out] *pErr points to the block of error data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_lms_q15(
-  const arm_lms_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pRef,
-  q15_t * pOut,
-  q15_t * pErr,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Instance structure for the Q31 LMS filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;    /**< number of coefficients in the filter. */
-    q31_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    q31_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
-    q31_t mu;            /**< step size that controls filter coefficient updates. */
-    uint32_t postShift;  /**< bit shift applied to coefficients. */
-
-  } arm_lms_instance_q31;
-
-  /**
-   * @brief Processing function for Q31 LMS filter.
-   * @param[in]  *S points to an instance of the Q15 LMS filter structure.
-   * @param[in]  *pSrc points to the block of input data.
-   * @param[in]  *pRef points to the block of reference data.
-   * @param[out] *pOut points to the block of output data.
-   * @param[out] *pErr points to the block of error data.
-   * @param[in]  blockSize number of samples to process.
-   * @return     none.
-   */
-
-  void arm_lms_q31(
-  const arm_lms_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pRef,
-  q31_t * pOut,
-  q31_t * pErr,
-  uint32_t blockSize);
-
-  /**
-   * @brief Initialization function for Q31 LMS filter.
-   * @param[in] *S points to an instance of the Q31 LMS filter structure.
-   * @param[in] numTaps  number of filter coefficients.
-   * @param[in] *pCoeffs points to coefficient buffer.
-   * @param[in] *pState points to state buffer.
-   * @param[in] mu step size that controls filter coefficient updates.
-   * @param[in] blockSize number of samples to process.
-   * @param[in] postShift bit shift applied to coefficients.
-   * @return none.
-   */
-
-  void arm_lms_init_q31(
-  arm_lms_instance_q31 * S,
-  uint16_t numTaps,
-  q31_t * pCoeffs,
-  q31_t * pState,
-  q31_t mu,
-  uint32_t blockSize,
-  uint32_t postShift);
-
-  /**
-   * @brief Instance structure for the floating-point normalized LMS filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;     /**< number of coefficients in the filter. */
-    float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
-    float32_t mu;        /**< step size that control filter coefficient updates. */
-    float32_t energy;    /**< saves previous frame energy. */
-    float32_t x0;        /**< saves previous input sample. */
-  } arm_lms_norm_instance_f32;
-
-  /**
-   * @brief Processing function for floating-point normalized LMS filter.
-   * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[in] *pRef points to the block of reference data.
-   * @param[out] *pOut points to the block of output data.
-   * @param[out] *pErr points to the block of error data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_lms_norm_f32(
-  arm_lms_norm_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pRef,
-  float32_t * pOut,
-  float32_t * pErr,
-  uint32_t blockSize);
-
-  /**
-   * @brief Initialization function for floating-point normalized LMS filter.
-   * @param[in] *S points to an instance of the floating-point LMS filter structure.
-   * @param[in] numTaps  number of filter coefficients.
-   * @param[in] *pCoeffs points to coefficient buffer.
-   * @param[in] *pState points to state buffer.
-   * @param[in] mu step size that controls filter coefficient updates.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_lms_norm_init_f32(
-  arm_lms_norm_instance_f32 * S,
-  uint16_t numTaps,
-  float32_t * pCoeffs,
-  float32_t * pState,
-  float32_t mu,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Instance structure for the Q31 normalized LMS filter.
-   */
-  typedef struct
-  {
-    uint16_t numTaps;     /**< number of coefficients in the filter. */
-    q31_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    q31_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
-    q31_t mu;             /**< step size that controls filter coefficient updates. */
-    uint8_t postShift;    /**< bit shift applied to coefficients. */
-    q31_t *recipTable;    /**< points to the reciprocal initial value table. */
-    q31_t energy;         /**< saves previous frame energy. */
-    q31_t x0;             /**< saves previous input sample. */
-  } arm_lms_norm_instance_q31;
-
-  /**
-   * @brief Processing function for Q31 normalized LMS filter.
-   * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[in] *pRef points to the block of reference data.
-   * @param[out] *pOut points to the block of output data.
-   * @param[out] *pErr points to the block of error data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_lms_norm_q31(
-  arm_lms_norm_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pRef,
-  q31_t * pOut,
-  q31_t * pErr,
-  uint32_t blockSize);
-
-  /**
-   * @brief Initialization function for Q31 normalized LMS filter.
-   * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
-   * @param[in] numTaps  number of filter coefficients.
-   * @param[in] *pCoeffs points to coefficient buffer.
-   * @param[in] *pState points to state buffer.
-   * @param[in] mu step size that controls filter coefficient updates.
-   * @param[in] blockSize number of samples to process.
-   * @param[in] postShift bit shift applied to coefficients.
-   * @return none.
-   */
-
-  void arm_lms_norm_init_q31(
-  arm_lms_norm_instance_q31 * S,
-  uint16_t numTaps,
-  q31_t * pCoeffs,
-  q31_t * pState,
-  q31_t mu,
-  uint32_t blockSize,
-  uint8_t postShift);
-
-  /**
-   * @brief Instance structure for the Q15 normalized LMS filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;    /**< Number of coefficients in the filter. */
-    q15_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-    q15_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
-    q15_t mu;            /**< step size that controls filter coefficient updates. */
-    uint8_t postShift;   /**< bit shift applied to coefficients. */
-    q15_t *recipTable;   /**< Points to the reciprocal initial value table. */
-    q15_t energy;        /**< saves previous frame energy. */
-    q15_t x0;            /**< saves previous input sample. */
-  } arm_lms_norm_instance_q15;
-
-  /**
-   * @brief Processing function for Q15 normalized LMS filter.
-   * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
-   * @param[in] *pSrc points to the block of input data.
-   * @param[in] *pRef points to the block of reference data.
-   * @param[out] *pOut points to the block of output data.
-   * @param[out] *pErr points to the block of error data.
-   * @param[in] blockSize number of samples to process.
-   * @return none.
-   */
-
-  void arm_lms_norm_q15(
-  arm_lms_norm_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pRef,
-  q15_t * pOut,
-  q15_t * pErr,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief Initialization function for Q15 normalized LMS filter.
-   * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
-   * @param[in] numTaps  number of filter coefficients.
-   * @param[in] *pCoeffs points to coefficient buffer.
-   * @param[in] *pState points to state buffer.
-   * @param[in] mu step size that controls filter coefficient updates.
-   * @param[in] blockSize number of samples to process.
-   * @param[in] postShift bit shift applied to coefficients.
-   * @return none.
-   */
-
-  void arm_lms_norm_init_q15(
-  arm_lms_norm_instance_q15 * S,
-  uint16_t numTaps,
-  q15_t * pCoeffs,
-  q15_t * pState,
-  q15_t mu,
-  uint32_t blockSize,
-  uint8_t postShift);
-
-  /**
-   * @brief Correlation of floating-point sequences.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
-   * @return none.
-   */
-
-  void arm_correlate_f32(
-  float32_t * pSrcA,
-  uint32_t srcALen,
-  float32_t * pSrcB,
-  uint32_t srcBLen,
-  float32_t * pDst);
-
-
-   /**   
-   * @brief Correlation of Q15 sequences   
-   * @param[in] *pSrcA points to the first input sequence.   
-   * @param[in] srcALen length of the first input sequence.   
-   * @param[in] *pSrcB points to the second input sequence.   
-   * @param[in] srcBLen length of the second input sequence.   
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.   
-   * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @return none.   
-   */
-  void arm_correlate_opt_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst,
-  q15_t * pScratch);
-
-
-  /**
-   * @brief Correlation of Q15 sequences.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
-   * @return none.
-   */
-
-  void arm_correlate_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst);
-
-  /**
-   * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
-   * @return none.
-   */
-
-  void arm_correlate_fast_q15(
-                              q15_t * pSrcA,
-                             uint32_t srcALen,
-                              q15_t * pSrcB,
-                             uint32_t srcBLen,
-                             q15_t * pDst);
-
-
-
-  /**
-   * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
-   * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @return none.
-   */
-
-  void arm_correlate_fast_opt_q15(
-  q15_t * pSrcA,
-  uint32_t srcALen,
-  q15_t * pSrcB,
-  uint32_t srcBLen,
-  q15_t * pDst,
-  q15_t * pScratch);
-
-  /**
-   * @brief Correlation of Q31 sequences.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
-   * @return none.
-   */
-
-  void arm_correlate_q31(
-  q31_t * pSrcA,
-  uint32_t srcALen,
-  q31_t * pSrcB,
-  uint32_t srcBLen,
-  q31_t * pDst);
-
-  /**
-   * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
-   * @return none.
-   */
-
-  void arm_correlate_fast_q31(
-  q31_t * pSrcA,
-  uint32_t srcALen,
-  q31_t * pSrcB,
-  uint32_t srcBLen,
-  q31_t * pDst);
-
-
-
- /**   
-   * @brief Correlation of Q7 sequences.   
-   * @param[in] *pSrcA points to the first input sequence.   
-   * @param[in] srcALen length of the first input sequence.   
-   * @param[in] *pSrcB points to the second input sequence.   
-   * @param[in] srcBLen length of the second input sequence.   
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.   
-   * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
-   * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).   
-   * @return none.   
-   */
-
-  void arm_correlate_opt_q7(
-  q7_t * pSrcA,
-  uint32_t srcALen,
-  q7_t * pSrcB,
-  uint32_t srcBLen,
-  q7_t * pDst,
-  q15_t * pScratch1,
-  q15_t * pScratch2);
-
-
-  /**
-   * @brief Correlation of Q7 sequences.
-   * @param[in] *pSrcA points to the first input sequence.
-   * @param[in] srcALen length of the first input sequence.
-   * @param[in] *pSrcB points to the second input sequence.
-   * @param[in] srcBLen length of the second input sequence.
-   * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
-   * @return none.
-   */
-
-  void arm_correlate_q7(
-  q7_t * pSrcA,
-  uint32_t srcALen,
-  q7_t * pSrcB,
-  uint32_t srcBLen,
-  q7_t * pDst);
-
-
-  /**
-   * @brief Instance structure for the floating-point sparse FIR filter.
-   */
-  typedef struct
-  {
-    uint16_t numTaps;             /**< number of coefficients in the filter. */
-    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
-    float32_t *pState;            /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
-    float32_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
-    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
-    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
-  } arm_fir_sparse_instance_f32;
-
-  /**
-   * @brief Instance structure for the Q31 sparse FIR filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;             /**< number of coefficients in the filter. */
-    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
-    q31_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
-    q31_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
-    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
-    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
-  } arm_fir_sparse_instance_q31;
-
-  /**
-   * @brief Instance structure for the Q15 sparse FIR filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;             /**< number of coefficients in the filter. */
-    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
-    q15_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
-    q15_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
-    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
-    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
-  } arm_fir_sparse_instance_q15;
-
-  /**
-   * @brief Instance structure for the Q7 sparse FIR filter.
-   */
-
-  typedef struct
-  {
-    uint16_t numTaps;             /**< number of coefficients in the filter. */
-    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
-    q7_t *pState;                 /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
-    q7_t *pCoeffs;                /**< points to the coefficient array. The array is of length numTaps.*/
-    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
-    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
-  } arm_fir_sparse_instance_q7;
-
-  /**
-   * @brief Processing function for the floating-point sparse FIR filter.
-   * @param[in]  *S          points to an instance of the floating-point sparse FIR structure.
-   * @param[in]  *pSrc       points to the block of input data.
-   * @param[out] *pDst       points to the block of output data
-   * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.
-   * @param[in]  blockSize   number of input samples to process per call.
-   * @return none.
-   */
-
-  void arm_fir_sparse_f32(
-  arm_fir_sparse_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst,
-  float32_t * pScratchIn,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the floating-point sparse FIR filter.
-   * @param[in,out] *S         points to an instance of the floating-point sparse FIR structure.
-   * @param[in]     numTaps    number of nonzero coefficients in the filter.
-   * @param[in]     *pCoeffs   points to the array of filter coefficients.
-   * @param[in]     *pState    points to the state buffer.
-   * @param[in]     *pTapDelay points to the array of offset times.
-   * @param[in]     maxDelay   maximum offset time supported.
-   * @param[in]     blockSize  number of samples that will be processed per block.
-   * @return none
-   */
-
-  void arm_fir_sparse_init_f32(
-  arm_fir_sparse_instance_f32 * S,
-  uint16_t numTaps,
-  float32_t * pCoeffs,
-  float32_t * pState,
-  int32_t * pTapDelay,
-  uint16_t maxDelay,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q31 sparse FIR filter.
-   * @param[in]  *S          points to an instance of the Q31 sparse FIR structure.
-   * @param[in]  *pSrc       points to the block of input data.
-   * @param[out] *pDst       points to the block of output data
-   * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.
-   * @param[in]  blockSize   number of input samples to process per call.
-   * @return none.
-   */
-
-  void arm_fir_sparse_q31(
-  arm_fir_sparse_instance_q31 * S,
-  q31_t * pSrc,
-  q31_t * pDst,
-  q31_t * pScratchIn,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the Q31 sparse FIR filter.
-   * @param[in,out] *S         points to an instance of the Q31 sparse FIR structure.
-   * @param[in]     numTaps    number of nonzero coefficients in the filter.
-   * @param[in]     *pCoeffs   points to the array of filter coefficients.
-   * @param[in]     *pState    points to the state buffer.
-   * @param[in]     *pTapDelay points to the array of offset times.
-   * @param[in]     maxDelay   maximum offset time supported.
-   * @param[in]     blockSize  number of samples that will be processed per block.
-   * @return none
-   */
-
-  void arm_fir_sparse_init_q31(
-  arm_fir_sparse_instance_q31 * S,
-  uint16_t numTaps,
-  q31_t * pCoeffs,
-  q31_t * pState,
-  int32_t * pTapDelay,
-  uint16_t maxDelay,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q15 sparse FIR filter.
-   * @param[in]  *S           points to an instance of the Q15 sparse FIR structure.
-   * @param[in]  *pSrc        points to the block of input data.
-   * @param[out] *pDst        points to the block of output data
-   * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize.
-   * @param[in]  *pScratchOut points to a temporary buffer of size blockSize.
-   * @param[in]  blockSize    number of input samples to process per call.
-   * @return none.
-   */
-
-  void arm_fir_sparse_q15(
-  arm_fir_sparse_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst,
-  q15_t * pScratchIn,
-  q31_t * pScratchOut,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Initialization function for the Q15 sparse FIR filter.
-   * @param[in,out] *S         points to an instance of the Q15 sparse FIR structure.
-   * @param[in]     numTaps    number of nonzero coefficients in the filter.
-   * @param[in]     *pCoeffs   points to the array of filter coefficients.
-   * @param[in]     *pState    points to the state buffer.
-   * @param[in]     *pTapDelay points to the array of offset times.
-   * @param[in]     maxDelay   maximum offset time supported.
-   * @param[in]     blockSize  number of samples that will be processed per block.
-   * @return none
-   */
-
-  void arm_fir_sparse_init_q15(
-  arm_fir_sparse_instance_q15 * S,
-  uint16_t numTaps,
-  q15_t * pCoeffs,
-  q15_t * pState,
-  int32_t * pTapDelay,
-  uint16_t maxDelay,
-  uint32_t blockSize);
-
-  /**
-   * @brief Processing function for the Q7 sparse FIR filter.
-   * @param[in]  *S           points to an instance of the Q7 sparse FIR structure.
-   * @param[in]  *pSrc        points to the block of input data.
-   * @param[out] *pDst        points to the block of output data
-   * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize.
-   * @param[in]  *pScratchOut points to a temporary buffer of size blockSize.
-   * @param[in]  blockSize    number of input samples to process per call.
-   * @return none.
-   */
-
-  void arm_fir_sparse_q7(
-  arm_fir_sparse_instance_q7 * S,
-  q7_t * pSrc,
-  q7_t * pDst,
-  q7_t * pScratchIn,
-  q31_t * pScratchOut,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Initialization function for the Q7 sparse FIR filter.
-   * @param[in,out] *S         points to an instance of the Q7 sparse FIR structure.
-   * @param[in]     numTaps    number of nonzero coefficients in the filter.
-   * @param[in]     *pCoeffs   points to the array of filter coefficients.
-   * @param[in]     *pState    points to the state buffer.
-   * @param[in]     *pTapDelay points to the array of offset times.
-   * @param[in]     maxDelay   maximum offset time supported.
-   * @param[in]     blockSize  number of samples that will be processed per block.
-   * @return none
-   */
-
-  void arm_fir_sparse_init_q7(
-  arm_fir_sparse_instance_q7 * S,
-  uint16_t numTaps,
-  q7_t * pCoeffs,
-  q7_t * pState,
-  int32_t * pTapDelay,
-  uint16_t maxDelay,
-  uint32_t blockSize);
-
-
-  /*
-   * @brief  Floating-point sin_cos function.
-   * @param[in]  theta    input value in degrees 
-   * @param[out] *pSinVal points to the processed sine output. 
-   * @param[out] *pCosVal points to the processed cos output. 
-   * @return none.
-   */
-
-  void arm_sin_cos_f32(
-  float32_t theta,
-  float32_t * pSinVal,
-  float32_t * pCcosVal);
-
-  /*
-   * @brief  Q31 sin_cos function.
-   * @param[in]  theta    scaled input value in degrees 
-   * @param[out] *pSinVal points to the processed sine output. 
-   * @param[out] *pCosVal points to the processed cosine output. 
-   * @return none.
-   */
-
-  void arm_sin_cos_q31(
-  q31_t theta,
-  q31_t * pSinVal,
-  q31_t * pCosVal);
-
-
-  /**
-   * @brief  Floating-point complex conjugate.
-   * @param[in]  *pSrc points to the input vector
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_conj_f32(
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q31 complex conjugate.
-   * @param[in]  *pSrc points to the input vector
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_conj_q31(
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q15 complex conjugate.
-   * @param[in]  *pSrc points to the input vector
-   * @param[out]  *pDst points to the output vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_conj_q15(
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t numSamples);
-
-
-
-  /**
-   * @brief  Floating-point complex magnitude squared
-   * @param[in]  *pSrc points to the complex input vector
-   * @param[out]  *pDst points to the real output vector
-   * @param[in]  numSamples number of complex samples in the input vector
-   * @return none.
-   */
-
-  void arm_cmplx_mag_squared_f32(
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q31 complex magnitude squared
-   * @param[in]  *pSrc points to the complex input vector
-   * @param[out]  *pDst points to the real output vector
-   * @param[in]  numSamples number of complex samples in the input vector
-   * @return none.
-   */
-
-  void arm_cmplx_mag_squared_q31(
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q15 complex magnitude squared
-   * @param[in]  *pSrc points to the complex input vector
-   * @param[out]  *pDst points to the real output vector
-   * @param[in]  numSamples number of complex samples in the input vector
-   * @return none.
-   */
-
-  void arm_cmplx_mag_squared_q15(
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t numSamples);
-
-
- /**
-   * @ingroup groupController
-   */
-
-  /**
-   * @defgroup PID PID Motor Control
-   *
-   * A Proportional Integral Derivative (PID) controller is a generic feedback control 
-   * loop mechanism widely used in industrial control systems.
-   * A PID controller is the most commonly used type of feedback controller.
-   *
-   * This set of functions implements (PID) controllers
-   * for Q15, Q31, and floating-point data types.  The functions operate on a single sample
-   * of data and each call to the function returns a single processed value.
-   * <code>S</code> points to an instance of the PID control data structure.  <code>in</code>
-   * is the input sample value. The functions return the output value.
-   *
-   * \par Algorithm:
-   * <pre>
-   *    y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
-   *    A0 = Kp + Ki + Kd
-   *    A1 = (-Kp ) - (2 * Kd )
-   *    A2 = Kd  </pre>
-   *
-   * \par
-   * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
-   * 
-   * \par 
-   * \image html PID.gif "Proportional Integral Derivative Controller" 
-   *
-   * \par
-   * The PID controller calculates an "error" value as the difference between
-   * the measured output and the reference input.
-   * The controller attempts to minimize the error by adjusting the process control inputs.  
-   * The proportional value determines the reaction to the current error, 
-   * the integral value determines the reaction based on the sum of recent errors, 
-   * and the derivative value determines the reaction based on the rate at which the error has been changing.
-   *
-   * \par Instance Structure 
-   * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. 
-   * A separate instance structure must be defined for each PID Controller. 
-   * There are separate instance structure declarations for each of the 3 supported data types. 
-   * 
-   * \par Reset Functions 
-   * There is also an associated reset function for each data type which clears the state array. 
-   *
-   * \par Initialization Functions 
-   * There is also an associated initialization function for each data type. 
-   * The initialization function performs the following operations: 
-   * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
-   * - Zeros out the values in the state buffer.   
-   * 
-   * \par 
-   * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. 
-   *
-   * \par Fixed-Point Behavior 
-   * Care must be taken when using the fixed-point versions of the PID Controller functions. 
-   * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. 
-   * Refer to the function specific documentation below for usage guidelines. 
-   */
-
-  /**
-   * @addtogroup PID
-   * @{
-   */
-
-  /**
-   * @brief  Process function for the floating-point PID Control.
-   * @param[in,out] *S is an instance of the floating-point PID Control structure
-   * @param[in] in input sample to process
-   * @return out processed output sample.
-   */
-
-
-  __STATIC_INLINE float32_t arm_pid_f32(
-  arm_pid_instance_f32 * S,
-  float32_t in)
-  {
-    float32_t out;
-
-    /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]  */
-    out = (S->A0 * in) +
-      (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
-
-    /* Update state */
-    S->state[1] = S->state[0];
-    S->state[0] = in;
-    S->state[2] = out;
-
-    /* return to application */
-    return (out);
-
-  }
-
-  /**
-   * @brief  Process function for the Q31 PID Control.
-   * @param[in,out] *S points to an instance of the Q31 PID Control structure
-   * @param[in] in input sample to process
-   * @return out processed output sample.
-   *
-   * <b>Scaling and Overflow Behavior:</b> 
-   * \par 
-   * The function is implemented using an internal 64-bit accumulator. 
-   * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. 
-   * Thus, if the accumulator result overflows it wraps around rather than clip. 
-   * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. 
-   * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. 
-   */
-
-  __STATIC_INLINE q31_t arm_pid_q31(
-  arm_pid_instance_q31 * S,
-  q31_t in)
-  {
-    q63_t acc;
-    q31_t out;
-
-    /* acc = A0 * x[n]  */
-    acc = (q63_t) S->A0 * in;
-
-    /* acc += A1 * x[n-1] */
-    acc += (q63_t) S->A1 * S->state[0];
-
-    /* acc += A2 * x[n-2]  */
-    acc += (q63_t) S->A2 * S->state[1];
-
-    /* convert output to 1.31 format to add y[n-1] */
-    out = (q31_t) (acc >> 31u);
-
-    /* out += y[n-1] */
-    out += S->state[2];
-
-    /* Update state */
-    S->state[1] = S->state[0];
-    S->state[0] = in;
-    S->state[2] = out;
-
-    /* return to application */
-    return (out);
-
-  }
-
-  /**
-   * @brief  Process function for the Q15 PID Control.
-   * @param[in,out] *S points to an instance of the Q15 PID Control structure
-   * @param[in] in input sample to process
-   * @return out processed output sample.
-   *
-   * <b>Scaling and Overflow Behavior:</b> 
-   * \par 
-   * The function is implemented using a 64-bit internal accumulator. 
-   * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. 
-   * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. 
-   * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. 
-   * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. 
-   * Lastly, the accumulator is saturated to yield a result in 1.15 format.
-   */
-
-  __STATIC_INLINE q15_t arm_pid_q15(
-  arm_pid_instance_q15 * S,
-  q15_t in)
-  {
-    q63_t acc;
-    q15_t out;
-
-    /* Implementation of PID controller */
-
-#ifdef ARM_MATH_CM0
-
-    /* acc = A0 * x[n]  */
-    acc = ((q31_t) S->A0) * in;
-
-#else
-
-    /* acc = A0 * x[n]  */
-    acc = (q31_t) __SMUAD(S->A0, in);
-
-#endif
-
-#ifdef ARM_MATH_CM0
-
-    /* acc += A1 * x[n-1] + A2 * x[n-2]  */
-    acc += (q31_t) S->A1 * S->state[0];
-    acc += (q31_t) S->A2 * S->state[1];
-
-#else
-
-    /* acc += A1 * x[n-1] + A2 * x[n-2]  */
-    acc = __SMLALD(S->A1, (q31_t) __SIMD32(S->state), acc);
-
-#endif
-
-    /* acc += y[n-1] */
-    acc += (q31_t) S->state[2] << 15;
-
-    /* saturate the output */
-    out = (q15_t) (__SSAT((acc >> 15), 16));
-
-    /* Update state */
-    S->state[1] = S->state[0];
-    S->state[0] = in;
-    S->state[2] = out;
-
-    /* return to application */
-    return (out);
-
-  }
-
-  /**
-   * @} end of PID group
-   */
-
-
-  /**
-   * @brief Floating-point matrix inverse.
-   * @param[in]  *src points to the instance of the input floating-point matrix structure.
-   * @param[out] *dst points to the instance of the output floating-point matrix structure.
-   * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
-   * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
-   */
-
-  arm_status arm_mat_inverse_f32(
-  const arm_matrix_instance_f32 * src,
-  arm_matrix_instance_f32 * dst);
-
-
-
-  /**
-   * @ingroup groupController
-   */
-
-
-  /**
-   * @defgroup clarke Vector Clarke Transform
-   * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
-   * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
-   * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
-   * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
-   * \image html clarke.gif Stator current space vector and its components in (a,b).
-   * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
-   * can be calculated using only <code>Ia</code> and <code>Ib</code>.
-   *
-   * The function operates on a single sample of data and each call to the function returns the processed output. 
-   * The library provides separate functions for Q31 and floating-point data types.
-   * \par Algorithm
-   * \image html clarkeFormula.gif
-   * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
-   * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
-   * \par Fixed-Point Behavior
-   * Care must be taken when using the Q31 version of the Clarke transform.
-   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
-   * Refer to the function specific documentation below for usage guidelines.
-   */
-
-  /**
-   * @addtogroup clarke
-   * @{
-   */
-
-  /**
-   *
-   * @brief  Floating-point Clarke transform
-   * @param[in]       Ia       input three-phase coordinate <code>a</code>
-   * @param[in]       Ib       input three-phase coordinate <code>b</code>
-   * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha
-   * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta
-   * @return none.
-   */
-
-  __STATIC_INLINE void arm_clarke_f32(
-  float32_t Ia,
-  float32_t Ib,
-  float32_t * pIalpha,
-  float32_t * pIbeta)
-  {
-    /* Calculate pIalpha using the equation, pIalpha = Ia */
-    *pIalpha = Ia;
-
-    /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
-    *pIbeta =
-      ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
-
-  }
-
-  /**
-   * @brief  Clarke transform for Q31 version
-   * @param[in]       Ia       input three-phase coordinate <code>a</code>
-   * @param[in]       Ib       input three-phase coordinate <code>b</code>
-   * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha
-   * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta
-   * @return none.
-   *
-   * <b>Scaling and Overflow Behavior:</b>
-   * \par
-   * The function is implemented using an internal 32-bit accumulator.
-   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
-   * There is saturation on the addition, hence there is no risk of overflow.
-   */
-
-  __STATIC_INLINE void arm_clarke_q31(
-  q31_t Ia,
-  q31_t Ib,
-  q31_t * pIalpha,
-  q31_t * pIbeta)
-  {
-    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
-
-    /* Calculating pIalpha from Ia by equation pIalpha = Ia */
-    *pIalpha = Ia;
-
-    /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
-    product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
-
-    /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
-    product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
-
-    /* pIbeta is calculated by adding the intermediate products */
-    *pIbeta = __QADD(product1, product2);
-  }
-
-  /**
-   * @} end of clarke group
-   */
-
-  /**
-   * @brief  Converts the elements of the Q7 vector to Q31 vector.
-   * @param[in]  *pSrc     input pointer
-   * @param[out]  *pDst    output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_q7_to_q31(
-  q7_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-
-
-
-  /**
-   * @ingroup groupController
-   */
-
-  /**
-   * @defgroup inv_clarke Vector Inverse Clarke Transform
-   * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
-   * 
-   * The function operates on a single sample of data and each call to the function returns the processed output. 
-   * The library provides separate functions for Q31 and floating-point data types.
-   * \par Algorithm
-   * \image html clarkeInvFormula.gif
-   * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
-   * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
-   * \par Fixed-Point Behavior
-   * Care must be taken when using the Q31 version of the Clarke transform.
-   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
-   * Refer to the function specific documentation below for usage guidelines.
-   */
-
-  /**
-   * @addtogroup inv_clarke
-   * @{
-   */
-
-   /**
-   * @brief  Floating-point Inverse Clarke transform
-   * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha
-   * @param[in]       Ibeta   input two-phase orthogonal vector axis beta
-   * @param[out]      *pIa    points to output three-phase coordinate <code>a</code>
-   * @param[out]      *pIb    points to output three-phase coordinate <code>b</code>
-   * @return none.
-   */
-
-
-  __STATIC_INLINE void arm_inv_clarke_f32(
-  float32_t Ialpha,
-  float32_t Ibeta,
-  float32_t * pIa,
-  float32_t * pIb)
-  {
-    /* Calculating pIa from Ialpha by equation pIa = Ialpha */
-    *pIa = Ialpha;
-
-    /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
-    *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
-
-  }
-
-  /**
-   * @brief  Inverse Clarke transform for Q31 version 
-   * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha
-   * @param[in]       Ibeta   input two-phase orthogonal vector axis beta
-   * @param[out]      *pIa    points to output three-phase coordinate <code>a</code>
-   * @param[out]      *pIb    points to output three-phase coordinate <code>b</code>
-   * @return none.
-   *
-   * <b>Scaling and Overflow Behavior:</b>
-   * \par
-   * The function is implemented using an internal 32-bit accumulator.
-   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
-   * There is saturation on the subtraction, hence there is no risk of overflow.
-   */
-
-  __STATIC_INLINE void arm_inv_clarke_q31(
-  q31_t Ialpha,
-  q31_t Ibeta,
-  q31_t * pIa,
-  q31_t * pIb)
-  {
-    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
-
-    /* Calculating pIa from Ialpha by equation pIa = Ialpha */
-    *pIa = Ialpha;
-
-    /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
-    product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
-
-    /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
-    product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
-
-    /* pIb is calculated by subtracting the products */
-    *pIb = __QSUB(product2, product1);
-
-  }
-
-  /**
-   * @} end of inv_clarke group
-   */
-
-  /**
-   * @brief  Converts the elements of the Q7 vector to Q15 vector.
-   * @param[in]  *pSrc     input pointer
-   * @param[out] *pDst     output pointer
-   * @param[in]  blockSize number of samples to process
-   * @return none.
-   */
-  void arm_q7_to_q15(
-  q7_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-
-
-  /**
-   * @ingroup groupController
-   */
-
-  /**
-   * @defgroup park Vector Park Transform
-   *
-   * Forward Park transform converts the input two-coordinate vector to flux and torque components.
-   * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents 
-   * from the stationary to the moving reference frame and control the spatial relationship between 
-   * the stator vector current and rotor flux vector.
-   * If we consider the d axis aligned with the rotor flux, the diagram below shows the 
-   * current vector and the relationship from the two reference frames:
-   * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
-   *
-   * The function operates on a single sample of data and each call to the function returns the processed output. 
-   * The library provides separate functions for Q31 and floating-point data types.
-   * \par Algorithm
-   * \image html parkFormula.gif
-   * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,  
-   * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the 
-   * cosine and sine values of theta (rotor flux position).
-   * \par Fixed-Point Behavior
-   * Care must be taken when using the Q31 version of the Park transform.
-   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
-   * Refer to the function specific documentation below for usage guidelines.
-   */
-
-  /**
-   * @addtogroup park
-   * @{
-   */
-
-  /**
-   * @brief Floating-point Park transform
-   * @param[in]       Ialpha input two-phase vector coordinate alpha
-   * @param[in]       Ibeta  input two-phase vector coordinate beta
-   * @param[out]      *pId   points to output  rotor reference frame d
-   * @param[out]      *pIq   points to output  rotor reference frame q
-   * @param[in]       sinVal sine value of rotation angle theta
-   * @param[in]       cosVal cosine value of rotation angle theta
-   * @return none.
-   *
-   * The function implements the forward Park transform.
-   *
-   */
-
-  __STATIC_INLINE void arm_park_f32(
-  float32_t Ialpha,
-  float32_t Ibeta,
-  float32_t * pId,
-  float32_t * pIq,
-  float32_t sinVal,
-  float32_t cosVal)
-  {
-    /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
-    *pId = Ialpha * cosVal + Ibeta * sinVal;
-
-    /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
-    *pIq = -Ialpha * sinVal + Ibeta * cosVal;
-
-  }
-
-  /**
-   * @brief  Park transform for Q31 version 
-   * @param[in]       Ialpha input two-phase vector coordinate alpha
-   * @param[in]       Ibeta  input two-phase vector coordinate beta
-   * @param[out]      *pId   points to output rotor reference frame d
-   * @param[out]      *pIq   points to output rotor reference frame q
-   * @param[in]       sinVal sine value of rotation angle theta
-   * @param[in]       cosVal cosine value of rotation angle theta
-   * @return none.
-   *
-   * <b>Scaling and Overflow Behavior:</b>
-   * \par
-   * The function is implemented using an internal 32-bit accumulator.
-   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
-   * There is saturation on the addition and subtraction, hence there is no risk of overflow.
-   */
-
-
-  __STATIC_INLINE void arm_park_q31(
-  q31_t Ialpha,
-  q31_t Ibeta,
-  q31_t * pId,
-  q31_t * pIq,
-  q31_t sinVal,
-  q31_t cosVal)
-  {
-    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
-    q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
-
-    /* Intermediate product is calculated by (Ialpha * cosVal) */
-    product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
-
-    /* Intermediate product is calculated by (Ibeta * sinVal) */
-    product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
-
-
-    /* Intermediate product is calculated by (Ialpha * sinVal) */
-    product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
-
-    /* Intermediate product is calculated by (Ibeta * cosVal) */
-    product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
-
-    /* Calculate pId by adding the two intermediate products 1 and 2 */
-    *pId = __QADD(product1, product2);
-
-    /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
-    *pIq = __QSUB(product4, product3);
-  }
-
-  /**
-   * @} end of park group
-   */
-
-  /**
-   * @brief  Converts the elements of the Q7 vector to floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[out]  *pDst is output pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @return none.
-   */
-  void arm_q7_to_float(
-  q7_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @ingroup groupController
-   */
-
-  /**
-   * @defgroup inv_park Vector Inverse Park transform
-   * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
-   *
-   * The function operates on a single sample of data and each call to the function returns the processed output. 
-   * The library provides separate functions for Q31 and floating-point data types.
-   * \par Algorithm
-   * \image html parkInvFormula.gif
-   * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,  
-   * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the 
-   * cosine and sine values of theta (rotor flux position).
-   * \par Fixed-Point Behavior
-   * Care must be taken when using the Q31 version of the Park transform.
-   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
-   * Refer to the function specific documentation below for usage guidelines.
-   */
-
-  /**
-   * @addtogroup inv_park
-   * @{
-   */
-
-   /**
-   * @brief  Floating-point Inverse Park transform
-   * @param[in]       Id        input coordinate of rotor reference frame d
-   * @param[in]       Iq        input coordinate of rotor reference frame q
-   * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha
-   * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta
-   * @param[in]       sinVal    sine value of rotation angle theta
-   * @param[in]       cosVal    cosine value of rotation angle theta
-   * @return none.
-   */
-
-  __STATIC_INLINE void arm_inv_park_f32(
-  float32_t Id,
-  float32_t Iq,
-  float32_t * pIalpha,
-  float32_t * pIbeta,
-  float32_t sinVal,
-  float32_t cosVal)
-  {
-    /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
-    *pIalpha = Id * cosVal - Iq * sinVal;
-
-    /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
-    *pIbeta = Id * sinVal + Iq * cosVal;
-
-  }
-
-
-  /**
-   * @brief  Inverse Park transform for        Q31 version 
-   * @param[in]       Id        input coordinate of rotor reference frame d
-   * @param[in]       Iq        input coordinate of rotor reference frame q
-   * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha
-   * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta
-   * @param[in]       sinVal    sine value of rotation angle theta
-   * @param[in]       cosVal    cosine value of rotation angle theta
-   * @return none.
-   *
-   * <b>Scaling and Overflow Behavior:</b>
-   * \par
-   * The function is implemented using an internal 32-bit accumulator.
-   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
-   * There is saturation on the addition, hence there is no risk of overflow.
-   */
-
-
-  __STATIC_INLINE void arm_inv_park_q31(
-  q31_t Id,
-  q31_t Iq,
-  q31_t * pIalpha,
-  q31_t * pIbeta,
-  q31_t sinVal,
-  q31_t cosVal)
-  {
-    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
-    q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
-
-    /* Intermediate product is calculated by (Id * cosVal) */
-    product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
-
-    /* Intermediate product is calculated by (Iq * sinVal) */
-    product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
-
-
-    /* Intermediate product is calculated by (Id * sinVal) */
-    product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
-
-    /* Intermediate product is calculated by (Iq * cosVal) */
-    product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
-
-    /* Calculate pIalpha by using the two intermediate products 1 and 2 */
-    *pIalpha = __QSUB(product1, product2);
-
-    /* Calculate pIbeta by using the two intermediate products 3 and 4 */
-    *pIbeta = __QADD(product4, product3);
-
-  }
-
-  /**
-   * @} end of Inverse park group
-   */
-
-
-  /**
-   * @brief  Converts the elements of the Q31 vector to floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[out]  *pDst is output pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @return none.
-   */
-  void arm_q31_to_float(
-  q31_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @ingroup groupInterpolation
-   */
-
-  /**
-   * @defgroup LinearInterpolate Linear Interpolation
-   *
-   * Linear interpolation is a method of curve fitting using linear polynomials.
-   * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
-   *
-   * \par 
-   * \image html LinearInterp.gif "Linear interpolation"
-   *
-   * \par
-   * A  Linear Interpolate function calculates an output value(y), for the input(x)
-   * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
-   *
-   * \par Algorithm:
-   * <pre>
-   *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
-   *       where x0, x1 are nearest values of input x
-   *             y0, y1 are nearest values to output y
-   * </pre>
-   *
-   * \par
-   * This set of functions implements Linear interpolation process
-   * for Q7, Q15, Q31, and floating-point data types.  The functions operate on a single
-   * sample of data and each call to the function returns a single processed value.
-   * <code>S</code> points to an instance of the Linear Interpolate function data structure.
-   * <code>x</code> is the input sample value. The functions returns the output value.
-   * 
-   * \par
-   * if x is outside of the table boundary, Linear interpolation returns first value of the table 
-   * if x is below input range and returns last value of table if x is above range.  
-   */
-
-  /**
-   * @addtogroup LinearInterpolate
-   * @{
-   */
-
-  /**
-   * @brief  Process function for the floating-point Linear Interpolation Function.
-   * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
-   * @param[in] x input sample to process
-   * @return y processed output sample.
-   *
-   */
-
-  __STATIC_INLINE float32_t arm_linear_interp_f32(
-  arm_linear_interp_instance_f32 * S,
-  float32_t x)
-  {
-
-    float32_t y;
-    float32_t x0, x1;                            /* Nearest input values */
-    float32_t y0, y1;                            /* Nearest output values */
-    float32_t xSpacing = S->xSpacing;            /* spacing between input values */
-    int32_t i;                                   /* Index variable */
-    float32_t *pYData = S->pYData;               /* pointer to output table */
-
-    /* Calculation of index */
-    i = (x - S->x1) / xSpacing;
-
-    if(i < 0)
-    {
-      /* Iniatilize output for below specified range as least output value of table */
-      y = pYData[0];
-    }
-    else if(i >= S->nValues)
-    {
-      /* Iniatilize output for above specified range as last output value of table */
-      y = pYData[S->nValues - 1];
-    }
-    else
-    {
-      /* Calculation of nearest input values */
-      x0 = S->x1 + i * xSpacing;
-      x1 = S->x1 + (i + 1) * xSpacing;
-
-      /* Read of nearest output values */
-      y0 = pYData[i];
-      y1 = pYData[i + 1];
-
-      /* Calculation of output */
-      y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
-
-    }
-
-    /* returns output value */
-    return (y);
-  }
-
-   /**
-   *
-   * @brief  Process function for the Q31 Linear Interpolation Function.
-   * @param[in] *pYData  pointer to Q31 Linear Interpolation table
-   * @param[in] x input sample to process
-   * @param[in] nValues number of table values
-   * @return y processed output sample.
-   *
-   * \par
-   * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
-   * This function can support maximum of table size 2^12.
-   *
-   */
-
-
-  __STATIC_INLINE q31_t arm_linear_interp_q31(
-  q31_t * pYData,
-  q31_t x,
-  uint32_t nValues)
-  {
-    q31_t y;                                     /* output */
-    q31_t y0, y1;                                /* Nearest output values */
-    q31_t fract;                                 /* fractional part */
-    int32_t index;                               /* Index to read nearest output values */
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    index = ((x & 0xFFF00000) >> 20);
-
-    if(index >= (nValues - 1))
-    {
-      return (pYData[nValues - 1]);
-    }
-    else if(index < 0)
-    {
-      return (pYData[0]);
-    }
-    else
-    {
-
-      /* 20 bits for the fractional part */
-      /* shift left by 11 to keep fract in 1.31 format */
-      fract = (x & 0x000FFFFF) << 11;
-
-      /* Read two nearest output values from the index in 1.31(q31) format */
-      y0 = pYData[index];
-      y1 = pYData[index + 1u];
-
-      /* Calculation of y0 * (1-fract) and y is in 2.30 format */
-      y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
-
-      /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
-      y += ((q31_t) (((q63_t) y1 * fract) >> 32));
-
-      /* Convert y to 1.31 format */
-      return (y << 1u);
-
-    }
-
-  }
-
-  /**
-   *
-   * @brief  Process function for the Q15 Linear Interpolation Function.
-   * @param[in] *pYData  pointer to Q15 Linear Interpolation table
-   * @param[in] x input sample to process
-   * @param[in] nValues number of table values
-   * @return y processed output sample.
-   *
-   * \par
-   * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
-   * This function can support maximum of table size 2^12. 
-   *
-   */
-
-
-  __STATIC_INLINE q15_t arm_linear_interp_q15(
-  q15_t * pYData,
-  q31_t x,
-  uint32_t nValues)
-  {
-    q63_t y;                                     /* output */
-    q15_t y0, y1;                                /* Nearest output values */
-    q31_t fract;                                 /* fractional part */
-    int32_t index;                               /* Index to read nearest output values */
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    index = ((x & 0xFFF00000) >> 20u);
-
-    if(index >= (nValues - 1))
-    {
-      return (pYData[nValues - 1]);
-    }
-    else if(index < 0)
-    {
-      return (pYData[0]);
-    }
-    else
-    {
-      /* 20 bits for the fractional part */
-      /* fract is in 12.20 format */
-      fract = (x & 0x000FFFFF);
-
-      /* Read two nearest output values from the index */
-      y0 = pYData[index];
-      y1 = pYData[index + 1u];
-
-      /* Calculation of y0 * (1-fract) and y is in 13.35 format */
-      y = ((q63_t) y0 * (0xFFFFF - fract));
-
-      /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
-      y += ((q63_t) y1 * (fract));
-
-      /* convert y to 1.15 format */
-      return (y >> 20);
-    }
-
-
-  }
-
-  /**
-   *
-   * @brief  Process function for the Q7 Linear Interpolation Function.
-   * @param[in] *pYData  pointer to Q7 Linear Interpolation table
-   * @param[in] x input sample to process
-   * @param[in] nValues number of table values
-   * @return y processed output sample.
-   *
-   * \par
-   * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
-   * This function can support maximum of table size 2^12.
-   */
-
-
-  __STATIC_INLINE q7_t arm_linear_interp_q7(
-  q7_t * pYData,
-  q31_t x,
-  uint32_t nValues)
-  {
-    q31_t y;                                     /* output */
-    q7_t y0, y1;                                 /* Nearest output values */
-    q31_t fract;                                 /* fractional part */
-    int32_t index;                               /* Index to read nearest output values */
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    index = ((x & 0xFFF00000) >> 20u);
-
-
-    if(index >= (nValues - 1))
-    {
-      return (pYData[nValues - 1]);
-    }
-    else if(index < 0)
-    {
-      return (pYData[0]);
-    }
-    else
-    {
-
-      /* 20 bits for the fractional part */
-      /* fract is in 12.20 format */
-      fract = (x & 0x000FFFFF);
-
-      /* Read two nearest output values from the index and are in 1.7(q7) format */
-      y0 = pYData[index];
-      y1 = pYData[index + 1u];
-
-      /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
-      y = ((y0 * (0xFFFFF - fract)));
-
-      /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
-      y += (y1 * fract);
-
-      /* convert y to 1.7(q7) format */
-      return (y >> 20u);
-
-    }
-
-  }
-  /**
-   * @} end of LinearInterpolate group
-   */
-
-  /**
-   * @brief  Fast approximation to the trigonometric sine function for floating-point data.
-   * @param[in] x input value in radians.
-   * @return  sin(x).
-   */
-
-  float32_t arm_sin_f32(
-  float32_t x);
-
-  /**
-   * @brief  Fast approximation to the trigonometric sine function for Q31 data.
-   * @param[in] x Scaled input value in radians.
-   * @return  sin(x).
-   */
-
-  q31_t arm_sin_q31(
-  q31_t x);
-
-  /**
-   * @brief  Fast approximation to the trigonometric sine function for Q15 data.
-   * @param[in] x Scaled input value in radians.
-   * @return  sin(x).
-   */
-
-  q15_t arm_sin_q15(
-  q15_t x);
-
-  /**
-   * @brief  Fast approximation to the trigonometric cosine function for floating-point data.
-   * @param[in] x input value in radians.
-   * @return  cos(x).
-   */
-
-  float32_t arm_cos_f32(
-  float32_t x);
-
-  /**
-   * @brief Fast approximation to the trigonometric cosine function for Q31 data.
-   * @param[in] x Scaled input value in radians.
-   * @return  cos(x).
-   */
-
-  q31_t arm_cos_q31(
-  q31_t x);
-
-  /**
-   * @brief  Fast approximation to the trigonometric cosine function for Q15 data.
-   * @param[in] x Scaled input value in radians.
-   * @return  cos(x).
-   */
-
-  q15_t arm_cos_q15(
-  q15_t x);
-
-
-  /**
-   * @ingroup groupFastMath
-   */
-
-
-  /**
-   * @defgroup SQRT Square Root
-   *
-   * Computes the square root of a number.
-   * There are separate functions for Q15, Q31, and floating-point data types.  
-   * The square root function is computed using the Newton-Raphson algorithm.
-   * This is an iterative algorithm of the form:
-   * <pre>
-   *      x1 = x0 - f(x0)/f'(x0)
-   * </pre>
-   * where <code>x1</code> is the current estimate,
-   * <code>x0</code> is the previous estimate and
-   * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
-   * For the square root function, the algorithm reduces to:
-   * <pre>
-   *     x0 = in/2                         [initial guess]
-   *     x1 = 1/2 * ( x0 + in / x0)        [each iteration]
-   * </pre>
-   */
-
-
-  /**
-   * @addtogroup SQRT
-   * @{
-   */
-
-  /**
-   * @brief  Floating-point square root function.
-   * @param[in]  in     input value.
-   * @param[out] *pOut  square root of input value.
-   * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
-   * <code>in</code> is negative value and returns zero output for negative values.
-   */
-
-  __STATIC_INLINE arm_status arm_sqrt_f32(
-  float32_t in,
-  float32_t * pOut)
-  {
-    if(in > 0)
-    {
-
-//    #if __FPU_USED
-    #if (__FPU_USED == 1) && defined ( __CC_ARM   )
-        *pOut = __sqrtf(in);
-    #elif (__FPU_USED == 1) && defined ( __TMS_740 )
-        *pOut = __builtin_sqrtf(in);
-    #else
-        *pOut = sqrtf(in);
-    #endif
-
-      return (ARM_MATH_SUCCESS);
-    }
-    else
-    {
-      *pOut = 0.0f;
-      return (ARM_MATH_ARGUMENT_ERROR);
-    }
-
-  }
-
-
-  /**
-   * @brief Q31 square root function.
-   * @param[in]   in    input value.  The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
-   * @param[out]  *pOut square root of input value.
-   * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
-   * <code>in</code> is negative value and returns zero output for negative values.
-   */
-  arm_status arm_sqrt_q31(
-  q31_t in,
-  q31_t * pOut);
-
-  /**
-   * @brief  Q15 square root function.
-   * @param[in]   in     input value.  The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
-   * @param[out]  *pOut  square root of input value.
-   * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
-   * <code>in</code> is negative value and returns zero output for negative values.
-   */
-  arm_status arm_sqrt_q15(
-  q15_t in,
-  q15_t * pOut);
-
-  /**
-   * @} end of SQRT group
-   */
-
-
-
-
-
-
-  /**
-   * @brief floating-point Circular write function.
-   */
-
-  __STATIC_INLINE void arm_circularWrite_f32(
-  int32_t * circBuffer,
-  int32_t L,
-  uint16_t * writeOffset,
-  int32_t bufferInc,
-  const int32_t * src,
-  int32_t srcInc,
-  uint32_t blockSize)
-  {
-    uint32_t i = 0u;
-    int32_t wOffset;
-
-    /* Copy the value of Index pointer that points
-     * to the current location where the input samples to be copied */
-    wOffset = *writeOffset;
-
-    /* Loop over the blockSize */
-    i = blockSize;
-
-    while(i > 0u)
-    {
-      /* copy the input sample to the circular buffer */
-      circBuffer[wOffset] = *src;
-
-      /* Update the input pointer */
-      src += srcInc;
-
-      /* Circularly update wOffset.  Watch out for positive and negative value */
-      wOffset += bufferInc;
-      if(wOffset >= L)
-        wOffset -= L;
-
-      /* Decrement the loop counter */
-      i--;
-    }
-
-    /* Update the index pointer */
-    *writeOffset = wOffset;
-  }
-
-
-
-  /**
-   * @brief floating-point Circular Read function.
-   */
-  __STATIC_INLINE void arm_circularRead_f32(
-  int32_t * circBuffer,
-  int32_t L,
-  int32_t * readOffset,
-  int32_t bufferInc,
-  int32_t * dst,
-  int32_t * dst_base,
-  int32_t dst_length,
-  int32_t dstInc,
-  uint32_t blockSize)
-  {
-    uint32_t i = 0u;
-    int32_t rOffset, dst_end;
-
-    /* Copy the value of Index pointer that points
-     * to the current location from where the input samples to be read */
-    rOffset = *readOffset;
-    dst_end = (int32_t) (dst_base + dst_length);
-
-    /* Loop over the blockSize */
-    i = blockSize;
-
-    while(i > 0u)
-    {
-      /* copy the sample from the circular buffer to the destination buffer */
-      *dst = circBuffer[rOffset];
-
-      /* Update the input pointer */
-      dst += dstInc;
-
-      if(dst == (int32_t *) dst_end)
-      {
-        dst = dst_base;
-      }
-
-      /* Circularly update rOffset.  Watch out for positive and negative value  */
-      rOffset += bufferInc;
-
-      if(rOffset >= L)
-      {
-        rOffset -= L;
-      }
-
-      /* Decrement the loop counter */
-      i--;
-    }
-
-    /* Update the index pointer */
-    *readOffset = rOffset;
-  }
-
-  /**
-   * @brief Q15 Circular write function.
-   */
-
-  __STATIC_INLINE void arm_circularWrite_q15(
-  q15_t * circBuffer,
-  int32_t L,
-  uint16_t * writeOffset,
-  int32_t bufferInc,
-  const q15_t * src,
-  int32_t srcInc,
-  uint32_t blockSize)
-  {
-    uint32_t i = 0u;
-    int32_t wOffset;
-
-    /* Copy the value of Index pointer that points
-     * to the current location where the input samples to be copied */
-    wOffset = *writeOffset;
-
-    /* Loop over the blockSize */
-    i = blockSize;
-
-    while(i > 0u)
-    {
-      /* copy the input sample to the circular buffer */
-      circBuffer[wOffset] = *src;
-
-      /* Update the input pointer */
-      src += srcInc;
-
-      /* Circularly update wOffset.  Watch out for positive and negative value */
-      wOffset += bufferInc;
-      if(wOffset >= L)
-        wOffset -= L;
-
-      /* Decrement the loop counter */
-      i--;
-    }
-
-    /* Update the index pointer */
-    *writeOffset = wOffset;
-  }
-
-
-
-  /**
-   * @brief Q15 Circular Read function.
-   */
-  __STATIC_INLINE void arm_circularRead_q15(
-  q15_t * circBuffer,
-  int32_t L,
-  int32_t * readOffset,
-  int32_t bufferInc,
-  q15_t * dst,
-  q15_t * dst_base,
-  int32_t dst_length,
-  int32_t dstInc,
-  uint32_t blockSize)
-  {
-    uint32_t i = 0;
-    int32_t rOffset, dst_end;
-
-    /* Copy the value of Index pointer that points
-     * to the current location from where the input samples to be read */
-    rOffset = *readOffset;
-
-    dst_end = (int32_t) (dst_base + dst_length);
-
-    /* Loop over the blockSize */
-    i = blockSize;
-
-    while(i > 0u)
-    {
-      /* copy the sample from the circular buffer to the destination buffer */
-      *dst = circBuffer[rOffset];
-
-      /* Update the input pointer */
-      dst += dstInc;
-
-      if(dst == (q15_t *) dst_end)
-      {
-        dst = dst_base;
-      }
-
-      /* Circularly update wOffset.  Watch out for positive and negative value */
-      rOffset += bufferInc;
-
-      if(rOffset >= L)
-      {
-        rOffset -= L;
-      }
-
-      /* Decrement the loop counter */
-      i--;
-    }
-
-    /* Update the index pointer */
-    *readOffset = rOffset;
-  }
-
-
-  /**
-   * @brief Q7 Circular write function.
-   */
-
-  __STATIC_INLINE void arm_circularWrite_q7(
-  q7_t * circBuffer,
-  int32_t L,
-  uint16_t * writeOffset,
-  int32_t bufferInc,
-  const q7_t * src,
-  int32_t srcInc,
-  uint32_t blockSize)
-  {
-    uint32_t i = 0u;
-    int32_t wOffset;
-
-    /* Copy the value of Index pointer that points
-     * to the current location where the input samples to be copied */
-    wOffset = *writeOffset;
-
-    /* Loop over the blockSize */
-    i = blockSize;
-
-    while(i > 0u)
-    {
-      /* copy the input sample to the circular buffer */
-      circBuffer[wOffset] = *src;
-
-      /* Update the input pointer */
-      src += srcInc;
-
-      /* Circularly update wOffset.  Watch out for positive and negative value */
-      wOffset += bufferInc;
-      if(wOffset >= L)
-        wOffset -= L;
-
-      /* Decrement the loop counter */
-      i--;
-    }
-
-    /* Update the index pointer */
-    *writeOffset = wOffset;
-  }
-
-
-
-  /**
-   * @brief Q7 Circular Read function.
-   */
-  __STATIC_INLINE void arm_circularRead_q7(
-  q7_t * circBuffer,
-  int32_t L,
-  int32_t * readOffset,
-  int32_t bufferInc,
-  q7_t * dst,
-  q7_t * dst_base,
-  int32_t dst_length,
-  int32_t dstInc,
-  uint32_t blockSize)
-  {
-    uint32_t i = 0;
-    int32_t rOffset, dst_end;
-
-    /* Copy the value of Index pointer that points
-     * to the current location from where the input samples to be read */
-    rOffset = *readOffset;
-
-    dst_end = (int32_t) (dst_base + dst_length);
-
-    /* Loop over the blockSize */
-    i = blockSize;
-
-    while(i > 0u)
-    {
-      /* copy the sample from the circular buffer to the destination buffer */
-      *dst = circBuffer[rOffset];
-
-      /* Update the input pointer */
-      dst += dstInc;
-
-      if(dst == (q7_t *) dst_end)
-      {
-        dst = dst_base;
-      }
-
-      /* Circularly update rOffset.  Watch out for positive and negative value */
-      rOffset += bufferInc;
-
-      if(rOffset >= L)
-      {
-        rOffset -= L;
-      }
-
-      /* Decrement the loop counter */
-      i--;
-    }
-
-    /* Update the index pointer */
-    *readOffset = rOffset;
-  }
-
-
-  /**
-   * @brief  Sum of the squares of the elements of a Q31 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_power_q31(
-  q31_t * pSrc,
-  uint32_t blockSize,
-  q63_t * pResult);
-
-  /**
-   * @brief  Sum of the squares of the elements of a floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_power_f32(
-  float32_t * pSrc,
-  uint32_t blockSize,
-  float32_t * pResult);
-
-  /**
-   * @brief  Sum of the squares of the elements of a Q15 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_power_q15(
-  q15_t * pSrc,
-  uint32_t blockSize,
-  q63_t * pResult);
-
-  /**
-   * @brief  Sum of the squares of the elements of a Q7 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_power_q7(
-  q7_t * pSrc,
-  uint32_t blockSize,
-  q31_t * pResult);
-
-  /**
-   * @brief  Mean value of a Q7 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_mean_q7(
-  q7_t * pSrc,
-  uint32_t blockSize,
-  q7_t * pResult);
-
-  /**
-   * @brief  Mean value of a Q15 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-  void arm_mean_q15(
-  q15_t * pSrc,
-  uint32_t blockSize,
-  q15_t * pResult);
-
-  /**
-   * @brief  Mean value of a Q31 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-  void arm_mean_q31(
-  q31_t * pSrc,
-  uint32_t blockSize,
-  q31_t * pResult);
-
-  /**
-   * @brief  Mean value of a floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-  void arm_mean_f32(
-  float32_t * pSrc,
-  uint32_t blockSize,
-  float32_t * pResult);
-
-  /**
-   * @brief  Variance of the elements of a floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_var_f32(
-  float32_t * pSrc,
-  uint32_t blockSize,
-  float32_t * pResult);
-
-  /**
-   * @brief  Variance of the elements of a Q31 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_var_q31(
-  q31_t * pSrc,
-  uint32_t blockSize,
-  q63_t * pResult);
-
-  /**
-   * @brief  Variance of the elements of a Q15 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_var_q15(
-  q15_t * pSrc,
-  uint32_t blockSize,
-  q31_t * pResult);
-
-  /**
-   * @brief  Root Mean Square of the elements of a floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_rms_f32(
-  float32_t * pSrc,
-  uint32_t blockSize,
-  float32_t * pResult);
-
-  /**
-   * @brief  Root Mean Square of the elements of a Q31 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_rms_q31(
-  q31_t * pSrc,
-  uint32_t blockSize,
-  q31_t * pResult);
-
-  /**
-   * @brief  Root Mean Square of the elements of a Q15 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_rms_q15(
-  q15_t * pSrc,
-  uint32_t blockSize,
-  q15_t * pResult);
-
-  /**
-   * @brief  Standard deviation of the elements of a floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_std_f32(
-  float32_t * pSrc,
-  uint32_t blockSize,
-  float32_t * pResult);
-
-  /**
-   * @brief  Standard deviation of the elements of a Q31 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_std_q31(
-  q31_t * pSrc,
-  uint32_t blockSize,
-  q31_t * pResult);
-
-  /**
-   * @brief  Standard deviation of the elements of a Q15 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output value.
-   * @return none.
-   */
-
-  void arm_std_q15(
-  q15_t * pSrc,
-  uint32_t blockSize,
-  q15_t * pResult);
-
-  /**
-   * @brief  Floating-point complex magnitude
-   * @param[in]  *pSrc points to the complex input vector
-   * @param[out]  *pDst points to the real output vector
-   * @param[in]  numSamples number of complex samples in the input vector
-   * @return none.
-   */
-
-  void arm_cmplx_mag_f32(
-  float32_t * pSrc,
-  float32_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q31 complex magnitude
-   * @param[in]  *pSrc points to the complex input vector
-   * @param[out]  *pDst points to the real output vector
-   * @param[in]  numSamples number of complex samples in the input vector
-   * @return none.
-   */
-
-  void arm_cmplx_mag_q31(
-  q31_t * pSrc,
-  q31_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q15 complex magnitude
-   * @param[in]  *pSrc points to the complex input vector
-   * @param[out]  *pDst points to the real output vector
-   * @param[in]  numSamples number of complex samples in the input vector
-   * @return none.
-   */
-
-  void arm_cmplx_mag_q15(
-  q15_t * pSrc,
-  q15_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q15 complex dot product
-   * @param[in]  *pSrcA points to the first input vector
-   * @param[in]  *pSrcB points to the second input vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @param[out]  *realResult real part of the result returned here
-   * @param[out]  *imagResult imaginary part of the result returned here
-   * @return none.
-   */
-
-  void arm_cmplx_dot_prod_q15(
-  q15_t * pSrcA,
-  q15_t * pSrcB,
-  uint32_t numSamples,
-  q31_t * realResult,
-  q31_t * imagResult);
-
-  /**
-   * @brief  Q31 complex dot product
-   * @param[in]  *pSrcA points to the first input vector
-   * @param[in]  *pSrcB points to the second input vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @param[out]  *realResult real part of the result returned here
-   * @param[out]  *imagResult imaginary part of the result returned here
-   * @return none.
-   */
-
-  void arm_cmplx_dot_prod_q31(
-  q31_t * pSrcA,
-  q31_t * pSrcB,
-  uint32_t numSamples,
-  q63_t * realResult,
-  q63_t * imagResult);
-
-  /**
-   * @brief  Floating-point complex dot product
-   * @param[in]  *pSrcA points to the first input vector
-   * @param[in]  *pSrcB points to the second input vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @param[out]  *realResult real part of the result returned here
-   * @param[out]  *imagResult imaginary part of the result returned here
-   * @return none.
-   */
-
-  void arm_cmplx_dot_prod_f32(
-  float32_t * pSrcA,
-  float32_t * pSrcB,
-  uint32_t numSamples,
-  float32_t * realResult,
-  float32_t * imagResult);
-
-  /**
-   * @brief  Q15 complex-by-real multiplication
-   * @param[in]  *pSrcCmplx points to the complex input vector
-   * @param[in]  *pSrcReal points to the real input vector
-   * @param[out]  *pCmplxDst points to the complex output vector
-   * @param[in]  numSamples number of samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_mult_real_q15(
-  q15_t * pSrcCmplx,
-  q15_t * pSrcReal,
-  q15_t * pCmplxDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q31 complex-by-real multiplication
-   * @param[in]  *pSrcCmplx points to the complex input vector
-   * @param[in]  *pSrcReal points to the real input vector
-   * @param[out]  *pCmplxDst points to the complex output vector
-   * @param[in]  numSamples number of samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_mult_real_q31(
-  q31_t * pSrcCmplx,
-  q31_t * pSrcReal,
-  q31_t * pCmplxDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Floating-point complex-by-real multiplication
-   * @param[in]  *pSrcCmplx points to the complex input vector
-   * @param[in]  *pSrcReal points to the real input vector
-   * @param[out]  *pCmplxDst points to the complex output vector
-   * @param[in]  numSamples number of samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_mult_real_f32(
-  float32_t * pSrcCmplx,
-  float32_t * pSrcReal,
-  float32_t * pCmplxDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Minimum value of a Q7 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *result is output pointer
-   * @param[in]  index is the array index of the minimum value in the input buffer.
-   * @return none.
-   */
-
-  void arm_min_q7(
-  q7_t * pSrc,
-  uint32_t blockSize,
-  q7_t * result,
-  uint32_t * index);
-
-  /**
-   * @brief  Minimum value of a Q15 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output pointer
-   * @param[in]  *pIndex is the array index of the minimum value in the input buffer.
-   * @return none.
-   */
-
-  void arm_min_q15(
-  q15_t * pSrc,
-  uint32_t blockSize,
-  q15_t * pResult,
-  uint32_t * pIndex);
-
-  /**
-   * @brief  Minimum value of a Q31 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output pointer
-   * @param[out]  *pIndex is the array index of the minimum value in the input buffer.
-   * @return none.
-   */
-  void arm_min_q31(
-  q31_t * pSrc,
-  uint32_t blockSize,
-  q31_t * pResult,
-  uint32_t * pIndex);
-
-  /**
-   * @brief  Minimum value of a floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @param[out]  *pResult is output pointer
-   * @param[out]  *pIndex is the array index of the minimum value in the input buffer.
-   * @return none.
-   */
-
-  void arm_min_f32(
-  float32_t * pSrc,
-  uint32_t blockSize,
-  float32_t * pResult,
-  uint32_t * pIndex);
-
-/**
- * @brief Maximum value of a Q7 vector.
- * @param[in]       *pSrc points to the input buffer
- * @param[in]       blockSize length of the input vector
- * @param[out]      *pResult maximum value returned here
- * @param[out]      *pIndex index of maximum value returned here
- * @return none.
- */
-
-  void arm_max_q7(
-  q7_t * pSrc,
-  uint32_t blockSize,
-  q7_t * pResult,
-  uint32_t * pIndex);
-
-/**
- * @brief Maximum value of a Q15 vector.
- * @param[in]       *pSrc points to the input buffer
- * @param[in]       blockSize length of the input vector
- * @param[out]      *pResult maximum value returned here
- * @param[out]      *pIndex index of maximum value returned here
- * @return none.
- */
-
-  void arm_max_q15(
-  q15_t * pSrc,
-  uint32_t blockSize,
-  q15_t * pResult,
-  uint32_t * pIndex);
-
-/**
- * @brief Maximum value of a Q31 vector.
- * @param[in]       *pSrc points to the input buffer
- * @param[in]       blockSize length of the input vector
- * @param[out]      *pResult maximum value returned here
- * @param[out]      *pIndex index of maximum value returned here
- * @return none.
- */
-
-  void arm_max_q31(
-  q31_t * pSrc,
-  uint32_t blockSize,
-  q31_t * pResult,
-  uint32_t * pIndex);
-
-/**
- * @brief Maximum value of a floating-point vector.
- * @param[in]       *pSrc points to the input buffer
- * @param[in]       blockSize length of the input vector
- * @param[out]      *pResult maximum value returned here
- * @param[out]      *pIndex index of maximum value returned here
- * @return none.
- */
-
-  void arm_max_f32(
-  float32_t * pSrc,
-  uint32_t blockSize,
-  float32_t * pResult,
-  uint32_t * pIndex);
-
-  /**
-   * @brief  Q15 complex-by-complex multiplication
-   * @param[in]  *pSrcA points to the first input vector
-   * @param[in]  *pSrcB points to the second input vector
-   * @param[out]  *pDst  points to the output vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_mult_cmplx_q15(
-  q15_t * pSrcA,
-  q15_t * pSrcB,
-  q15_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Q31 complex-by-complex multiplication
-   * @param[in]  *pSrcA points to the first input vector
-   * @param[in]  *pSrcB points to the second input vector
-   * @param[out]  *pDst  points to the output vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_mult_cmplx_q31(
-  q31_t * pSrcA,
-  q31_t * pSrcB,
-  q31_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief  Floating-point complex-by-complex multiplication
-   * @param[in]  *pSrcA points to the first input vector
-   * @param[in]  *pSrcB points to the second input vector
-   * @param[out]  *pDst  points to the output vector
-   * @param[in]  numSamples number of complex samples in each vector
-   * @return none.
-   */
-
-  void arm_cmplx_mult_cmplx_f32(
-  float32_t * pSrcA,
-  float32_t * pSrcB,
-  float32_t * pDst,
-  uint32_t numSamples);
-
-  /**
-   * @brief Converts the elements of the floating-point vector to Q31 vector. 
-   * @param[in]       *pSrc points to the floating-point input vector 
-   * @param[out]      *pDst points to the Q31 output vector
-   * @param[in]       blockSize length of the input vector 
-   * @return none. 
-   */
-  void arm_float_to_q31(
-  float32_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Converts the elements of the floating-point vector to Q15 vector. 
-   * @param[in]       *pSrc points to the floating-point input vector 
-   * @param[out]      *pDst points to the Q15 output vector
-   * @param[in]       blockSize length of the input vector 
-   * @return          none
-   */
-  void arm_float_to_q15(
-  float32_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief Converts the elements of the floating-point vector to Q7 vector. 
-   * @param[in]       *pSrc points to the floating-point input vector 
-   * @param[out]      *pDst points to the Q7 output vector
-   * @param[in]       blockSize length of the input vector 
-   * @return          none
-   */
-  void arm_float_to_q7(
-  float32_t * pSrc,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Converts the elements of the Q31 vector to Q15 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[out]  *pDst is output pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @return none.
-   */
-  void arm_q31_to_q15(
-  q31_t * pSrc,
-  q15_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Converts the elements of the Q31 vector to Q7 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[out]  *pDst is output pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @return none.
-   */
-  void arm_q31_to_q7(
-  q31_t * pSrc,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-  /**
-   * @brief  Converts the elements of the Q15 vector to floating-point vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[out]  *pDst is output pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @return none.
-   */
-  void arm_q15_to_float(
-  q15_t * pSrc,
-  float32_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Converts the elements of the Q15 vector to Q31 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[out]  *pDst is output pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @return none.
-   */
-  void arm_q15_to_q31(
-  q15_t * pSrc,
-  q31_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @brief  Converts the elements of the Q15 vector to Q7 vector.
-   * @param[in]  *pSrc is input pointer
-   * @param[out]  *pDst is output pointer
-   * @param[in]  blockSize is the number of samples to process
-   * @return none.
-   */
-  void arm_q15_to_q7(
-  q15_t * pSrc,
-  q7_t * pDst,
-  uint32_t blockSize);
-
-
-  /**
-   * @ingroup groupInterpolation
-   */
-
-  /**
-   * @defgroup BilinearInterpolate Bilinear Interpolation
-   *
-   * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
-   * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
-   * determines values between the grid points.
-   * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
-   * Bilinear interpolation is often used in image processing to rescale images.
-   * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
-   *
-   * <b>Algorithm</b>
-   * \par
-   * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
-   * For floating-point, the instance structure is defined as:
-   * <pre>
-   *   typedef struct
-   *   {
-   *     uint16_t numRows;
-   *     uint16_t numCols;
-   *     float32_t *pData;
-   * } arm_bilinear_interp_instance_f32;
-   * </pre>
-   *
-   * \par
-   * where <code>numRows</code> specifies the number of rows in the table;
-   * <code>numCols</code> specifies the number of columns in the table;
-   * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
-   * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
-   * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
-   *
-   * \par
-   * Let <code>(x, y)</code> specify the desired interpolation point.  Then define:
-   * <pre>
-   *     XF = floor(x)
-   *     YF = floor(y)
-   * </pre>
-   * \par
-   * The interpolated output point is computed as:
-   * <pre>
-   *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
-   *           + f(XF+1, YF) * (x-XF)*(1-(y-YF))
-   *           + f(XF, YF+1) * (1-(x-XF))*(y-YF)
-   *           + f(XF+1, YF+1) * (x-XF)*(y-YF)
-   * </pre>
-   * Note that the coordinates (x, y) contain integer and fractional components.  
-   * The integer components specify which portion of the table to use while the
-   * fractional components control the interpolation processor.
-   *
-   * \par
-   * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. 
-   */
-
-  /**
-   * @addtogroup BilinearInterpolate
-   * @{
-   */
-
-  /**
-  *
-  * @brief  Floating-point bilinear interpolation.
-  * @param[in,out] *S points to an instance of the interpolation structure.
-  * @param[in] X interpolation coordinate.
-  * @param[in] Y interpolation coordinate.
-  * @return out interpolated value.
-  */
-
-
-  __STATIC_INLINE float32_t arm_bilinear_interp_f32(
-  const arm_bilinear_interp_instance_f32 * S,
-  float32_t X,
-  float32_t Y)
-  {
-    float32_t out;
-    float32_t f00, f01, f10, f11;
-    float32_t *pData = S->pData;
-    int32_t xIndex, yIndex, index;
-    float32_t xdiff, ydiff;
-    float32_t b1, b2, b3, b4;
-
-    xIndex = (int32_t) X;
-    yIndex = (int32_t) Y;
-
-    /* Care taken for table outside boundary */
-    /* Returns zero output when values are outside table boundary */
-    if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
-       || yIndex > (S->numCols - 1))
-    {
-      return (0);
-    }
-
-    /* Calculation of index for two nearest points in X-direction */
-    index = (xIndex - 1) + (yIndex - 1) * S->numCols;
-
-
-    /* Read two nearest points in X-direction */
-    f00 = pData[index];
-    f01 = pData[index + 1];
-
-    /* Calculation of index for two nearest points in Y-direction */
-    index = (xIndex - 1) + (yIndex) * S->numCols;
-
-
-    /* Read two nearest points in Y-direction */
-    f10 = pData[index];
-    f11 = pData[index + 1];
-
-    /* Calculation of intermediate values */
-    b1 = f00;
-    b2 = f01 - f00;
-    b3 = f10 - f00;
-    b4 = f00 - f01 - f10 + f11;
-
-    /* Calculation of fractional part in X */
-    xdiff = X - xIndex;
-
-    /* Calculation of fractional part in Y */
-    ydiff = Y - yIndex;
-
-    /* Calculation of bi-linear interpolated output */
-    out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
-
-    /* return to application */
-    return (out);
-
-  }
-
-  /**
-  *
-  * @brief  Q31 bilinear interpolation.
-  * @param[in,out] *S points to an instance of the interpolation structure.
-  * @param[in] X interpolation coordinate in 12.20 format.
-  * @param[in] Y interpolation coordinate in 12.20 format.
-  * @return out interpolated value.
-  */
-
-  __STATIC_INLINE q31_t arm_bilinear_interp_q31(
-  arm_bilinear_interp_instance_q31 * S,
-  q31_t X,
-  q31_t Y)
-  {
-    q31_t out;                                   /* Temporary output */
-    q31_t acc = 0;                               /* output */
-    q31_t xfract, yfract;                        /* X, Y fractional parts */
-    q31_t x1, x2, y1, y2;                        /* Nearest output values */
-    int32_t rI, cI;                              /* Row and column indices */
-    q31_t *pYData = S->pData;                    /* pointer to output table values */
-    uint32_t nCols = S->numCols;                 /* num of rows */
-
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    rI = ((X & 0xFFF00000) >> 20u);
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    cI = ((Y & 0xFFF00000) >> 20u);
-
-    /* Care taken for table outside boundary */
-    /* Returns zero output when values are outside table boundary */
-    if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
-    {
-      return (0);
-    }
-
-    /* 20 bits for the fractional part */
-    /* shift left xfract by 11 to keep 1.31 format */
-    xfract = (X & 0x000FFFFF) << 11u;
-
-    /* Read two nearest output values from the index */
-    x1 = pYData[(rI) + nCols * (cI)];
-    x2 = pYData[(rI) + nCols * (cI) + 1u];
-
-    /* 20 bits for the fractional part */
-    /* shift left yfract by 11 to keep 1.31 format */
-    yfract = (Y & 0x000FFFFF) << 11u;
-
-    /* Read two nearest output values from the index */
-    y1 = pYData[(rI) + nCols * (cI + 1)];
-    y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
-
-    /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
-    out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
-    acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
-
-    /* x2 * (xfract) * (1-yfract)  in 3.29(q29) and adding to acc */
-    out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
-    acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
-
-    /* y1 * (1 - xfract) * (yfract)  in 3.29(q29) and adding to acc */
-    out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
-    acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
-
-    /* y2 * (xfract) * (yfract)  in 3.29(q29) and adding to acc */
-    out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
-    acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
-
-    /* Convert acc to 1.31(q31) format */
-    return (acc << 2u);
-
-  }
-
-  /**
-  * @brief  Q15 bilinear interpolation.
-  * @param[in,out] *S points to an instance of the interpolation structure.
-  * @param[in] X interpolation coordinate in 12.20 format.
-  * @param[in] Y interpolation coordinate in 12.20 format.
-  * @return out interpolated value.
-  */
-
-  __STATIC_INLINE q15_t arm_bilinear_interp_q15(
-  arm_bilinear_interp_instance_q15 * S,
-  q31_t X,
-  q31_t Y)
-  {
-    q63_t acc = 0;                               /* output */
-    q31_t out;                                   /* Temporary output */
-    q15_t x1, x2, y1, y2;                        /* Nearest output values */
-    q31_t xfract, yfract;                        /* X, Y fractional parts */
-    int32_t rI, cI;                              /* Row and column indices */
-    q15_t *pYData = S->pData;                    /* pointer to output table values */
-    uint32_t nCols = S->numCols;                 /* num of rows */
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    rI = ((X & 0xFFF00000) >> 20);
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    cI = ((Y & 0xFFF00000) >> 20);
-
-    /* Care taken for table outside boundary */
-    /* Returns zero output when values are outside table boundary */
-    if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
-    {
-      return (0);
-    }
-
-    /* 20 bits for the fractional part */
-    /* xfract should be in 12.20 format */
-    xfract = (X & 0x000FFFFF);
-
-    /* Read two nearest output values from the index */
-    x1 = pYData[(rI) + nCols * (cI)];
-    x2 = pYData[(rI) + nCols * (cI) + 1u];
-
-
-    /* 20 bits for the fractional part */
-    /* yfract should be in 12.20 format */
-    yfract = (Y & 0x000FFFFF);
-
-    /* Read two nearest output values from the index */
-    y1 = pYData[(rI) + nCols * (cI + 1)];
-    y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
-
-    /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
-
-    /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
-    /* convert 13.35 to 13.31 by right shifting  and out is in 1.31 */
-    out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
-    acc = ((q63_t) out * (0xFFFFF - yfract));
-
-    /* x2 * (xfract) * (1-yfract)  in 1.51 and adding to acc */
-    out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
-    acc += ((q63_t) out * (xfract));
-
-    /* y1 * (1 - xfract) * (yfract)  in 1.51 and adding to acc */
-    out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
-    acc += ((q63_t) out * (yfract));
-
-    /* y2 * (xfract) * (yfract)  in 1.51 and adding to acc */
-    out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
-    acc += ((q63_t) out * (yfract));
-
-    /* acc is in 13.51 format and down shift acc by 36 times */
-    /* Convert out to 1.15 format */
-    return (acc >> 36);
-
-  }
-
-  /**
-  * @brief  Q7 bilinear interpolation.
-  * @param[in,out] *S points to an instance of the interpolation structure.
-  * @param[in] X interpolation coordinate in 12.20 format.
-  * @param[in] Y interpolation coordinate in 12.20 format.
-  * @return out interpolated value.
-  */
-
-  __STATIC_INLINE q7_t arm_bilinear_interp_q7(
-  arm_bilinear_interp_instance_q7 * S,
-  q31_t X,
-  q31_t Y)
-  {
-    q63_t acc = 0;                               /* output */
-    q31_t out;                                   /* Temporary output */
-    q31_t xfract, yfract;                        /* X, Y fractional parts */
-    q7_t x1, x2, y1, y2;                         /* Nearest output values */
-    int32_t rI, cI;                              /* Row and column indices */
-    q7_t *pYData = S->pData;                     /* pointer to output table values */
-    uint32_t nCols = S->numCols;                 /* num of rows */
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    rI = ((X & 0xFFF00000) >> 20);
-
-    /* Input is in 12.20 format */
-    /* 12 bits for the table index */
-    /* Index value calculation */
-    cI = ((Y & 0xFFF00000) >> 20);
-
-    /* Care taken for table outside boundary */
-    /* Returns zero output when values are outside table boundary */
-    if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
-    {
-      return (0);
-    }
-
-    /* 20 bits for the fractional part */
-    /* xfract should be in 12.20 format */
-    xfract = (X & 0x000FFFFF);
-
-    /* Read two nearest output values from the index */
-    x1 = pYData[(rI) + nCols * (cI)];
-    x2 = pYData[(rI) + nCols * (cI) + 1u];
-
-
-    /* 20 bits for the fractional part */
-    /* yfract should be in 12.20 format */
-    yfract = (Y & 0x000FFFFF);
-
-    /* Read two nearest output values from the index */
-    y1 = pYData[(rI) + nCols * (cI + 1)];
-    y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
-
-    /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
-    out = ((x1 * (0xFFFFF - xfract)));
-    acc = (((q63_t) out * (0xFFFFF - yfract)));
-
-    /* x2 * (xfract) * (1-yfract)  in 2.22 and adding to acc */
-    out = ((x2 * (0xFFFFF - yfract)));
-    acc += (((q63_t) out * (xfract)));
-
-    /* y1 * (1 - xfract) * (yfract)  in 2.22 and adding to acc */
-    out = ((y1 * (0xFFFFF - xfract)));
-    acc += (((q63_t) out * (yfract)));
-
-    /* y2 * (xfract) * (yfract)  in 2.22 and adding to acc */
-    out = ((y2 * (yfract)));
-    acc += (((q63_t) out * (xfract)));
-
-    /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
-    return (acc >> 40);
-
-  }
-
-  /**
-   * @} end of BilinearInterpolate group
-   */
-
-
-
-
-
-
-#ifdef __cplusplus
-}
-#endif
-
-
-#endif /* _ARM_MATH_H */
-
-
-/**
- *
- * End of file.
- */
diff --git a/arch/arm/arm-m/CMSIS/Include/core_cm0.h b/arch/arm/arm-m/CMSIS/Include/core_cm0.h
deleted file mode 100644 (file)
index 19bad5e..0000000
+++ /dev/null
@@ -1,667 +0,0 @@
-/**************************************************************************//**
- * @file     core_cm0.h
- * @brief    CMSIS Cortex-M0 Core Peripheral Access Layer Header File
- * @version  V3.01
- * @date     13. March 2012
- *
- * @note
- * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
- *
- * @par
- * ARM Limited (ARM) is supplying this software for use with Cortex-M
- * processor based microcontrollers.  This file can be freely distributed
- * within development tools that are supporting such ARM based processors.
- *
- * @par
- * THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
- * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
- * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
- * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
- *
- ******************************************************************************/
-#if defined ( __ICCARM__ )
- #pragma system_include  /* treat file as system include file for MISRA check */
-#endif
-
-#ifdef __cplusplus
- extern "C" {
-#endif
-
-#ifndef __CORE_CM0_H_GENERIC
-#define __CORE_CM0_H_GENERIC
-
-/** \page CMSIS_MISRA_Exceptions  MISRA-C:2004 Compliance Exceptions
-  CMSIS violates the following MISRA-C:2004 rules:
-
-   \li Required Rule 8.5, object/function definition in header file.<br>
-     Function definitions in header files are used to allow 'inlining'.
-
-   \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
-     Unions are used for effective representation of core registers.
-
-   \li Advisory Rule 19.7, Function-like macro defined.<br>
-     Function-like macros are used to allow more efficient code.
- */
-
-
-/*******************************************************************************
- *                 CMSIS definitions
- ******************************************************************************/
-/** \ingroup Cortex_M0
-  @{
- */
-
-/*  CMSIS CM0 definitions */
-#define __CM0_CMSIS_VERSION_MAIN  (0x03)                                   /*!< [31:16] CMSIS HAL main version   */
-#define __CM0_CMSIS_VERSION_SUB   (0x01)                                   /*!< [15:0]  CMSIS HAL sub version    */
-#define __CM0_CMSIS_VERSION       ((__CM0_CMSIS_VERSION_MAIN << 16) | \
-                                    __CM0_CMSIS_VERSION_SUB          )     /*!< CMSIS HAL version number         */
-
-#define __CORTEX_M                (0x00)                                   /*!< Cortex-M Core                    */
-
-
-#if   defined ( __CC_ARM )
-  #define __ASM            __asm                                      /*!< asm keyword for ARM Compiler          */
-  #define __INLINE         __inline                                   /*!< inline keyword for ARM Compiler       */
-  #define __STATIC_INLINE  static __inline
-
-#elif defined ( __ICCARM__ )
-  #define __ASM            __asm                                      /*!< asm keyword for IAR Compiler          */
-  #define __INLINE         inline                                     /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */
-  #define __STATIC_INLINE  static inline
-
-#elif defined ( __GNUC__ )
-  #define __ASM            __asm                                      /*!< asm keyword for GNU Compiler          */
-  #define __INLINE         inline                                     /*!< inline keyword for GNU Compiler       */
-  #define __STATIC_INLINE  static inline
-
-#elif defined ( __TASKING__ )
-  #define __ASM            __asm                                      /*!< asm keyword for TASKING Compiler      */
-  #define __INLINE         inline                                     /*!< inline keyword for TASKING Compiler   */
-  #define __STATIC_INLINE  static inline
-
-#endif
-
-/** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all
-*/
-#define __FPU_USED       0
-
-#if defined ( __CC_ARM )
-  #if defined __TARGET_FPU_VFP
-    #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-
-#elif defined ( __ICCARM__ )
-  #if defined __ARMVFP__
-    #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-
-#elif defined ( __GNUC__ )
-  #if defined (__VFP_FP__) && !defined(__SOFTFP__)
-    #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-
-#elif defined ( __TASKING__ )
-  #if defined __FPU_VFP__
-    #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-#endif
-
-#include <stdint.h>                      /* standard types definitions                      */
-#include <core_cmInstr.h>                /* Core Instruction Access                         */
-#include <core_cmFunc.h>                 /* Core Function Access                            */
-
-#endif /* __CORE_CM0_H_GENERIC */
-
-#ifndef __CMSIS_GENERIC
-
-#ifndef __CORE_CM0_H_DEPENDANT
-#define __CORE_CM0_H_DEPENDANT
-
-/* check device defines and use defaults */
-#if defined __CHECK_DEVICE_DEFINES
-  #ifndef __CM0_REV
-    #define __CM0_REV               0x0000
-    #warning "__CM0_REV not defined in device header file; using default!"
-  #endif
-
-  #ifndef __NVIC_PRIO_BITS
-    #define __NVIC_PRIO_BITS          2
-    #warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
-  #endif
-
-  #ifndef __Vendor_SysTickConfig
-    #define __Vendor_SysTickConfig    0
-    #warning "__Vendor_SysTickConfig not defined in device header file; using default!"
-  #endif
-#endif
-
-/* IO definitions (access restrictions to peripheral registers) */
-/**
-    \defgroup CMSIS_glob_defs CMSIS Global Defines
-
-    <strong>IO Type Qualifiers</strong> are used
-    \li to specify the access to peripheral variables.
-    \li for automatic generation of peripheral register debug information.
-*/
-#ifdef __cplusplus
-  #define   __I     volatile             /*!< Defines 'read only' permissions                 */
-#else
-  #define   __I     volatile const       /*!< Defines 'read only' permissions                 */
-#endif
-#define     __O     volatile             /*!< Defines 'write only' permissions                */
-#define     __IO    volatile             /*!< Defines 'read / write' permissions              */
-
-/*@} end of group Cortex_M0 */
-
-
-
-/*******************************************************************************
- *                 Register Abstraction
-  Core Register contain:
-  - Core Register
-  - Core NVIC Register
-  - Core SCB Register
-  - Core SysTick Register
- ******************************************************************************/
-/** \defgroup CMSIS_core_register Defines and Type Definitions
-    \brief Type definitions and defines for Cortex-M processor based devices.
-*/
-
-/** \ingroup    CMSIS_core_register
-    \defgroup   CMSIS_CORE  Status and Control Registers
-    \brief  Core Register type definitions.
-  @{
- */
-
-/** \brief  Union type to access the Application Program Status Register (APSR).
- */
-typedef union
-{
-  struct
-  {
-#if (__CORTEX_M != 0x04)
-    uint32_t _reserved0:27;              /*!< bit:  0..26  Reserved                           */
-#else
-    uint32_t _reserved0:16;              /*!< bit:  0..15  Reserved                           */
-    uint32_t GE:4;                       /*!< bit: 16..19  Greater than or Equal flags        */
-    uint32_t _reserved1:7;               /*!< bit: 20..26  Reserved                           */
-#endif
-    uint32_t Q:1;                        /*!< bit:     27  Saturation condition flag          */
-    uint32_t V:1;                        /*!< bit:     28  Overflow condition code flag       */
-    uint32_t C:1;                        /*!< bit:     29  Carry condition code flag          */
-    uint32_t Z:1;                        /*!< bit:     30  Zero condition code flag           */
-    uint32_t N:1;                        /*!< bit:     31  Negative condition code flag       */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} APSR_Type;
-
-
-/** \brief  Union type to access the Interrupt Program Status Register (IPSR).
- */
-typedef union
-{
-  struct
-  {
-    uint32_t ISR:9;                      /*!< bit:  0.. 8  Exception number                   */
-    uint32_t _reserved0:23;              /*!< bit:  9..31  Reserved                           */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} IPSR_Type;
-
-
-/** \brief  Union type to access the Special-Purpose Program Status Registers (xPSR).
- */
-typedef union
-{
-  struct
-  {
-    uint32_t ISR:9;                      /*!< bit:  0.. 8  Exception number                   */
-#if (__CORTEX_M != 0x04)
-    uint32_t _reserved0:15;              /*!< bit:  9..23  Reserved                           */
-#else
-    uint32_t _reserved0:7;               /*!< bit:  9..15  Reserved                           */
-    uint32_t GE:4;                       /*!< bit: 16..19  Greater than or Equal flags        */
-    uint32_t _reserved1:4;               /*!< bit: 20..23  Reserved                           */
-#endif
-    uint32_t T:1;                        /*!< bit:     24  Thumb bit        (read 0)          */
-    uint32_t IT:2;                       /*!< bit: 25..26  saved IT state   (read 0)          */
-    uint32_t Q:1;                        /*!< bit:     27  Saturation condition flag          */
-    uint32_t V:1;                        /*!< bit:     28  Overflow condition code flag       */
-    uint32_t C:1;                        /*!< bit:     29  Carry condition code flag          */
-    uint32_t Z:1;                        /*!< bit:     30  Zero condition code flag           */
-    uint32_t N:1;                        /*!< bit:     31  Negative condition code flag       */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} xPSR_Type;
-
-
-/** \brief  Union type to access the Control Registers (CONTROL).
- */
-typedef union
-{
-  struct
-  {
-    uint32_t nPRIV:1;                    /*!< bit:      0  Execution privilege in Thread mode */
-    uint32_t SPSEL:1;                    /*!< bit:      1  Stack to be used                   */
-    uint32_t FPCA:1;                     /*!< bit:      2  FP extension active flag           */
-    uint32_t _reserved0:29;              /*!< bit:  3..31  Reserved                           */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} CONTROL_Type;
-
-/*@} end of group CMSIS_CORE */
-
-
-/** \ingroup    CMSIS_core_register
-    \defgroup   CMSIS_NVIC  Nested Vectored Interrupt Controller (NVIC)
-    \brief      Type definitions for the NVIC Registers
-  @{
- */
-
-/** \brief  Structure type to access the Nested Vectored Interrupt Controller (NVIC).
- */
-typedef struct
-{
-  __IO uint32_t ISER[1];                 /*!< Offset: 0x000 (R/W)  Interrupt Set Enable Register           */
-       uint32_t RESERVED0[31];
-  __IO uint32_t ICER[1];                 /*!< Offset: 0x080 (R/W)  Interrupt Clear Enable Register          */
-       uint32_t RSERVED1[31];
-  __IO uint32_t ISPR[1];                 /*!< Offset: 0x100 (R/W)  Interrupt Set Pending Register           */
-       uint32_t RESERVED2[31];
-  __IO uint32_t ICPR[1];                 /*!< Offset: 0x180 (R/W)  Interrupt Clear Pending Register         */
-       uint32_t RESERVED3[31];
-       uint32_t RESERVED4[64];
-  __IO uint32_t IP[8];                   /*!< Offset: 0x300 (R/W)  Interrupt Priority Register              */
-}  NVIC_Type;
-
-/*@} end of group CMSIS_NVIC */
-
-
-/** \ingroup  CMSIS_core_register
-    \defgroup CMSIS_SCB     System Control Block (SCB)
-    \brief      Type definitions for the System Control Block Registers
-  @{
- */
-
-/** \brief  Structure type to access the System Control Block (SCB).
- */
-typedef struct
-{
-  __I  uint32_t CPUID;                   /*!< Offset: 0x000 (R/ )  CPUID Base Register                                   */
-  __IO uint32_t ICSR;                    /*!< Offset: 0x004 (R/W)  Interrupt Control and State Register                  */
-       uint32_t RESERVED0;
-  __IO uint32_t AIRCR;                   /*!< Offset: 0x00C (R/W)  Application Interrupt and Reset Control Register      */
-  __IO uint32_t SCR;                     /*!< Offset: 0x010 (R/W)  System Control Register                               */
-  __IO uint32_t CCR;                     /*!< Offset: 0x014 (R/W)  Configuration Control Register                        */
-       uint32_t RESERVED1;
-  __IO uint32_t SHP[2];                  /*!< Offset: 0x01C (R/W)  System Handlers Priority Registers. [0] is RESERVED   */
-  __IO uint32_t SHCSR;                   /*!< Offset: 0x024 (R/W)  System Handler Control and State Register             */
-} SCB_Type;
-
-/* SCB CPUID Register Definitions */
-#define SCB_CPUID_IMPLEMENTER_Pos          24                                             /*!< SCB CPUID: IMPLEMENTER Position */
-#define SCB_CPUID_IMPLEMENTER_Msk          (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos)          /*!< SCB CPUID: IMPLEMENTER Mask */
-
-#define SCB_CPUID_VARIANT_Pos              20                                             /*!< SCB CPUID: VARIANT Position */
-#define SCB_CPUID_VARIANT_Msk              (0xFUL << SCB_CPUID_VARIANT_Pos)               /*!< SCB CPUID: VARIANT Mask */
-
-#define SCB_CPUID_ARCHITECTURE_Pos         16                                             /*!< SCB CPUID: ARCHITECTURE Position */
-#define SCB_CPUID_ARCHITECTURE_Msk         (0xFUL << SCB_CPUID_ARCHITECTURE_Pos)          /*!< SCB CPUID: ARCHITECTURE Mask */
-
-#define SCB_CPUID_PARTNO_Pos                4                                             /*!< SCB CPUID: PARTNO Position */
-#define SCB_CPUID_PARTNO_Msk               (0xFFFUL << SCB_CPUID_PARTNO_Pos)              /*!< SCB CPUID: PARTNO Mask */
-
-#define SCB_CPUID_REVISION_Pos              0                                             /*!< SCB CPUID: REVISION Position */
-#define SCB_CPUID_REVISION_Msk             (0xFUL << SCB_CPUID_REVISION_Pos)              /*!< SCB CPUID: REVISION Mask */
-
-/* SCB Interrupt Control State Register Definitions */
-#define SCB_ICSR_NMIPENDSET_Pos            31                                             /*!< SCB ICSR: NMIPENDSET Position */
-#define SCB_ICSR_NMIPENDSET_Msk            (1UL << SCB_ICSR_NMIPENDSET_Pos)               /*!< SCB ICSR: NMIPENDSET Mask */
-
-#define SCB_ICSR_PENDSVSET_Pos             28                                             /*!< SCB ICSR: PENDSVSET Position */
-#define SCB_ICSR_PENDSVSET_Msk             (1UL << SCB_ICSR_PENDSVSET_Pos)                /*!< SCB ICSR: PENDSVSET Mask */
-
-#define SCB_ICSR_PENDSVCLR_Pos             27                                             /*!< SCB ICSR: PENDSVCLR Position */
-#define SCB_ICSR_PENDSVCLR_Msk             (1UL << SCB_ICSR_PENDSVCLR_Pos)                /*!< SCB ICSR: PENDSVCLR Mask */
-
-#define SCB_ICSR_PENDSTSET_Pos             26                                             /*!< SCB ICSR: PENDSTSET Position */
-#define SCB_ICSR_PENDSTSET_Msk             (1UL << SCB_ICSR_PENDSTSET_Pos)                /*!< SCB ICSR: PENDSTSET Mask */
-
-#define SCB_ICSR_PENDSTCLR_Pos             25                                             /*!< SCB ICSR: PENDSTCLR Position */
-#define SCB_ICSR_PENDSTCLR_Msk             (1UL << SCB_ICSR_PENDSTCLR_Pos)                /*!< SCB ICSR: PENDSTCLR Mask */
-
-#define SCB_ICSR_ISRPREEMPT_Pos            23                                             /*!< SCB ICSR: ISRPREEMPT Position */
-#define SCB_ICSR_ISRPREEMPT_Msk            (1UL << SCB_ICSR_ISRPREEMPT_Pos)               /*!< SCB ICSR: ISRPREEMPT Mask */
-
-#define SCB_ICSR_ISRPENDING_Pos            22                                             /*!< SCB ICSR: ISRPENDING Position */
-#define SCB_ICSR_ISRPENDING_Msk            (1UL << SCB_ICSR_ISRPENDING_Pos)               /*!< SCB ICSR: ISRPENDING Mask */
-
-#define SCB_ICSR_VECTPENDING_Pos           12                                             /*!< SCB ICSR: VECTPENDING Position */
-#define SCB_ICSR_VECTPENDING_Msk           (0x1FFUL << SCB_ICSR_VECTPENDING_Pos)          /*!< SCB ICSR: VECTPENDING Mask */
-
-#define SCB_ICSR_VECTACTIVE_Pos             0                                             /*!< SCB ICSR: VECTACTIVE Position */
-#define SCB_ICSR_VECTACTIVE_Msk            (0x1FFUL << SCB_ICSR_VECTACTIVE_Pos)           /*!< SCB ICSR: VECTACTIVE Mask */
-
-/* SCB Application Interrupt and Reset Control Register Definitions */
-#define SCB_AIRCR_VECTKEY_Pos              16                                             /*!< SCB AIRCR: VECTKEY Position */
-#define SCB_AIRCR_VECTKEY_Msk              (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos)            /*!< SCB AIRCR: VECTKEY Mask */
-
-#define SCB_AIRCR_VECTKEYSTAT_Pos          16                                             /*!< SCB AIRCR: VECTKEYSTAT Position */
-#define SCB_AIRCR_VECTKEYSTAT_Msk          (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos)        /*!< SCB AIRCR: VECTKEYSTAT Mask */
-
-#define SCB_AIRCR_ENDIANESS_Pos            15                                             /*!< SCB AIRCR: ENDIANESS Position */
-#define SCB_AIRCR_ENDIANESS_Msk            (1UL << SCB_AIRCR_ENDIANESS_Pos)               /*!< SCB AIRCR: ENDIANESS Mask */
-
-#define SCB_AIRCR_SYSRESETREQ_Pos           2                                             /*!< SCB AIRCR: SYSRESETREQ Position */
-#define SCB_AIRCR_SYSRESETREQ_Msk          (1UL << SCB_AIRCR_SYSRESETREQ_Pos)             /*!< SCB AIRCR: SYSRESETREQ Mask */
-
-#define SCB_AIRCR_VECTCLRACTIVE_Pos         1                                             /*!< SCB AIRCR: VECTCLRACTIVE Position */
-#define SCB_AIRCR_VECTCLRACTIVE_Msk        (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos)           /*!< SCB AIRCR: VECTCLRACTIVE Mask */
-
-/* SCB System Control Register Definitions */
-#define SCB_SCR_SEVONPEND_Pos               4                                             /*!< SCB SCR: SEVONPEND Position */
-#define SCB_SCR_SEVONPEND_Msk              (1UL << SCB_SCR_SEVONPEND_Pos)                 /*!< SCB SCR: SEVONPEND Mask */
-
-#define SCB_SCR_SLEEPDEEP_Pos               2                                             /*!< SCB SCR: SLEEPDEEP Position */
-#define SCB_SCR_SLEEPDEEP_Msk              (1UL << SCB_SCR_SLEEPDEEP_Pos)                 /*!< SCB SCR: SLEEPDEEP Mask */
-
-#define SCB_SCR_SLEEPONEXIT_Pos             1                                             /*!< SCB SCR: SLEEPONEXIT Position */
-#define SCB_SCR_SLEEPONEXIT_Msk            (1UL << SCB_SCR_SLEEPONEXIT_Pos)               /*!< SCB SCR: SLEEPONEXIT Mask */
-
-/* SCB Configuration Control Register Definitions */
-#define SCB_CCR_STKALIGN_Pos                9                                             /*!< SCB CCR: STKALIGN Position */
-#define SCB_CCR_STKALIGN_Msk               (1UL << SCB_CCR_STKALIGN_Pos)                  /*!< SCB CCR: STKALIGN Mask */
-
-#define SCB_CCR_UNALIGN_TRP_Pos             3                                             /*!< SCB CCR: UNALIGN_TRP Position */
-#define SCB_CCR_UNALIGN_TRP_Msk            (1UL << SCB_CCR_UNALIGN_TRP_Pos)               /*!< SCB CCR: UNALIGN_TRP Mask */
-
-/* SCB System Handler Control and State Register Definitions */
-#define SCB_SHCSR_SVCALLPENDED_Pos         15                                             /*!< SCB SHCSR: SVCALLPENDED Position */
-#define SCB_SHCSR_SVCALLPENDED_Msk         (1UL << SCB_SHCSR_SVCALLPENDED_Pos)            /*!< SCB SHCSR: SVCALLPENDED Mask */
-
-/*@} end of group CMSIS_SCB */
-
-
-/** \ingroup  CMSIS_core_register
-    \defgroup CMSIS_SysTick     System Tick Timer (SysTick)
-    \brief      Type definitions for the System Timer Registers.
-  @{
- */
-
-/** \brief  Structure type to access the System Timer (SysTick).
- */
-typedef struct
-{
-  __IO uint32_t CTRL;                    /*!< Offset: 0x000 (R/W)  SysTick Control and Status Register */
-  __IO uint32_t LOAD;                    /*!< Offset: 0x004 (R/W)  SysTick Reload Value Register       */
-  __IO uint32_t VAL;                     /*!< Offset: 0x008 (R/W)  SysTick Current Value Register      */
-  __I  uint32_t CALIB;                   /*!< Offset: 0x00C (R/ )  SysTick Calibration Register        */
-} SysTick_Type;
-
-/* SysTick Control / Status Register Definitions */
-#define SysTick_CTRL_COUNTFLAG_Pos         16                                             /*!< SysTick CTRL: COUNTFLAG Position */
-#define SysTick_CTRL_COUNTFLAG_Msk         (1UL << SysTick_CTRL_COUNTFLAG_Pos)            /*!< SysTick CTRL: COUNTFLAG Mask */
-
-#define SysTick_CTRL_CLKSOURCE_Pos          2                                             /*!< SysTick CTRL: CLKSOURCE Position */
-#define SysTick_CTRL_CLKSOURCE_Msk         (1UL << SysTick_CTRL_CLKSOURCE_Pos)            /*!< SysTick CTRL: CLKSOURCE Mask */
-
-#define SysTick_CTRL_TICKINT_Pos            1                                             /*!< SysTick CTRL: TICKINT Position */
-#define SysTick_CTRL_TICKINT_Msk           (1UL << SysTick_CTRL_TICKINT_Pos)              /*!< SysTick CTRL: TICKINT Mask */
-
-#define SysTick_CTRL_ENABLE_Pos             0                                             /*!< SysTick CTRL: ENABLE Position */
-#define SysTick_CTRL_ENABLE_Msk            (1UL << SysTick_CTRL_ENABLE_Pos)               /*!< SysTick CTRL: ENABLE Mask */
-
-/* SysTick Reload Register Definitions */
-#define SysTick_LOAD_RELOAD_Pos             0                                             /*!< SysTick LOAD: RELOAD Position */
-#define SysTick_LOAD_RELOAD_Msk            (0xFFFFFFUL << SysTick_LOAD_RELOAD_Pos)        /*!< SysTick LOAD: RELOAD Mask */
-
-/* SysTick Current Register Definitions */
-#define SysTick_VAL_CURRENT_Pos             0                                             /*!< SysTick VAL: CURRENT Position */
-#define SysTick_VAL_CURRENT_Msk            (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos)        /*!< SysTick VAL: CURRENT Mask */
-
-/* SysTick Calibration Register Definitions */
-#define SysTick_CALIB_NOREF_Pos            31                                             /*!< SysTick CALIB: NOREF Position */
-#define SysTick_CALIB_NOREF_Msk            (1UL << SysTick_CALIB_NOREF_Pos)               /*!< SysTick CALIB: NOREF Mask */
-
-#define SysTick_CALIB_SKEW_Pos             30                                             /*!< SysTick CALIB: SKEW Position */
-#define SysTick_CALIB_SKEW_Msk             (1UL << SysTick_CALIB_SKEW_Pos)                /*!< SysTick CALIB: SKEW Mask */
-
-#define SysTick_CALIB_TENMS_Pos             0                                             /*!< SysTick CALIB: TENMS Position */
-#define SysTick_CALIB_TENMS_Msk            (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos)        /*!< SysTick CALIB: TENMS Mask */
-
-/*@} end of group CMSIS_SysTick */
-
-
-/** \ingroup  CMSIS_core_register
-    \defgroup CMSIS_CoreDebug       Core Debug Registers (CoreDebug)
-    \brief      Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR)
-                are only accessible over DAP and not via processor. Therefore
-                they are not covered by the Cortex-M0 header file.
-  @{
- */
-/*@} end of group CMSIS_CoreDebug */
-
-
-/** \ingroup    CMSIS_core_register
-    \defgroup   CMSIS_core_base     Core Definitions
-    \brief      Definitions for base addresses, unions, and structures.
-  @{
- */
-
-/* Memory mapping of Cortex-M0 Hardware */
-#define SCS_BASE            (0xE000E000UL)                            /*!< System Control Space Base Address */
-#define SysTick_BASE        (SCS_BASE +  0x0010UL)                    /*!< SysTick Base Address              */
-#define NVIC_BASE           (SCS_BASE +  0x0100UL)                    /*!< NVIC Base Address                 */
-#define SCB_BASE            (SCS_BASE +  0x0D00UL)                    /*!< System Control Block Base Address */
-
-#define SCB                 ((SCB_Type       *)     SCB_BASE      )   /*!< SCB configuration struct           */
-#define SysTick             ((SysTick_Type   *)     SysTick_BASE  )   /*!< SysTick configuration struct       */
-#define NVIC                ((NVIC_Type      *)     NVIC_BASE     )   /*!< NVIC configuration struct          */
-
-
-/*@} */
-
-
-
-/*******************************************************************************
- *                Hardware Abstraction Layer
-  Core Function Interface contains:
-  - Core NVIC Functions
-  - Core SysTick Functions
-  - Core Register Access Functions
- ******************************************************************************/
-/** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
-*/
-
-
-
-/* ##########################   NVIC functions  #################################### */
-/** \ingroup  CMSIS_Core_FunctionInterface
-    \defgroup CMSIS_Core_NVICFunctions NVIC Functions
-    \brief      Functions that manage interrupts and exceptions via the NVIC.
-    @{
- */
-
-/* Interrupt Priorities are WORD accessible only under ARMv6M                   */
-/* The following MACROS handle generation of the register offset and byte masks */
-#define _BIT_SHIFT(IRQn)         (  (((uint32_t)(IRQn)       )    &  0x03) * 8 )
-#define _SHP_IDX(IRQn)           ( ((((uint32_t)(IRQn) & 0x0F)-8) >>    2)     )
-#define _IP_IDX(IRQn)            (   ((uint32_t)(IRQn)            >>    2)     )
-
-
-/** \brief  Enable External Interrupt
-
-    The function enables a device-specific interrupt in the NVIC interrupt controller.
-
-    \param [in]      IRQn  External interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_EnableIRQ(IRQn_Type IRQn)
-{
-  NVIC->ISER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
-}
-
-
-/** \brief  Disable External Interrupt
-
-    The function disables a device-specific interrupt in the NVIC interrupt controller.
-
-    \param [in]      IRQn  External interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_DisableIRQ(IRQn_Type IRQn)
-{
-  NVIC->ICER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
-}
-
-
-/** \brief  Get Pending Interrupt
-
-    The function reads the pending register in the NVIC and returns the pending bit
-    for the specified interrupt.
-
-    \param [in]      IRQn  Interrupt number.
-
-    \return             0  Interrupt status is not pending.
-    \return             1  Interrupt status is pending.
- */
-__STATIC_INLINE uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)
-{
-  return((uint32_t) ((NVIC->ISPR[0] & (1 << ((uint32_t)(IRQn) & 0x1F)))?1:0));
-}
-
-
-/** \brief  Set Pending Interrupt
-
-    The function sets the pending bit of an external interrupt.
-
-    \param [in]      IRQn  Interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_SetPendingIRQ(IRQn_Type IRQn)
-{
-  NVIC->ISPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
-}
-
-
-/** \brief  Clear Pending Interrupt
-
-    The function clears the pending bit of an external interrupt.
-
-    \param [in]      IRQn  External interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
-{
-  NVIC->ICPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F)); /* Clear pending interrupt */
-}
-
-
-/** \brief  Set Interrupt Priority
-
-    The function sets the priority of an interrupt.
-
-    \note The priority cannot be set for every core interrupt.
-
-    \param [in]      IRQn  Interrupt number.
-    \param [in]  priority  Priority to set.
- */
-__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
-{
-  if(IRQn < 0) {
-    SCB->SHP[_SHP_IDX(IRQn)] = (SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
-        (((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
-  else {
-    NVIC->IP[_IP_IDX(IRQn)] = (NVIC->IP[_IP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
-        (((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
-}
-
-
-/** \brief  Get Interrupt Priority
-
-    The function reads the priority of an interrupt. The interrupt
-    number can be positive to specify an external (device specific)
-    interrupt, or negative to specify an internal (core) interrupt.
-
-
-    \param [in]   IRQn  Interrupt number.
-    \return             Interrupt Priority. Value is aligned automatically to the implemented
-                        priority bits of the microcontroller.
- */
-__STATIC_INLINE uint32_t NVIC_GetPriority(IRQn_Type IRQn)
-{
-
-  if(IRQn < 0) {
-    return((uint32_t)((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) >> (8 - __NVIC_PRIO_BITS)));  } /* get priority for Cortex-M0 system interrupts */
-  else {
-    return((uint32_t)((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) >> (8 - __NVIC_PRIO_BITS)));  } /* get priority for device specific interrupts  */
-}
-
-
-/** \brief  System Reset
-
-    The function initiates a system reset request to reset the MCU.
- */
-__STATIC_INLINE void NVIC_SystemReset(void)
-{
-  __DSB();                                                     /* Ensure all outstanding memory accesses included
-                                                                  buffered write are completed before reset */
-  SCB->AIRCR  = ((0x5FA << SCB_AIRCR_VECTKEY_Pos)      |
-                 SCB_AIRCR_SYSRESETREQ_Msk);
-  __DSB();                                                     /* Ensure completion of memory access */
-  while(1);                                                    /* wait until reset */
-}
-
-/*@} end of CMSIS_Core_NVICFunctions */
-
-
-
-/* ##################################    SysTick function  ############################################ */
-/** \ingroup  CMSIS_Core_FunctionInterface
-    \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
-    \brief      Functions that configure the System.
-  @{
- */
-
-#if (__Vendor_SysTickConfig == 0)
-
-/** \brief  System Tick Configuration
-
-    The function initializes the System Timer and its interrupt, and starts the System Tick Timer.
-    Counter is in free running mode to generate periodic interrupts.
-
-    \param [in]  ticks  Number of ticks between two interrupts.
-
-    \return          0  Function succeeded.
-    \return          1  Function failed.
-
-    \note     When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
-    function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
-    must contain a vendor-specific implementation of this function.
-
- */
-__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
-{
-  if (ticks > SysTick_LOAD_RELOAD_Msk)  return (1);            /* Reload value impossible */
-
-  SysTick->LOAD  = (ticks & SysTick_LOAD_RELOAD_Msk) - 1;      /* set reload register */
-  NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);  /* set Priority for Systick Interrupt */
-  SysTick->VAL   = 0;                                          /* Load the SysTick Counter Value */
-  SysTick->CTRL  = SysTick_CTRL_CLKSOURCE_Msk |
-                   SysTick_CTRL_TICKINT_Msk   |
-                   SysTick_CTRL_ENABLE_Msk;                    /* Enable SysTick IRQ and SysTick Timer */
-  return (0);                                                  /* Function successful */
-}
-
-#endif
-
-/*@} end of CMSIS_Core_SysTickFunctions */
-
-
-
-
-#endif /* __CORE_CM0_H_DEPENDANT */
-
-#endif /* __CMSIS_GENERIC */
-
-#ifdef __cplusplus
-}
-#endif
diff --git a/arch/arm/arm-m/CMSIS/Include/core_cm0plus.h b/arch/arm/arm-m/CMSIS/Include/core_cm0plus.h
deleted file mode 100644 (file)
index aa20e68..0000000
+++ /dev/null
@@ -1,778 +0,0 @@
-/**************************************************************************//**
- * @file     core_cm0plus.h
- * @brief    CMSIS Cortex-M0+ Core Peripheral Access Layer Header File
- * @version  V3.01
- * @date     22. March 2012
- *
- * @note
- * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
- *
- * @par
- * ARM Limited (ARM) is supplying this software for use with Cortex-M
- * processor based microcontrollers.  This file can be freely distributed
- * within development tools that are supporting such ARM based processors.
- *
- * @par
- * THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
- * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
- * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
- * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
- *
- ******************************************************************************/
-#if defined ( __ICCARM__ )
- #pragma system_include  /* treat file as system include file for MISRA check */
-#endif
-
-#ifdef __cplusplus
- extern "C" {
-#endif
-
-#ifndef __CORE_CM0PLUS_H_GENERIC
-#define __CORE_CM0PLUS_H_GENERIC
-
-/** \page CMSIS_MISRA_Exceptions  MISRA-C:2004 Compliance Exceptions
-  CMSIS violates the following MISRA-C:2004 rules:
-
-   \li Required Rule 8.5, object/function definition in header file.<br>
-     Function definitions in header files are used to allow 'inlining'.
-
-   \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
-     Unions are used for effective representation of core registers.
-
-   \li Advisory Rule 19.7, Function-like macro defined.<br>
-     Function-like macros are used to allow more efficient code.
- */
-
-
-/*******************************************************************************
- *                 CMSIS definitions
- ******************************************************************************/
-/** \ingroup Cortex-M0+
-  @{
- */
-
-/*  CMSIS CM0P definitions */
-#define __CM0PLUS_CMSIS_VERSION_MAIN (0x03)                                /*!< [31:16] CMSIS HAL main version   */
-#define __CM0PLUS_CMSIS_VERSION_SUB  (0x01)                                /*!< [15:0]  CMSIS HAL sub version    */
-#define __CM0PLUS_CMSIS_VERSION      ((__CM0PLUS_CMSIS_VERSION_MAIN << 16) | \
-                                       __CM0PLUS_CMSIS_VERSION_SUB)        /*!< CMSIS HAL version number         */
-
-#define __CORTEX_M                (0x00)                                   /*!< Cortex-M Core                    */
-
-
-#if   defined ( __CC_ARM )
-  #define __ASM            __asm                                      /*!< asm keyword for ARM Compiler          */
-  #define __INLINE         __inline                                   /*!< inline keyword for ARM Compiler       */
-  #define __STATIC_INLINE  static __inline
-
-#elif defined ( __ICCARM__ )
-  #define __ASM            __asm                                      /*!< asm keyword for IAR Compiler          */
-  #define __INLINE         inline                                     /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */
-  #define __STATIC_INLINE  static inline
-
-#elif defined ( __GNUC__ )
-  #define __ASM            __asm                                      /*!< asm keyword for GNU Compiler          */
-  #define __INLINE         inline                                     /*!< inline keyword for GNU Compiler       */
-  #define __STATIC_INLINE  static inline
-
-#elif defined ( __TASKING__ )
-  #define __ASM            __asm                                      /*!< asm keyword for TASKING Compiler      */
-  #define __INLINE         inline                                     /*!< inline keyword for TASKING Compiler   */
-  #define __STATIC_INLINE  static inline
-
-#endif
-
-/** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all
-*/
-#define __FPU_USED       0
-
-#if defined ( __CC_ARM )
-  #if defined __TARGET_FPU_VFP
-    #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-
-#elif defined ( __ICCARM__ )
-  #if defined __ARMVFP__
-    #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-
-#elif defined ( __GNUC__ )
-  #if defined (__VFP_FP__) && !defined(__SOFTFP__)
-    #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-
-#elif defined ( __TASKING__ )
-  #if defined __FPU_VFP__
-    #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
-  #endif
-#endif
-
-#include <stdint.h>                      /* standard types definitions                      */
-#include <core_cmInstr.h>                /* Core Instruction Access                         */
-#include <core_cmFunc.h>                 /* Core Function Access                            */
-
-#endif /* __CORE_CM0PLUS_H_GENERIC */
-
-#ifndef __CMSIS_GENERIC
-
-#ifndef __CORE_CM0PLUS_H_DEPENDANT
-#define __CORE_CM0PLUS_H_DEPENDANT
-
-/* check device defines and use defaults */
-#if defined __CHECK_DEVICE_DEFINES
-  #ifndef __CM0PLUS_REV
-    #define __CM0PLUS_REV             0x0000
-    #warning "__CM0PLUS_REV not defined in device header file; using default!"
-  #endif
-
-  #ifndef __MPU_PRESENT
-    #define __MPU_PRESENT             0
-    #warning "__MPU_PRESENT not defined in device header file; using default!"
-  #endif
-
-  #ifndef __VTOR_PRESENT
-    #define __VTOR_PRESENT            0
-    #warning "__VTOR_PRESENT not defined in device header file; using default!"
-  #endif
-
-  #ifndef __NVIC_PRIO_BITS
-    #define __NVIC_PRIO_BITS          2
-    #warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
-  #endif
-
-  #ifndef __Vendor_SysTickConfig
-    #define __Vendor_SysTickConfig    0
-    #warning "__Vendor_SysTickConfig not defined in device header file; using default!"
-  #endif
-#endif
-
-/* IO definitions (access restrictions to peripheral registers) */
-/**
-    \defgroup CMSIS_glob_defs CMSIS Global Defines
-
-    <strong>IO Type Qualifiers</strong> are used
-    \li to specify the access to peripheral variables.
-    \li for automatic generation of peripheral register debug information.
-*/
-#ifdef __cplusplus
-  #define   __I     volatile             /*!< Defines 'read only' permissions                 */
-#else
-  #define   __I     volatile const       /*!< Defines 'read only' permissions                 */
-#endif
-#define     __O     volatile             /*!< Defines 'write only' permissions                */
-#define     __IO    volatile             /*!< Defines 'read / write' permissions              */
-
-/*@} end of group Cortex-M0+ */
-
-
-
-/*******************************************************************************
- *                 Register Abstraction
-  Core Register contain:
-  - Core Register
-  - Core NVIC Register
-  - Core SCB Register
-  - Core SysTick Register
-  - Core MPU Register
- ******************************************************************************/
-/** \defgroup CMSIS_core_register Defines and Type Definitions
-    \brief Type definitions and defines for Cortex-M processor based devices.
-*/
-
-/** \ingroup    CMSIS_core_register
-    \defgroup   CMSIS_CORE  Status and Control Registers
-    \brief  Core Register type definitions.
-  @{
- */
-
-/** \brief  Union type to access the Application Program Status Register (APSR).
- */
-typedef union
-{
-  struct
-  {
-#if (__CORTEX_M != 0x04)
-    uint32_t _reserved0:27;              /*!< bit:  0..26  Reserved                           */
-#else
-    uint32_t _reserved0:16;              /*!< bit:  0..15  Reserved                           */
-    uint32_t GE:4;                       /*!< bit: 16..19  Greater than or Equal flags        */
-    uint32_t _reserved1:7;               /*!< bit: 20..26  Reserved                           */
-#endif
-    uint32_t Q:1;                        /*!< bit:     27  Saturation condition flag          */
-    uint32_t V:1;                        /*!< bit:     28  Overflow condition code flag       */
-    uint32_t C:1;                        /*!< bit:     29  Carry condition code flag          */
-    uint32_t Z:1;                        /*!< bit:     30  Zero condition code flag           */
-    uint32_t N:1;                        /*!< bit:     31  Negative condition code flag       */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} APSR_Type;
-
-
-/** \brief  Union type to access the Interrupt Program Status Register (IPSR).
- */
-typedef union
-{
-  struct
-  {
-    uint32_t ISR:9;                      /*!< bit:  0.. 8  Exception number                   */
-    uint32_t _reserved0:23;              /*!< bit:  9..31  Reserved                           */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} IPSR_Type;
-
-
-/** \brief  Union type to access the Special-Purpose Program Status Registers (xPSR).
- */
-typedef union
-{
-  struct
-  {
-    uint32_t ISR:9;                      /*!< bit:  0.. 8  Exception number                   */
-#if (__CORTEX_M != 0x04)
-    uint32_t _reserved0:15;              /*!< bit:  9..23  Reserved                           */
-#else
-    uint32_t _reserved0:7;               /*!< bit:  9..15  Reserved                           */
-    uint32_t GE:4;                       /*!< bit: 16..19  Greater than or Equal flags        */
-    uint32_t _reserved1:4;               /*!< bit: 20..23  Reserved                           */
-#endif
-    uint32_t T:1;                        /*!< bit:     24  Thumb bit        (read 0)          */
-    uint32_t IT:2;                       /*!< bit: 25..26  saved IT state   (read 0)          */
-    uint32_t Q:1;                        /*!< bit:     27  Saturation condition flag          */
-    uint32_t V:1;                        /*!< bit:     28  Overflow condition code flag       */
-    uint32_t C:1;                        /*!< bit:     29  Carry condition code flag          */
-    uint32_t Z:1;                        /*!< bit:     30  Zero condition code flag           */
-    uint32_t N:1;                        /*!< bit:     31  Negative condition code flag       */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} xPSR_Type;
-
-
-/** \brief  Union type to access the Control Registers (CONTROL).
- */
-typedef union
-{
-  struct
-  {
-    uint32_t nPRIV:1;                    /*!< bit:      0  Execution privilege in Thread mode */
-    uint32_t SPSEL:1;                    /*!< bit:      1  Stack to be used                   */
-    uint32_t FPCA:1;                     /*!< bit:      2  FP extension active flag           */
-    uint32_t _reserved0:29;              /*!< bit:  3..31  Reserved                           */
-  } b;                                   /*!< Structure used for bit  access                  */
-  uint32_t w;                            /*!< Type      used for word access                  */
-} CONTROL_Type;
-
-/*@} end of group CMSIS_CORE */
-
-
-/** \ingroup    CMSIS_core_register
-    \defgroup   CMSIS_NVIC  Nested Vectored Interrupt Controller (NVIC)
-    \brief      Type definitions for the NVIC Registers
-  @{
- */
-
-/** \brief  Structure type to access the Nested Vectored Interrupt Controller (NVIC).
- */
-typedef struct
-{
-  __IO uint32_t ISER[1];                 /*!< Offset: 0x000 (R/W)  Interrupt Set Enable Register           */
-       uint32_t RESERVED0[31];
-  __IO uint32_t ICER[1];                 /*!< Offset: 0x080 (R/W)  Interrupt Clear Enable Register          */
-       uint32_t RSERVED1[31];
-  __IO uint32_t ISPR[1];                 /*!< Offset: 0x100 (R/W)  Interrupt Set Pending Register           */
-       uint32_t RESERVED2[31];
-  __IO uint32_t ICPR[1];                 /*!< Offset: 0x180 (R/W)  Interrupt Clear Pending Register         */
-       uint32_t RESERVED3[31];
-       uint32_t RESERVED4[64];
-  __IO uint32_t IP[8];                   /*!< Offset: 0x300 (R/W)  Interrupt Priority Register              */
-}  NVIC_Type;
-
-/*@} end of group CMSIS_NVIC */
-
-
-/** \ingroup  CMSIS_core_register
-    \defgroup CMSIS_SCB     System Control Block (SCB)
-    \brief      Type definitions for the System Control Block Registers
-  @{
- */
-
-/** \brief  Structure type to access the System Control Block (SCB).
- */
-typedef struct
-{
-  __I  uint32_t CPUID;                   /*!< Offset: 0x000 (R/ )  CPUID Base Register                                   */
-  __IO uint32_t ICSR;                    /*!< Offset: 0x004 (R/W)  Interrupt Control and State Register                  */
-#if (__VTOR_PRESENT == 1)
-  __IO uint32_t VTOR;                    /*!< Offset: 0x008 (R/W)  Vector Table Offset Register                          */
-#else
-       uint32_t RESERVED0;
-#endif
-  __IO uint32_t AIRCR;                   /*!< Offset: 0x00C (R/W)  Application Interrupt and Reset Control Register      */
-  __IO uint32_t SCR;                     /*!< Offset: 0x010 (R/W)  System Control Register                               */
-  __IO uint32_t CCR;                     /*!< Offset: 0x014 (R/W)  Configuration Control Register                        */
-       uint32_t RESERVED1;
-  __IO uint32_t SHP[2];                  /*!< Offset: 0x01C (R/W)  System Handlers Priority Registers. [0] is RESERVED   */
-  __IO uint32_t SHCSR;                   /*!< Offset: 0x024 (R/W)  System Handler Control and State Register             */
-} SCB_Type;
-
-/* SCB CPUID Register Definitions */
-#define SCB_CPUID_IMPLEMENTER_Pos          24                                             /*!< SCB CPUID: IMPLEMENTER Position */
-#define SCB_CPUID_IMPLEMENTER_Msk          (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos)          /*!< SCB CPUID: IMPLEMENTER Mask */
-
-#define SCB_CPUID_VARIANT_Pos              20                                             /*!< SCB CPUID: VARIANT Position */
-#define SCB_CPUID_VARIANT_Msk              (0xFUL << SCB_CPUID_VARIANT_Pos)               /*!< SCB CPUID: VARIANT Mask */
-
-#define SCB_CPUID_ARCHITECTURE_Pos         16                                             /*!< SCB CPUID: ARCHITECTURE Position */
-#define SCB_CPUID_ARCHITECTURE_Msk         (0xFUL << SCB_CPUID_ARCHITECTURE_Pos)          /*!< SCB CPUID: ARCHITECTURE Mask */
-
-#define SCB_CPUID_PARTNO_Pos                4                                             /*!< SCB CPUID: PARTNO Position */
-#define SCB_CPUID_PARTNO_Msk               (0xFFFUL << SCB_CPUID_PARTNO_Pos)              /*!< SCB CPUID: PARTNO Mask */
-
-#define SCB_CPUID_REVISION_Pos              0                                             /*!< SCB CPUID: REVISION Position */
-#define SCB_CPUID_REVISION_Msk             (0xFUL << SCB_CPUID_REVISION_Pos)              /*!< SCB CPUID: REVISION Mask */
-
-/* SCB Interrupt Control State Register Definitions */
-#define SCB_ICSR_NMIPENDSET_Pos            31                                             /*!< SCB ICSR: NMIPENDSET Position */
-#define SCB_ICSR_NMIPENDSET_Msk            (1UL << SCB_ICSR_NMIPENDSET_Pos)               /*!< SCB ICSR: NMIPENDSET Mask */
-
-#define SCB_ICSR_PENDSVSET_Pos             28                                             /*!< SCB ICSR: PENDSVSET Position */
-#define SCB_ICSR_PENDSVSET_Msk             (1UL << SCB_ICSR_PENDSVSET_Pos)                /*!< SCB ICSR: PENDSVSET Mask */
-
-#define SCB_ICSR_PENDSVCLR_Pos             27                                             /*!< SCB ICSR: PENDSVCLR Position */
-#define SCB_ICSR_PENDSVCLR_Msk             (1UL << SCB_ICSR_PENDSVCLR_Pos)                /*!< SCB ICSR: PENDSVCLR Mask */
-
-#define SCB_ICSR_PENDSTSET_Pos             26                                             /*!< SCB ICSR: PENDSTSET Position */
-#define SCB_ICSR_PENDSTSET_Msk             (1UL << SCB_ICSR_PENDSTSET_Pos)                /*!< SCB ICSR: PENDSTSET Mask */
-
-#define SCB_ICSR_PENDSTCLR_Pos             25                                             /*!< SCB ICSR: PENDSTCLR Position */
-#define SCB_ICSR_PENDSTCLR_Msk             (1UL << SCB_ICSR_PENDSTCLR_Pos)                /*!< SCB ICSR: PENDSTCLR Mask */
-
-#define SCB_ICSR_ISRPREEMPT_Pos            23                                             /*!< SCB ICSR: ISRPREEMPT Position */
-#define SCB_ICSR_ISRPREEMPT_Msk            (1UL << SCB_ICSR_ISRPREEMPT_Pos)               /*!< SCB ICSR: ISRPREEMPT Mask */
-
-#define SCB_ICSR_ISRPENDING_Pos            22                                             /*!< SCB ICSR: ISRPENDING Position */
-#define SCB_ICSR_ISRPENDING_Msk            (1UL << SCB_ICSR_ISRPENDING_Pos)               /*!< SCB ICSR: ISRPENDING Mask */
-
-#define SCB_ICSR_VECTPENDING_Pos           12                                             /*!< SCB ICSR: VECTPENDING Position */
-#define SCB_ICSR_VECTPENDING_Msk           (0x1FFUL << SCB_ICSR_VECTPENDING_Pos)          /*!< SCB ICSR: VECTPENDING Mask */
-
-#define SCB_ICSR_VECTACTIVE_Pos             0                                             /*!< SCB ICSR: VECTACTIVE Position */
-#define SCB_ICSR_VECTACTIVE_Msk            (0x1FFUL << SCB_ICSR_VECTACTIVE_Pos)           /*!< SCB ICSR: VECTACTIVE Mask */
-
-#if (__VTOR_PRESENT == 1)
-/* SCB Interrupt Control State Register Definitions */
-#define SCB_VTOR_TBLOFF_Pos                 7                                             /*!< SCB VTOR: TBLOFF Position */
-#define SCB_VTOR_TBLOFF_Msk                (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos)           /*!< SCB VTOR: TBLOFF Mask */
-#endif
-
-/* SCB Application Interrupt and Reset Control Register Definitions */
-#define SCB_AIRCR_VECTKEY_Pos              16                                             /*!< SCB AIRCR: VECTKEY Position */
-#define SCB_AIRCR_VECTKEY_Msk              (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos)            /*!< SCB AIRCR: VECTKEY Mask */
-
-#define SCB_AIRCR_VECTKEYSTAT_Pos          16                                             /*!< SCB AIRCR: VECTKEYSTAT Position */
-#define SCB_AIRCR_VECTKEYSTAT_Msk          (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos)        /*!< SCB AIRCR: VECTKEYSTAT Mask */
-
-#define SCB_AIRCR_ENDIANESS_Pos            15                                             /*!< SCB AIRCR: ENDIANESS Position */
-#define SCB_AIRCR_ENDIANESS_Msk            (1UL << SCB_AIRCR_ENDIANESS_Pos)               /*!< SCB AIRCR: ENDIANESS Mask */
-
-#define SCB_AIRCR_SYSRESETREQ_Pos           2                                             /*!< SCB AIRCR: SYSRESETREQ Position */
-#define SCB_AIRCR_SYSRESETREQ_Msk          (1UL << SCB_AIRCR_SYSRESETREQ_Pos)             /*!< SCB AIRCR: SYSRESETREQ Mask */
-
-#define SCB_AIRCR_VECTCLRACTIVE_Pos         1                                             /*!< SCB AIRCR: VECTCLRACTIVE Position */
-#define SCB_AIRCR_VECTCLRACTIVE_Msk        (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos)           /*!< SCB AIRCR: VECTCLRACTIVE Mask */
-
-/* SCB System Control Register Definitions */
-#define SCB_SCR_SEVONPEND_Pos               4                                             /*!< SCB SCR: SEVONPEND Position */
-#define SCB_SCR_SEVONPEND_Msk              (1UL << SCB_SCR_SEVONPEND_Pos)                 /*!< SCB SCR: SEVONPEND Mask */
-
-#define SCB_SCR_SLEEPDEEP_Pos               2                                             /*!< SCB SCR: SLEEPDEEP Position */
-#define SCB_SCR_SLEEPDEEP_Msk              (1UL << SCB_SCR_SLEEPDEEP_Pos)                 /*!< SCB SCR: SLEEPDEEP Mask */
-
-#define SCB_SCR_SLEEPONEXIT_Pos             1                                             /*!< SCB SCR: SLEEPONEXIT Position */
-#define SCB_SCR_SLEEPONEXIT_Msk            (1UL << SCB_SCR_SLEEPONEXIT_Pos)               /*!< SCB SCR: SLEEPONEXIT Mask */
-
-/* SCB Configuration Control Register Definitions */
-#define SCB_CCR_STKALIGN_Pos                9                                             /*!< SCB CCR: STKALIGN Position */
-#define SCB_CCR_STKALIGN_Msk               (1UL << SCB_CCR_STKALIGN_Pos)                  /*!< SCB CCR: STKALIGN Mask */
-
-#define SCB_CCR_UNALIGN_TRP_Pos             3                                             /*!< SCB CCR: UNALIGN_TRP Position */
-#define SCB_CCR_UNALIGN_TRP_Msk            (1UL << SCB_CCR_UNALIGN_TRP_Pos)               /*!< SCB CCR: UNALIGN_TRP Mask */
-
-/* SCB System Handler Control and State Register Definitions */
-#define SCB_SHCSR_SVCALLPENDED_Pos         15                                             /*!< SCB SHCSR: SVCALLPENDED Position */
-#define SCB_SHCSR_SVCALLPENDED_Msk         (1UL << SCB_SHCSR_SVCALLPENDED_Pos)            /*!< SCB SHCSR: SVCALLPENDED Mask */
-
-/*@} end of group CMSIS_SCB */
-
-
-/** \ingroup  CMSIS_core_register
-    \defgroup CMSIS_SysTick     System Tick Timer (SysTick)
-    \brief      Type definitions for the System Timer Registers.
-  @{
- */
-
-/** \brief  Structure type to access the System Timer (SysTick).
- */
-typedef struct
-{
-  __IO uint32_t CTRL;                    /*!< Offset: 0x000 (R/W)  SysTick Control and Status Register */
-  __IO uint32_t LOAD;                    /*!< Offset: 0x004 (R/W)  SysTick Reload Value Register       */
-  __IO uint32_t VAL;                     /*!< Offset: 0x008 (R/W)  SysTick Current Value Register      */
-  __I  uint32_t CALIB;                   /*!< Offset: 0x00C (R/ )  SysTick Calibration Register        */
-} SysTick_Type;
-
-/* SysTick Control / Status Register Definitions */
-#define SysTick_CTRL_COUNTFLAG_Pos         16                                             /*!< SysTick CTRL: COUNTFLAG Position */
-#define SysTick_CTRL_COUNTFLAG_Msk         (1UL << SysTick_CTRL_COUNTFLAG_Pos)            /*!< SysTick CTRL: COUNTFLAG Mask */
-
-#define SysTick_CTRL_CLKSOURCE_Pos          2                                             /*!< SysTick CTRL: CLKSOURCE Position */
-#define SysTick_CTRL_CLKSOURCE_Msk         (1UL << SysTick_CTRL_CLKSOURCE_Pos)            /*!< SysTick CTRL: CLKSOURCE Mask */
-
-#define SysTick_CTRL_TICKINT_Pos            1                                             /*!< SysTick CTRL: TICKINT Position */
-#define SysTick_CTRL_TICKINT_Msk           (1UL << SysTick_CTRL_TICKINT_Pos)              /*!< SysTick CTRL: TICKINT Mask */
-
-#define SysTick_CTRL_ENABLE_Pos             0                                             /*!< SysTick CTRL: ENABLE Position */
-#define SysTick_CTRL_ENABLE_Msk            (1UL << SysTick_CTRL_ENABLE_Pos)               /*!< SysTick CTRL: ENABLE Mask */
-
-/* SysTick Reload Register Definitions */
-#define SysTick_LOAD_RELOAD_Pos             0                                             /*!< SysTick LOAD: RELOAD Position */
-#define SysTick_LOAD_RELOAD_Msk            (0xFFFFFFUL << SysTick_LOAD_RELOAD_Pos)        /*!< SysTick LOAD: RELOAD Mask */
-
-/* SysTick Current Register Definitions */
-#define SysTick_VAL_CURRENT_Pos             0                                             /*!< SysTick VAL: CURRENT Position */
-#define SysTick_VAL_CURRENT_Msk            (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos)        /*!< SysTick VAL: CURRENT Mask */
-
-/* SysTick Calibration Register Definitions */
-#define SysTick_CALIB_NOREF_Pos            31                                             /*!< SysTick CALIB: NOREF Position */
-#define SysTick_CALIB_NOREF_Msk            (1UL << SysTick_CALIB_NOREF_Pos)               /*!< SysTick CALIB: NOREF Mask */
-
-#define SysTick_CALIB_SKEW_Pos             30                                             /*!< SysTick CALIB: SKEW Position */
-#define SysTick_CALIB_SKEW_Msk             (1UL << SysTick_CALIB_SKEW_Pos)                /*!< SysTick CALIB: SKEW Mask */
-
-#define SysTick_CALIB_TENMS_Pos             0                                             /*!< SysTick CALIB: TENMS Position */
-#define SysTick_CALIB_TENMS_Msk            (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos)        /*!< SysTick CALIB: TENMS Mask */
-
-/*@} end of group CMSIS_SysTick */
-
-#if (__MPU_PRESENT == 1)
-/** \ingroup  CMSIS_core_register
-    \defgroup CMSIS_MPU     Memory Protection Unit (MPU)
-    \brief      Type definitions for the Memory Protection Unit (MPU)
-  @{
- */
-
-/** \brief  Structure type to access the Memory Protection Unit (MPU).
- */
-typedef struct
-{
-  __I  uint32_t TYPE;                    /*!< Offset: 0x000 (R/ )  MPU Type Register                              */
-  __IO uint32_t CTRL;                    /*!< Offset: 0x004 (R/W)  MPU Control Register                           */
-  __IO uint32_t RNR;                     /*!< Offset: 0x008 (R/W)  MPU Region RNRber Register                     */
-  __IO uint32_t RBAR;                    /*!< Offset: 0x00C (R/W)  MPU Region Base Address Register               */
-  __IO uint32_t RASR;                    /*!< Offset: 0x010 (R/W)  MPU Region Attribute and Size Register         */
-} MPU_Type;
-
-/* MPU Type Register */
-#define MPU_TYPE_IREGION_Pos               16                                             /*!< MPU TYPE: IREGION Position */
-#define MPU_TYPE_IREGION_Msk               (0xFFUL << MPU_TYPE_IREGION_Pos)               /*!< MPU TYPE: IREGION Mask */
-
-#define MPU_TYPE_DREGION_Pos                8                                             /*!< MPU TYPE: DREGION Position */
-#define MPU_TYPE_DREGION_Msk               (0xFFUL << MPU_TYPE_DREGION_Pos)               /*!< MPU TYPE: DREGION Mask */
-
-#define MPU_TYPE_SEPARATE_Pos               0                                             /*!< MPU TYPE: SEPARATE Position */
-#define MPU_TYPE_SEPARATE_Msk              (1UL << MPU_TYPE_SEPARATE_Pos)                 /*!< MPU TYPE: SEPARATE Mask */
-
-/* MPU Control Register */
-#define MPU_CTRL_PRIVDEFENA_Pos             2                                             /*!< MPU CTRL: PRIVDEFENA Position */
-#define MPU_CTRL_PRIVDEFENA_Msk            (1UL << MPU_CTRL_PRIVDEFENA_Pos)               /*!< MPU CTRL: PRIVDEFENA Mask */
-
-#define MPU_CTRL_HFNMIENA_Pos               1                                             /*!< MPU CTRL: HFNMIENA Position */
-#define MPU_CTRL_HFNMIENA_Msk              (1UL << MPU_CTRL_HFNMIENA_Pos)                 /*!< MPU CTRL: HFNMIENA Mask */
-
-#define MPU_CTRL_ENABLE_Pos                 0                                             /*!< MPU CTRL: ENABLE Position */
-#define MPU_CTRL_ENABLE_Msk                (1UL << MPU_CTRL_ENABLE_Pos)                   /*!< MPU CTRL: ENABLE Mask */
-
-/* MPU Region Number Register */
-#define MPU_RNR_REGION_Pos                  0                                             /*!< MPU RNR: REGION Position */
-#define MPU_RNR_REGION_Msk                 (0xFFUL << MPU_RNR_REGION_Pos)                 /*!< MPU RNR: REGION Mask */
-
-/* MPU Region Base Address Register */
-#define MPU_RBAR_ADDR_Pos                   8                                             /*!< MPU RBAR: ADDR Position */
-#define MPU_RBAR_ADDR_Msk                  (0xFFFFFFUL << MPU_RBAR_ADDR_Pos)              /*!< MPU RBAR: ADDR Mask */
-
-#define MPU_RBAR_VALID_Pos                  4                                             /*!< MPU RBAR: VALID Position */
-#define MPU_RBAR_VALID_Msk                 (1UL << MPU_RBAR_VALID_Pos)                    /*!< MPU RBAR: VALID Mask */
-
-#define MPU_RBAR_REGION_Pos                 0                                             /*!< MPU RBAR: REGION Position */
-#define MPU_RBAR_REGION_Msk                (0xFUL << MPU_RBAR_REGION_Pos)                 /*!< MPU RBAR: REGION Mask */
-
-/* MPU Region Attribute and Size Register */
-#define MPU_RASR_ATTRS_Pos                 16                                             /*!< MPU RASR: MPU Region Attribute field Position */
-#define MPU_RASR_ATTRS_Msk                 (0xFFFFUL << MPU_RASR_ATTRS_Pos)               /*!< MPU RASR: MPU Region Attribute field Mask */
-
-#define MPU_RASR_XN_Pos                    28                                             /*!< MPU RASR: ATTRS.XN Position */
-#define MPU_RASR_XN_Msk                    (1UL << MPU_RASR_XN_Pos)                       /*!< MPU RASR: ATTRS.XN Mask */
-
-#define MPU_RASR_AP_Pos                    24                                             /*!< MPU RASR: ATTRS.AP Position */
-#define MPU_RASR_AP_Msk                    (0x7UL << MPU_RASR_AP_Pos)                     /*!< MPU RASR: ATTRS.AP Mask */
-
-#define MPU_RASR_TEX_Pos                   19                                             /*!< MPU RASR: ATTRS.TEX Position */
-#define MPU_RASR_TEX_Msk                   (0x7UL << MPU_RASR_TEX_Pos)                    /*!< MPU RASR: ATTRS.TEX Mask */
-
-#define MPU_RASR_S_Pos                     18                                             /*!< MPU RASR: ATTRS.S Position */
-#define MPU_RASR_S_Msk                     (1UL << MPU_RASR_S_Pos)                        /*!< MPU RASR: ATTRS.S Mask */
-
-#define MPU_RASR_C_Pos                     17                                             /*!< MPU RASR: ATTRS.C Position */
-#define MPU_RASR_C_Msk                     (1UL << MPU_RASR_C_Pos)                        /*!< MPU RASR: ATTRS.C Mask */
-
-#define MPU_RASR_B_Pos                     16                                             /*!< MPU RASR: ATTRS.B Position */
-#define MPU_RASR_B_Msk                     (1UL << MPU_RASR_B_Pos)                        /*!< MPU RASR: ATTRS.B Mask */
-
-#define MPU_RASR_SRD_Pos                    8                                             /*!< MPU RASR: Sub-Region Disable Position */
-#define MPU_RASR_SRD_Msk                   (0xFFUL << MPU_RASR_SRD_Pos)                   /*!< MPU RASR: Sub-Region Disable Mask */
-
-#define MPU_RASR_SIZE_Pos                   1                                             /*!< MPU RASR: Region Size Field Position */
-#define MPU_RASR_SIZE_Msk                  (0x1FUL << MPU_RASR_SIZE_Pos)                  /*!< MPU RASR: Region Size Field Mask */
-
-#define MPU_RASR_ENABLE_Pos                 0                                             /*!< MPU RASR: Region enable bit Position */
-#define MPU_RASR_ENABLE_Msk                (1UL << MPU_RASR_ENABLE_Pos)                   /*!< MPU RASR: Region enable bit Disable Mask */
-
-/*@} end of group CMSIS_MPU */
-#endif
-
-
-/** \ingroup  CMSIS_core_register
-    \defgroup CMSIS_CoreDebug       Core Debug Registers (CoreDebug)
-    \brief      Cortex-M0+ Core Debug Registers (DCB registers, SHCSR, and DFSR)
-                are only accessible over DAP and not via processor. Therefore
-                they are not covered by the Cortex-M0 header file.
-  @{
- */
-/*@} end of group CMSIS_CoreDebug */
-
-
-/** \ingroup    CMSIS_core_register
-    \defgroup   CMSIS_core_base     Core Definitions
-    \brief      Definitions for base addresses, unions, and structures.
-  @{
- */
-
-/* Memory mapping of Cortex-M0+ Hardware */
-#define SCS_BASE            (0xE000E000UL)                            /*!< System Control Space Base Address */
-#define SysTick_BASE        (SCS_BASE +  0x0010UL)                    /*!< SysTick Base Address              */
-#define NVIC_BASE           (SCS_BASE +  0x0100UL)                    /*!< NVIC Base Address                 */
-#define SCB_BASE            (SCS_BASE +  0x0D00UL)                    /*!< System Control Block Base Address */
-
-#define SCB                 ((SCB_Type       *)     SCB_BASE      )   /*!< SCB configuration struct           */
-#define SysTick             ((SysTick_Type   *)     SysTick_BASE  )   /*!< SysTick configuration struct       */
-#define NVIC                ((NVIC_Type      *)     NVIC_BASE     )   /*!< NVIC configuration struct          */
-
-#if (__MPU_PRESENT == 1)
-  #define MPU_BASE          (SCS_BASE +  0x0D90UL)                    /*!< Memory Protection Unit             */
-  #define MPU               ((MPU_Type       *)     MPU_BASE      )   /*!< Memory Protection Unit             */
-#endif
-
-/*@} */
-
-
-
-/*******************************************************************************
- *                Hardware Abstraction Layer
-  Core Function Interface contains:
-  - Core NVIC Functions
-  - Core SysTick Functions
-  - Core Register Access Functions
- ******************************************************************************/
-/** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
-*/
-
-
-
-/* ##########################   NVIC functions  #################################### */
-/** \ingroup  CMSIS_Core_FunctionInterface
-    \defgroup CMSIS_Core_NVICFunctions NVIC Functions
-    \brief      Functions that manage interrupts and exceptions via the NVIC.
-    @{
- */
-
-/* Interrupt Priorities are WORD accessible only under ARMv6M                   */
-/* The following MACROS handle generation of the register offset and byte masks */
-#define _BIT_SHIFT(IRQn)         (  (((uint32_t)(IRQn)       )    &  0x03) * 8 )
-#define _SHP_IDX(IRQn)           ( ((((uint32_t)(IRQn) & 0x0F)-8) >>    2)     )
-#define _IP_IDX(IRQn)            (   ((uint32_t)(IRQn)            >>    2)     )
-
-
-/** \brief  Enable External Interrupt
-
-    The function enables a device-specific interrupt in the NVIC interrupt controller.
-
-    \param [in]      IRQn  External interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_EnableIRQ(IRQn_Type IRQn)
-{
-  NVIC->ISER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
-}
-
-
-/** \brief  Disable External Interrupt
-
-    The function disables a device-specific interrupt in the NVIC interrupt controller.
-
-    \param [in]      IRQn  External interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_DisableIRQ(IRQn_Type IRQn)
-{
-  NVIC->ICER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
-}
-
-
-/** \brief  Get Pending Interrupt
-
-    The function reads the pending register in the NVIC and returns the pending bit
-    for the specified interrupt.
-
-    \param [in]      IRQn  Interrupt number.
-
-    \return             0  Interrupt status is not pending.
-    \return             1  Interrupt status is pending.
- */
-__STATIC_INLINE uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)
-{
-  return((uint32_t) ((NVIC->ISPR[0] & (1 << ((uint32_t)(IRQn) & 0x1F)))?1:0));
-}
-
-
-/** \brief  Set Pending Interrupt
-
-    The function sets the pending bit of an external interrupt.
-
-    \param [in]      IRQn  Interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_SetPendingIRQ(IRQn_Type IRQn)
-{
-  NVIC->ISPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
-}
-
-
-/** \brief  Clear Pending Interrupt
-
-    The function clears the pending bit of an external interrupt.
-
-    \param [in]      IRQn  External interrupt number. Value cannot be negative.
- */
-__STATIC_INLINE void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
-{
-  NVIC->ICPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F)); /* Clear pending interrupt */
-}
-
-
-/** \brief  Set Interrupt Priority
-
-    The function sets the priority of an interrupt.
-
-    \note The priority cannot be set for every core interrupt.
-
-    \param [in]      IRQn  Interrupt number.
-    \param [in]  priority  Priority to set.
- */
-__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
-{
-  if(IRQn < 0) {
-    SCB->SHP[_SHP_IDX(IRQn)] = (SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
-        (((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
-  else {
-    NVIC->IP[_IP_IDX(IRQn)] = (NVIC->IP[_IP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
-        (((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
-}
-
-
-/** \brief  Get Interrupt Priority
-
-    The function reads the priority of an interrupt. The interrupt
-    number can be positive to specify an external (device specific)
-    interrupt, or negative to specify an internal (core) interrupt.
-
-
-    \param [in]   IRQn  Interrupt number.
-    \return             Interrupt Priority. Value is aligned automatically to the implemented
-                        priority bits of the microcontroller.
- */
-__STATIC_INLINE uint32_t NVIC_GetPriority(IRQn_Type IRQn)
-{
-
-  if(IRQn < 0) {
-    return((uint32_t)((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) >> (8 - __NVIC_PRIO_BITS)));  } /* get priority for Cortex-M0+ system interrupts */
-  else {
-    return((uint32_t)((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) >> (8 - __NVIC_PRIO_BITS)));  } /* get priority for device specific interrupts   */
-}
-
-
-/** \brief  System Reset
-
-    The function initiates a system reset request to reset the MCU.
- */
-__STATIC_INLINE void NVIC_SystemReset(void)
-{
-  __DSB();                                                     /* Ensure all outstanding memory accesses included
-                                                                  buffered write are completed before reset */
-  SCB->AIRCR  = ((0x5FA << SCB_AIRCR_VECTKEY_Pos)      |
-                 SCB_AIRCR_SYSRESETREQ_Msk);
-  __DSB();                                                     /* Ensure completion of memory access */
-  while(1);                                                    /* wait until reset */
-}
-
-/*@} end of CMSIS_Core_NVICFunctions */
-
-
-
-/* ##################################    SysTick function  ############################################ */
-/** \ingroup  CMSIS_Core_FunctionInterface
-    \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
-    \brief      Functions that configure the System.
-  @{
- */
-
-#if (__Vendor_SysTickConfig == 0)
-
-/** \brief  System Tick Configuration
-
-    The function initializes the System Timer and its interrupt, and starts the System Tick Timer.
-    Counter is in free running mode to generate periodic interrupts.
-
-    \param [in]  ticks  Number of ticks between two interrupts.
-
-    \return          0  Function succeeded.
-    \return          1  Function failed.
-
-    \note     When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
-    function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
-    must contain a vendor-specific implementation of this function.
-
- */
-__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
-{
-  if (ticks > SysTick_LOAD_RELOAD_Msk)  return (1);            /* Reload value impossible */
-
-  SysTick->LOAD  = (ticks & SysTick_LOAD_RELOAD_Msk) - 1;      /* set reload register */
-  NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);  /* set Priority for Systick Interrupt */
-  SysTick->VAL   = 0;                                          /* Load the SysTick Counter Value */
-  SysTick->CTRL  = SysTick_CTRL_CLKSOURCE_Msk |
-                   SysTick_CTRL_TICKINT_Msk   |
-                   SysTick_CTRL_ENABLE_Msk;                    /* Enable SysTick IRQ and SysTick Timer */
-  return (0);                                                  /* Function successful */
-}
-
-#endif
-
-/*@} end of CMSIS_Core_SysTickFunctions */
-
-
-
-
-#endif /* __CORE_CM0PLUS_H_DEPENDANT */
-
-#endif /* __CMSIS_GENERIC */
-
-#ifdef __cplusplus
-}
-#endif
diff --git a/arch/arm/arm-m/CMSIS/Include/core_cm3.h b/arch/arm/arm-m/CMSIS/Include/core_cm3.h
deleted file mode 100644 (file)
index 0173893..0000000
+++ /dev/null
@@ -1,1612 +0,0 @@
-/**************************************************************************//**
- * @file     core_cm3.h
- * @brief    CMSIS Cortex-M3 Core Peripheral Access Layer Header File
- * @version  V3.01
- * @date     22. March 2012
- *
- * @note
- * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
- *
- * @par
- * ARM Limited (ARM) is supplying this software for use with Cortex-M
- * processor based microcontrollers.  This file can be freely distributed
- * within development tools that are supporting such ARM based processors.
- *
- * @par
- * THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
- * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
- * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
- * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
- *
- ******************************************************************************/
-#if defined ( __ICCARM__ )
- #pragma system_include  /* treat file as system include file for MISRA check */
-#endif
-
-#ifdef __cplusplus
- extern "C" {
-#endif
-
-#ifndef __CORE_CM3_H_GENERIC
-#define __CORE_CM3_H_GENERIC
-
-/** \page CMSIS_MISRA_Exceptions  MISRA-C:2004 Compliance Exceptions
-  CMSIS violates the following MISRA-C:2004 rules:
-
-   \li Required Rule 8.5, object/function definition in header file.<br>
-     Function definitions in header files are used to allow 'inlining'.
-
-   \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
-     Unions are used for effective representation of core registers.
-
-   \li Advisory Rule 19.7, Function-like macro defined.<br>
-     Function-like macros are used to allow more efficient code.
- */
-
-
-/*******************************************************************************
- *                 CMSIS definitions
- ******************************************************************************/
-/** \ingroup Cortex_M3
-  @{
- */
-
-/*  CMSIS CM3 definitions */
-#define __CM3_CMSIS_VERSION_MAIN  (0x03)                                   /*!< [31:16] CMSIS HAL main version   */
-#define __CM3_CMSIS_VERSION_SUB   (0x01)                                   /*!< [15:0]  CMSIS HAL sub version    */
-#define __CM3_CMSIS_VERSION       ((__CM3_CMSIS_VERSION_MAIN << 16) | \
-                                    __CM3_CMSIS_VERSION_SUB          )     /*!< CMSIS HAL version number         */
-
-#define __CORTEX_M                (0x03)                                   /*!< Cortex-M Core                    */
-
-
-#if   defined ( __CC_ARM )
-  #define __ASM            __asm                                      /*!< asm keyword for ARM Compiler          */
-  #define __INLINE         __inline                                   /*!< inline keyword for ARM Compiler       */
-  #define __STATIC_INLINE  static __inline
-
-#elif defined ( __ICCARM__ )
-  #define __ASM            __asm                                      /*!< asm keyword for IAR Compiler          */
-  #define __INLINE         inline                                     /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */
-  #define __STATIC_INLINE  static inline
-
-#elif defined ( __TMS470__ )
-  #define __ASM            __asm                                      /*!< asm keyword for TI CCS Compiler       */
-  #define __STATIC_INLINE  static inline
-
-#elif defined ( __GNUC__ )
-  #define __ASM            __asm                                      /*!< asm keyword for GNU Compiler          */
-  #define __INLINE         inline                                     /*!< inline keyword for GNU Compiler       */
-  #define __STATIC_INLINE  static inline
-
-#elif defined ( __TASKING__ )
-  #define __ASM            __asm                                      /*!< asm keyword for TASKING Compiler      */
-  #define __INLINE         inline                                     /*!< inline keyword for TASKING Compiler   */
-  #define __STATIC_INLINE  static inline
-
-#endif
-
-/** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all
-*/
-#define __FPU_USED       0
-
-#if defined ( __CC_ARM )
-  #if defined __TARGET_FPU_VFP
-    #warning "Compiler generates FPU instructions for a device without an FPU (c